Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tectonics of Cerberus Fossae unveiled by marsquakes

Abstract

The InSight mission has measured the seismicity of Mars since February 2019 and has enabled the investigation of tectonics on the surface of another planet for the first time. Its dataset shows that most of the widely distributed surface faults are not seismically active, and that seismicity is mostly originating from a single population of tectonic structures, the Cerberus Fossae. We show that the spectral character of deeper low-frequency marsquakes suggests a structurally weak, potentially warm source region consistent with recent magmatic activity at depths of 30–50 km. We further show that high-frequency marsquakes occur distributed along the Cerberus Fossae, in the brittle, shallow part, potentially in fault planes associated with the graben flanks. Together, these quakes release an annual seismic moment of 1.4–5.6 × 1015 N m yr−1 or at least half the seismicity of the entire planet. Our findings confirm that the Cerberus Fossae represents a unique tectonic setting shaped by current day magmatic processes and locally elevated heat flow.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Faults around InSight.
Fig. 2: Seismicity at Cerberus Fossae.
Fig. 3: HF event localization.
Fig. 4: Spectra of marsquakes and source parameters compared to terrestrial and lunar quakes.
Fig. 5: Vertical sketch of an active part of the Cerberus Fossae viewed from the east.

Similar content being viewed by others

Data availability

All InSight SEIS data used in this paper are available from the IPGP Data Center, IRIS-DMC and NASA PDS.

References

  1. Knapmeyer, M. et al. Working models for spatial distribution and level of Mars’ seismicity. J. Geophys. Res. E Planets 111, 1–23 (2006).

    Article  Google Scholar 

  2. Tanaka, K. L. et al. Geologic map of Mars: U.S. Geological Survey Scientific Investigations Map 3292. US Geol. Surv. Geol. Investig. https://doi.org/10.3133/sim3292 (2014).

  3. Lognonné, P. et al. SEIS: Insight’s seismic experiment for internal structure of Mars. Space Sci. Rev. 215, 12–12 (2019).

    Article  ADS  Google Scholar 

  4. Banerdt, W. B. et al. Initial results from the InSight mission on Mars. Nat. Geosci. 13, 183–189 (2020).

    Article  ADS  Google Scholar 

  5. Golombek, M. P. et al. Geology of the InSight landing site on Mars. Nat. Commun. 11, 1014 (2020).

    Article  ADS  Google Scholar 

  6. Phillips, R. J. Expected Rate of Marsquakes. LPI Tech. Rept. 91-02, 35–38 (Lunar and Planetary Institute, 1991).

  7. Gudkova, T. V., Batov, A. V. & Zharkov, V. N. Model Estimates of non-hydrostatic stresses in the Martian crust and mantle: 1—Two-level model. Sol. Syst. Res. 51, 457–478 (2017).

    Article  ADS  Google Scholar 

  8. Berman, D. C. & Hartmann, W. K. Recent fluvial, volcanic, and tectonic activity on the Cerberus Plains of Mars. Icarus 159, 1–17 (2002).

    Article  ADS  Google Scholar 

  9. Anderson, R. C. et al. Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars. J. Geophys. Res. Planets 106, 20563–20585 (2001).

    Article  ADS  Google Scholar 

  10. Lognonné, P. et al. Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nat. Geosci. 13, 213–220 (2020).

    Article  ADS  Google Scholar 

  11. Giardini, D. et al. The seismicity of Mars. Nat. Geosci. 13, 205–212 (2020).

    Article  ADS  Google Scholar 

  12. Brinkman, N. et al. First focal mechanisms of marsquakes. J. Geophys. Res. Planets 126, e2020JE006546 (2021).

    Article  ADS  Google Scholar 

  13. Clinton, J. F. et al. The Marsquake catalogue from InSight, sols 0-478. Phys. Earth Planet. Inter. 310, 106595 (2021).

    Article  Google Scholar 

  14. InSight Marsquake Service (2022). Mars Seismic Catalogue, InSight Mission; V9 2022-01-01. ETHZ, IPGP, JPL, ICL, Univ. Bristol. https://doi.org/10.12686/a14

  15. Savas, C. et al. The marsquake catalogue from InSight sols 0–1011. Phys. Earth Planet. Inter. 106943 https://doi.org/10.1016/j.pepi.2022.106943 (2022)..

  16. Jacob, A. et al. Seismic sources of InSight marsquakes and seismotectonic context of Elysium Planitia, Mars. Tectonophysics 873, 229434 (2022).

    Article  Google Scholar 

  17. Durán, C. et al. Seismology on Mars: an analysis of direct, reflected, and converted seismic body waves with implications for interior structure. Phys. Earth Planet. Inter. 325, 106851 (2022).

