Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nested dust shells around the Wolf–Rayet binary WR 140 observed with JWST

Abstract

Massive colliding-wind binaries that host a Wolf–Rayet (WR) star present a potentially important source of dust and chemical enrichment in the interstellar medium. However, the chemical composition and survival of dust formed from such systems is not well understood. The carbon-rich Wolf–Rayet binary WR 140 presents an ideal astrophysical laboratory for investigating these questions, given its well-defined orbital period and predictable dust-formation episodes every 7.93 years around periastron passage. We present observations from our Early Release Science programme (ERS 1349) with the James Webb Space Telescope Mid-Infrared Instrument (MIRI) Medium-Resolution Spectrometer and Imager that reveal the spectral and spatial signatures of nested circumstellar dust shells around WR 140. MIRI medium-resolution spectroscopy of the second dust shell and Imager detections of over 17 shells formed throughout approximately the past 130 years confirm the survival of carbonaceous dust grains from WR 140 that are probably carriers of ‘unidentified infrared’-band features at 6.4 and 7.7 μm. The observations indicate that dust-forming carbon-rich Wolf–Rayet binaries can enrich the interstellar medium with organic compounds and carbonaceous dust.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: JWST/MIRI observations of WR 140.
Fig. 2: Views of the single-shell geometric dust model of WR 140 at the orbital configuration of MIRI observations.
Fig. 3: Comparison of the MIRI F1500W image of WR 140 with the 20-shell geometric dust model.
Fig. 4: Radial plots across C1 dust features from Imager observations and the geometric dust model.
Fig. 5: MIRI MRS spectroscopy of the C1 feature in shell 2.

Similar content being viewed by others

Data availability

Data used in this study were obtained under JWST Director’s Discretionary Early Release Science programme ID ERS 1349 and have no exclusive access period. Data can be obtained from the Mikulski Archive for Space Telescopes (MAST; https://archive.stsci.edu/missions-and-data/jwst).

Code availability

This research made use of Astropy, a community-developed core Python package for Astronomy42. This research also made use of Jdaviz, which is a package of astronomical data analysis visualization tools based on the Jupyter platform43.

References

  1. Marchenko, S. V. & Moffat, A. F. J. Search for polycyclic aromatic hydrocarbons in the outflows from dust-producing Wolf-Rayet stars. Mon. Not. R. Astron. Soc. 468, 2416–2428 (2017).

    Article  ADS  Google Scholar 

  2. Lau, R. M. et al. Revisiting the impact of dust production from carbon-rich Wolf-Rayet binaries. Astrophys. J. 898, 74 (2020).

    Article  ADS  Google Scholar 

  3. Endo, I. et al. Detection of a Broad 8 μm UIR feature in the mid-infrared spectrum of WR 125 observed with Subaru/COMICS. Astrophys. J. 930, 116 (2022).

    Article  ADS  Google Scholar 

  4. Crowther, P. A. Physical properties of Wolf-Rayet stars. Annu. Rev. Astron. Astrophys. 45, 177–219 (2007).

    Article  ADS  Google Scholar 

  5. Usov, V. V. Stellar wind collision and dust formation in long-period, heavily interacting Wolf-Rayet binaries. Mon. Not. R. Astron. Soc. 252, 49–52 (1991).

    Article  ADS  Google Scholar 

  6. Williams, P. M. et al. Orbitally modulated dust formation by the WC7+O5 colliding-wind binary WR140. Mon. Not. R. Astron. Soc. 395, 1749–1767 (2009).

    Article  ADS  Google Scholar 

  7. Eatson, J. W., Pittard, J. M. & Van Loo, S. Exploring dust growth in the episodic WCd system WR140. Preprint at https://arxiv.org/abs/2204.12354 (2022).

  8. Tuthill, P. G., Monnier, J. D. & Danchi, W. C. A dusty pinwheel nebula around the massive star WR104. Nature 398, 487–489 (1999).

    Article  ADS  Google Scholar 

  9. Cherchneff, I., Le Teuff, Y. H., Williams, P. M. & Tielens, A. G. G. M. Dust formation in carbon-rich Wolf-Rayet stars. I. Chemistry of small carbon clusters and silicon species. Astron. Astrophys. 357, 572–580 (2000).

    ADS  Google Scholar 

  10. Monnier, J. D. et al. First visual orbit for the prototypical colliding-wind Binary WR 140. Astrophys. J. Lett. 742, L1 (2011).

    Article  ADS  Google Scholar 

  11. Fahed, R. et al. Spectroscopy of the archetype colliding-wind binary WR 140 during the 2009 January periastron passage. Mon. Not. R. Astron. Soc. 418, 2–13 (2011).

    Article  ADS  Google Scholar 

  12. Thomas, J. D. et al. The orbit and stellar masses of the archetype colliding-wind binary WR 140. Mon. Not. R. Astron. Soc. 504, 5221–5230 (2021).

    Article  ADS  Google Scholar 

  13. Rate, G. & Crowther, P. A. Unlocking galactic Wolf-Rayet stars with Gaia DR2 - I. Distances and absolute magnitudes. Mon. Not. R. Astron. Soc. 493, 1512–1529 (2020).

    Article  ADS  Google Scholar 

  14. Bouchet, P. et al. The Mid-Infrared Instrument for the James Webb Space Telescope, III: MIRIM, the MIRI Imager. Publ. Astron. Soc. Pac. 127, 612 (2015).

    Article  ADS  Google Scholar 

  15. Wright, G. S. et al. The Mid-Infrared Instrument for the James Webb Space Telescope, II: design and build. Publ. Astron. Soc. Pac. 127, 595 (2015).

    Article  ADS  Google Scholar 

  16. Wells, M. et al. The Mid-Infrared Instrument for the James Webb Space Telescope, VI: the Medium Resolution Spectrometer. Publ. Astron. Soc. Pac. 127, 646 (2015).

    Article  ADS  Google Scholar 

  17. Lau, R. M. et al. Resolving decades of periodic spirals from the Wolf-Rayet dust factory WR 112. Astrophys. J. 900, 190 (2020).

    Article  ADS  Google Scholar 

  18. Han, Y. et al. The extreme colliding-wind system Apep: resolved imagery of the central binary and dust plume in the infrared. Mon. Not. R. Astron. Soc. 498, 5604–5619 (2020).

    Article  ADS  Google Scholar 

  19. Han, Y., Tuthill, P. G., Lau, R. M. & Soulain, A. Radiation driven acceleration in the expanding WR140 dust shell. Nature (2022); https://doi.org/10.1038/s41586-022-05155-5

  20. Perrin, M. D. et al. Updated point spread function simulations for JWST with WebbPSF. In Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave SPIE Conference Series Vol. 9143 (eds Oschmann, J. et al.) 91433X (SPIE, 2014).

  21. Williams, P. M. & Eenens, P. R. J. Displaced He I absorption lines in Wolf-Rayet stars : revisions to v-infinite. Mon. Not. R. Astron. Soc. 240, 445–457 (1989).

    Article  ADS  Google Scholar 

  22. Arnal, E. M. A high-resolution H I study of the interstellar medium local to HD 193793. Astron. J. 121, 413–425 (2001).

    Article  ADS  Google Scholar 

  23. Lau, R. M. et al. Revealing efficient dust formation at low metallicity in extragalactic carbon-rich Wolf-Rayet binaries. Astrophys. J. 909, 113 (2021).

    Article  ADS  Google Scholar 

  24. Peeters, E. et al. The rich 6 to 9 μm spectrum of interstellar PAHs. Astron. Astrophys. 390, 1089–1113 (2002).

    Article  ADS  Google Scholar 

  25. Leger, A. & Puget, J. L. Identification of the unidentified infrared emission features of interstellar dust. Astron. Astrophys. 137, L5–L8 (1984).

    ADS  Google Scholar 

  26. Allamandola, L. J., Tielens, A. G. G. M. & Barker, J. R. Polycyclic aromatic hydrocarbons and the unidentified infrared emission bands: auto exhaust along the milky way. Astrophys. J. Lett. 290, L25–L28 (1985).

    Article  ADS  Google Scholar 

  27. Tielens, A. G. G. M. Interstellar polycyclic aromatic hydrocarbon molecules. Annu. Rev. Astron. Astrophys. 46, 289–337 (2008).

    Article  ADS  Google Scholar 

  28. Allamandola, L. J., Tielens, A. G. G. M. & Barker, J. R. Interstellar polycyclic aromatic hydrocarbons: the infrared emission bands, the excitation/emission mechanism, and the astrophysical implications. Astrophys. J. Suppl. Ser. 71, 733 (1989).

    Article  ADS  Google Scholar 

  29. Chiar, J. E., Peeters, E. & Tielens, A. G. G. M. The infrared emission features in the spectrum of the Wolf-Rayet star WR 48a. Astrophys. J. Lett. 579, L91–L94 (2002).

    Article  ADS  Google Scholar 

  30. Helton, L. A., Evans, A., Woodward, C. E. & Gehrz, R. D. Atypical dust species in the ejecta of classical novae. In EAS Publications Series Vol. 46, PAHs and the Universe: A Symposium to Celebrate the 25th Anniversary of the PAH Hypothesis (eds Joblin, C. & Tielens, A. G. G. M.) 407–412 (EAS, 2011).