    Article  Google Scholar 

  18. Stähler, S. C. et al. Seismic detection of the martian core. Science 373, 443–448 (2021).

    Article  ADS  Google Scholar 

  19. van Driel, M. et al. High-frequency seismic events on Mars observed by InSight. J. Geophys. Res. Planets 126, e2020JE006670 (2021).

    Article  ADS  Google Scholar 

  20. Horleston, A. et al. The far side of Mars – two distant marsquakes detected by InSight. Seism. Rec. 2, 88–99 (2022).

    Article  Google Scholar 

  21. Perrin, C. et al. Geometry and segmentation of Cerberus Fossae, Mars: implications for marsquake properties. J. Geophys. Res. Planets 127, e2021JE007118 (2022).

    Article  ADS  Google Scholar 

  22. Rivas-Dorado, S., Ruíz, J. & Romeo, I. Giant dikes and dike-induced seismicity in a weak crust underneath Cerberus Fossae, Mars. Earth Planet. Sci. Lett. 594, 117692 (2022).

    Article  Google Scholar 

  23. Head, J. W. Generation of recent massive water floods at Cerberus Fossae, Mars by dike emplacement, cryospheric cracking, and confined aquifer groundwater release. Geophys. Res. Lett. 30, 1577 (2003).

    Article  ADS  Google Scholar 

  24. Burr, D. M. Recent aqueous floods from the Cerberus Fossae, Mars. Geophys. Res. Lett. 29, 1013 (2002).

    Article  ADS  Google Scholar 

  25. Taylor, J., Teanby, N. A. & Wookey, J. Estimates of seismic activity in the cerberus fossae region of mars. J. Geophys. Res. E Planets 118, 2570–2581 (2013).

    Article  ADS  Google Scholar 

  26. Voigt, J. R. C. & Hamilton, C. W. Investigating the volcanic versus aqueous origin of the surficial deposits in Eastern Elysium Planitia, Mars. Icarus 309, 389–410 (2018).

    Article  ADS  Google Scholar 

  27. Horvath, D. G., Moitra, P., Hamilton, C. W., Craddock, R. A. & Andrews-Hanna, J. C. Evidence for geologically recent explosive volcanism in Elysium Planitia, Mars. Icarus 365, 114499 (2021).

    Article  Google Scholar 

  28. Banerdt, W. B., Golombek, M. P. & Tanaka, K. L. Stress and tectonics on Mars. In Mars, 249–297 (1992).

  29. Hauber, E., Brož, P., Jagert, F., Jodłowski, P. & Platz, T. Very recent and wide-spread basaltic volcanism on Mars. Geophys. Res. Lett. 38, n/a–n/a (2011).

    Article  Google Scholar 

  30. Plesa, A.-C., Wieczorek, M., Knapmeyer, M., Walterova, M. & Breuer, D. Interior Dynamics and Thermal Evolution of Mars a Geodynamic Perspective, in Geophysical Exploration of the Solar System, Vol. 63 of Advances in Geophysics (eds Schmelzbach, C. & Stähler, S.) p 179–230 (Elsevier, 2022).

  31. Zenhäusern, G. et al. Low-frequency marsquakes and where to find them: back azimuth determination using a polarization analysis approach. Bull. Seismol. Soc. Am. 112, 1787–1805 (2022).

    Article  Google Scholar 

  32. Stähler, S. C., Khan, A., Drilleau, M., Duran, A. C. & Samuel, H. Interior models of Mars from inversion of seismic body waves doi:10.18715/IPGP.2021.kpmqrnz8 (2021).

  33. Böse, M. et al. Magnitude scales for marsquakes calibrated from InSight data. Bull. Seismol. Soc. Am. https://doi.org/10.1785/0120210045 (2021).

  34. Knapmeyer, M. et al. Seasonal seismic activity on Mars. Earth Planet. Sci. Lett. 576, 117171 (2021).

    Article  Google Scholar 

  35. Knapmeyer, M. et al. Estimation of the seismic moment rate from an incomplete seismicity catalog, in the context of the InSight mission to Mars. Bull. Seismol. Soc. Am. 109, 1125–1147 (2019).

    Article  Google Scholar 

  36. Knapmeyer-Endrun, B. et al. Thickness and structure of the martian crust from InSight seismic data. Science 373, 438–443 (2021).

    Article  ADS  Google Scholar 

  37. Vetterlein, J. & Roberts, G. P. Structural evolution of the Northern Cerberus Fossae graben system, Elysium Planitia, Mars. J. Struct. Geol. 32, 394–406 (2010).

    Article  ADS  Google Scholar 

  38. Brune, J. N. Tectonic stress and the spectra of seismic shear waves from earthquakes. J. Geophys. Res. 1896–1977 75, 4997–5009 (1970).

    ADS  Google Scholar 

  39. Abercrombie, R. E. Earthquake source scaling relationships from -1 to 5 ML using seismograms recorded at 2.5-km depth. J. Geophys. Res. Solid Earth 100, 24015–24036 (1995).

    Article  Google Scholar 

  40. Allmann, B. P. & Shearer, P. M.Global variations of stress drop for moderate to large earthquakes. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2008JB005821 (2009).

  41. Compaire, N. et al. Autocorrelation of the ground vibrations recorded by the SEIS-InSight seismometer on Mars. J. Geophys. Res. Planets 126, e2020JE006498 (2021).

    Article  ADS  Google Scholar 

  42. Laske, G., Masters, G., Ma, Z. & Pasyanos, M. Update on CRUST1.0 – A 1-degree global model of Earth’s crust. Geophys. Res. Abstracts 15, Abstract EGU2013-2658 (2013).

    Google Scholar 

  43. Drilleau, M. et al. Marsquake locations and 1-D seismic models for Mars from InSight data. J. Geophys. Res. Planets https://doi.org/10.1002/essoar.10511074.2 (2022).

  44. Abercrombie, R. E. Resolution and uncertainties in estimates of earthquake stress drop and energy release. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 379, 20200131 (2021).

    ADS  Google Scholar 

  45. Giampiccolo, E., D’Amico, S., Patane, D. & Gresta, S. Attenuation and source parameters of shallow microearthquakes at Mt. Etna Volcano, Italy. Bull. Seismol. Soc. Am. 97, 184–197 (2007).

    Article  Google Scholar 

  46. Oberst, J. Unusually high stress drops associated with shallow moonquakes. J. Geophys. Res. 92, 1397–1405 (1987).

    Article  ADS  Google Scholar 

  47. Hensch, M. et al. Deep low-frequency earthquakes reveal ongoing magmatic recharge beneath Laacher See Volcano (Eifel, Germany). Geoph. J. Int. 216, 2025–2036 (2019).

    Article  ADS  Google Scholar 

  48. Chouet, B. A. & Matoza, R. S. A multi-decadal view of seismic methods for detecting precursors of magma movement and eruption. J. Volcanol. Geotherm. Res. 252, 108–175 2013).

    Article  ADS  Google Scholar 

  49. Kedar, S. et al. Analyzing low frequency seismic events at Cerberus Fossae as long period volcanic quakes. J. Geophys. Res. Planets 126, e2020JE006518 (2021).

    Article  ADS  Google Scholar 

  50. Madariaga, R. Dynamics of an expanding circular fault. Bull. Seismol. Soc. Am. 66, 639–666 (1976).

    Article  Google Scholar 

  51. Roberts, G. P., Matthews, B., Bristow, C., Guerrieri, L. & Vetterlein, J. Possible evidence of paleomarsquakes from fallen boulder populations, Cerberus Fossae, Mars. J. Geophys. Res. Planets 117, n/a–n/a (2012).

    Article  Google Scholar 

  52. Kolzenburg, S. et al. Solid as a rock: tectonic control of graben extension and dike propagation. Geology 50, 260–265 (2021).

    Article  ADS  Google Scholar 

  53. Watters, T. R. et al. Shallow seismic activity and young thrust faults on the Moon. Nat. Geosci. 12, 411–417 (2019).

    Article  ADS  Google Scholar 

  54. Plesa, A.-C. et al. Present-day Mars’ seismicity predicted from 3-D thermal evolution models of interior dynamics. Geophys. Res. Lett. 45, 2580–2589 (2018).

    Article  ADS  Google Scholar 

  55. Bergman, E. A. Intraplate earthquakes and the state of stress in oceanic lithosphere. Tectonophysics 132, 1–35 (1986).

    Article  ADS  Google Scholar 

  56. Clauser, C. & Huenges, E. in Thermal Conductivity of Rocks and Minerals (ed Ahrens, T.) 105–126 (American Geophysical Union (AGU), 1995).

  57. Khan, A. et al. Imaging the upper mantle structure of Mars with InSight seismic data. Science 373, 434–438 (2021).

    Article  ADS  Google Scholar 

  58. Byrne, P. K. A comparison of inner solar system volcanism. Nat. Astron. 4, 321–327 (2020).

    Article  ADS  Google Scholar 

  59. Clinton, J. F. et al. The Marsquake Service: securing daily analysis of SEIS data and building the martian seismicity catalogue for InSight. Space Sci. Rev. 214, 133–133 (2018).

    Article  ADS  Google Scholar 

  60. Böse, M. et al. A probabilistic framework for single-station location of seismicity on Earth and Mars. Phys. Earth Planet. Inter. 262, 48–65 (2016).

    Article  ADS  Google Scholar 

  61. Schimmel, M. & Gallart, J. The use of instantaneous polarization attributes for seismic signal detection and image enhancement. Geophys. J. Int. 155, 653–668 (2003).

    Article  ADS  Google Scholar 

  62. Ceylan, S. et al. Companion guide to the marsquake catalog from InSight, Sols 0–478: data content and non-seismic events. Phys. Earth Planet. Inter. 310, 106597–106597 (2021).

    Article  Google Scholar 

  63. Scholz, J.-R. et al. Detection, analysis, and removal of glitches from InSight’s seismic data From Mars. Earth Space Sci. 7, 1–31 (2020).

    Article  Google Scholar 

  64. Kim, D. et al. Potential pitfalls in the analysis and structural interpretation of seismic data from the Mars InSight mission. Bull. Seismol. Soc. Am. 111, 2982–3002 (2021).

    Article  Google Scholar 

  65. VanDecar, J. C. & Crosson, R. S. Determination of teleseismic relative phase arrival times using multi-channel cross-correlation and least squares. Bull. Seismol. Soc. Am. 80, 150–169 (1990).

    Google Scholar 

  66. Kim, D. et al. Improving constraints on planetary interiors with PPs receiver functions. J. Geophys. Res. Planets 126, e2021JE006983 (2021).

    Article  ADS  Google Scholar 

  67. Kagan, Y. Y. Seismic moment distribution revisited: I. Statistical results. Geophys. J. Int. 148, 520–541 (2002).

    Article  ADS  Google Scholar 

  68. Kane, D. L., Prieto, G., Vernon, F. L. & Shearer, P. M. Quantifying seismic source parameter uncertainties. Bull. Seismol. Soc. Am. 101, 535–543 (2011).

    Article  Google Scholar 

  69. Trugman, D. T., Dougherty, S. L., Cochran, E. S. & Shearer, P. M. Source spectral properties of small to moderate earthquakes in Southern Kansas. J. Geophys. Res. Solid Earth 122, 8021–8034 (2017).

    Article  ADS  Google Scholar 

  70. Aki, K. & Chouet, B. Origin of coda waves: source, attenuation, and scattering effects. J. Geophys. Res. 80, 3322–3342 (1975).

    Article  ADS  Google Scholar 

  71. Yoshimoto, K., Sato, H. & Ohtake, M. Frequency-dependent attenuation of P and S waves in the Kanto area, Japan, based on the coda-normalization method. Geoph. J. Int. 114, 165–174 (1993).

    Article  ADS  Google Scholar 

  72. Nakamura, Y. & Koyama, J. Seismic Q of the Lunar Upper Mantle. J. Geophys. Res. 87, 4855–4861 (1982).

    Article  ADS  Google Scholar 

  73. Boatwright, J. Seismic estimates of stress release. J. Geophys. Res. Solid Earth 89, 6961–6968 (1984).

    Article  Google Scholar 

  74. Kaneko, Y. & Shearer, P. M. Seismic source spectra and estimated stress drop derived from cohesive-zone models of circular subshear rupture. Geoph. J. Int. 197, 1002–1015 (2014).

    Article  ADS  Google Scholar 

  75. Baig, A. M., Dahlen, F. A. & Hung, S.-H. Traveltimes of waves in three-dimensional random media. Geophys. J. Int. 153, 467–482 (2003).

    Article  ADS  Google Scholar 

  76. Smith, D. E. et al. Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping of Mars. J. Geophys. Res. Planets 106, 23689–23722 (2001).

    Article  ADS  Google Scholar 

  77. Dahmen, N. L. et al. Resonances and lander modes observed by InSight on Mars (1–9 Hz). Bull. Seismol. Soc. Am. 111, 2924–2950 (2021).

    Article  Google Scholar 

  78. Hobiger, M. et al. The shallow structure of Mars at the InSight landing site from inversion of ambient vibrations. Nat Commun 12, 6756 (2021).

    Article  ADS  Google Scholar 

  79. Iio, Y. Scaling relation between earthquake size and duration of faulting for shallow earthquakes in seismic moment between 1010 and 1025 dyne cm. J. Phys. Earth 34, 127–169 (1986).

    Article  Google Scholar 

  80. Bilek, S. L., Lay, T. & Ruff, L. J. Radiated seismic energy and earthquake source duration variations from teleseismic source time functions for shallow subduction zone thrust earthquakes. J. Geophys. Res. Solid Earth 109, B09308 (2004).

    Article  ADS  Google Scholar 

  81. Matsuzawa, T., Obara, K. & Maeda, T. Source duration of deep very low frequency earthquakes in western Shikoku, Japan. J. Geophys. Res. Solid Earth 114, B00A11 (2009).

    Article  ADS  Google Scholar 

  82. Prieto, G., Parker, R. L. & Vernon, F. L. A Fortran 90 library for multitaper spectrum analysis. Comput. Geosci. 35, 1701–1710 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge NASA, CNES, partner agencies and institutions (UKSA, SSO, DLR, JPL, IPGP-CNRS, ETHZ, IC and MPS-MPG), and the operators of JPL, SISMOC, MSDS, IRIS-DMC and PDS for providing SEED SEIS data. S.C.S. acknowledges funding from ETH research grant ETH-10 17-3. S.C.S., G.Z. and D.G. acknowledge support from ETHZ through the ETH+ funding scheme (ETH+2 19-1: ‘Planet MARS’). Marsquake Service (MQS) operations at ETH are supported by ETH Research grant ETH-06 17-02. A.M. acknowledges support from ETH 19-2 FEL-34 and the Harvard Daly Postdoctoral Fellowship. C.P. acknowledges support from CNES as well as Agence Nationale de la Recherche (ANR-14-CE36-0012-02 and ANR-19-CE31-0008-08). W.B.B. was supported by the NASA InSight mission and funds from the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). This is InSight contribution 233.

Author information

Authors and Affiliations

Authors

Contributions

S.C.S. designed the study with contributions from all authors. A.M. and C.P. led the geological context analysis. S.C.S., T.K. and P.L. analysed the waveform spectra. M.K. and S.C.S. analysed the seismic moment release. J.C., S.C.S. and D.G reviewed the MQS analysis on event distances. G.Z., J.C. and S.C.S. analysed LF event back azimuths. D.K. added the analysis of the HF event back azimuth. D.G., P.L. and W.B.B. designed the InSight seismic experiment. S.C.S. and A.M. wrote the paper with help from all authors.

Corresponding author

Correspondence to Simon C. Stähler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Ernst Hauber, Gerald Roberts and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Global fault map.

Global map of faults color-coded by minimum age1,2,76. The darkened area marks the core shadow18, in which no direct body waves can be observed as seen from InSight. Thus event detection is significantly more difficult.

Extended Data Fig. 2 Realignment of HF marsquake arrival times.

(A) Average three-component envelopes aligned on Pg-arrival (t = 0 s) from a total of 62 marsquakes from the HF event category, and the corresponding (B) vertical component waveforms. All MQS events with the event quality C or above are selected between Sols 128 and 105014 but those with low envelope similarity (that is, correlation coefficient < 0.8 against the mean envelope of all HF event data) are removed. (C) Comparison of the MQS vs. relocated distance estimates with vPg=4 km/s and vPg/vSg=\(\sqrt{3}\), including standard deviation.

Extended Data Fig. 3 Backazimuth estimation from radial vs transverse energy.

Median power ratio between radial and transverse components of the HF waveforms (A) before, and (B) after applying the re-alignment using average spectral envelopes. (C) Same as (B) but using a subgroup of HF events that clustered tightly at the mean relocated distance of 24. Background power which is strongly affected by wind noise and lander resonances is removed.

Extended Data Fig. 4 Probability of moment rate and corner magnitude in Cerberus Fossae.

Emission probability of moment rate and corner moment taking into account the 10 largest events observed over the mission until 2021-12-31, using the KS10 estimator of35, in the same style as figs. 4, 7 therein. For orientation, the moment release of the whole moon, as seen by the Apollo seismic network over 7 years of operation46 (green) and the moment rates estimated by25 for Cerberus Fossae (grey) are shown, as well as 2 global estimates from1 (Many weak faults and the medium model).

Extended Data Fig. 5 Probability distribution of annual moment rate.

Distribution of annual moment release rate \(\dot{M}\) resulting from the emission probability in Extended Data Figure 4.

Extended Data Fig. 6 Spectral fit of marsquake S0173a.

Spectral fitting example: Event S0173a, after correction for Qμ (eq. (6), (7)). Top: The value of Qμ = 1000 has been chosen to make P and S-wave spectra match. Each spectrum was computed in a time window of 30 second length around the arrival using a multitaper method82. The S-wave and P