  31. García-Hernández, D. A., Rao, N. K. & Lambert, D. L. Dust around R Coronae Borealis stars. II. Infrared emission features in an H-poor environment. Astrophys. J. 773, 107 (2013).

    Article  ADS  Google Scholar 

  32. Harrington, J. P., Lame, N. J., Borkowski, K. J., Bregman, J. D. & Tsvetanov, Z. I. Discovery of a 6.4 micron dust feature in hydrogen-poor planetary nebulae. Astrophys. J. Lett. 501, L123–L126 (1998).

    Article  ADS  Google Scholar 

  33. Li, A. Spitzer’s perspective of polycyclic aromatic hydrocarbons in galaxies. Nat. Astron. 4, 339–351 (2020).

    Article  ADS  Google Scholar 

  34. Galliano, F., Dwek, E. & Chanial, P. Stellar evolutionary effects on the abundances of polycyclic aromatic hydrocarbons and supernova-condensed dust in galaxies. Astrophys. J. 672, 214–243 (2008).

    Article  ADS  Google Scholar 

  35. Eldridge, J. J. et al. Binary Population and Spectral Synthesis version 2.1: construction, observational verification, and new results. Publ. Astron. Soc. Aust. 34, e058 (2017).

    Article  ADS  Google Scholar 

  36. Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. Astron. Astrophys. 649, A2 (2021).

    Article  Google Scholar 

  37. Labiano, A. et al. Wavelength calibration and resolving power of the JWST MIRI Medium Resolution Spectrometer. Astron. Astrophys. 656, A57 (2021).

    Article  Google Scholar 

  38. Earl, N. et al. astropy/specutils: V1.7.0. Zenodo (2022); https://doi.org/10.5281/zenodo.6207491

  39. Gordon, K. D. et al. Milky Way mid-infrared Spitzer spectroscopic extinction curves: continuum and silicate features. Astrophys. J. 916, 33 (2021).

    Article  ADS  Google Scholar 

  40. Callingham, J. R. et al. Anisotropic winds in a Wolf-Rayet binary identify a potential gamma-ray burst progenitor. Nat. Astron. 3, 82–87 (2019).

    Article  ADS  Google Scholar 

  41. Marchenko, S. V. et al. The unusual 2001 periastron passage in the "clockwork” colliding-wind binary WR 140. Astrophys. J. 596, 1295–1304 (2003).

    Article  ADS  Google Scholar 

  42. Astropy Collaboration. The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).

    Article  ADS  Google Scholar 

  43. Lim, P. L. et al. spacetelescope/jdaviz: v2.8.0. Zenodo (2022); https://doi.org/10.5281/zenodo.6877878

Download references

Acknowledgements

R.M.L. thanks the members of the entire WR DustERS team for their valuable discussions and contributions to this work. We thank A. Moro-Martin, W. Januszewki, N. Reid, M. Meixner and B. Meinke for their support in the planning and execution of our ERS programme. We would also like to acknowledge the MIRI instrument and MIRISim teams for their insightful feedback and support of our observation and data analysis plans. We are grateful to K. Gordon for his guidance on the MIRI Imager data reduction. The work of R.M.L. is supported by NOIRLab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. Y.H. acknowledges funding from the Gates Cambridge Trust. M.F.C. and K.H. were supported by NASA under award number 80GSFC21M0002. O.C.J. acknowledges support from an STFC Webb fellowship. A.F.J.M. is grateful for financial aid from NSERC (Canada). J.S.-B. acknowledges support from the Mexican Council of Science (CONACyT) "Ciencia de Frontera" project CF-2019/263975. C.M.P.R. acknowledges support from NATA ATP grant number 80NSSC22K0628 and NASA Chandra Theory grant number TM2-23003X. This work is based on observations made with the NASA/ESA/CSA James Webb Space Telescope. The data were obtained from the Mikulski Archive for Space Telescopes at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract number NAS 5-03127 for JWST. These observations are associated with programme ERS 1349. Support for programme ERS 1349 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract number NAS 5-03127.

Author information

Authors and Affiliations

Authors

Contributions

R.M.L. led the analysis and is PI of the WR DustERS Team. R.M.L. and M.J.H. conceived and designed the project. I.A. and D.R.L. processed the MRS data, and M.G.M. processed the MIRI imaging data. Y.H. and P.T. constructed the geometric models of WR 140. All authors contributed to observation planning and/or scientific interpretation as members of the WR DustERS Team.

Corresponding author

Correspondence to Ryan M. Lau.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Paul Crowther, Joseph Callingham and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lau, R.M., Hankins, M.J., Han, Y. et al. Nested dust shells around the Wolf–Rayet binary WR 140 observed with JWST. Nat Astron 6, 1308–1316 (2022). https://doi.org/10.1038/s41550-022-01812-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01812-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing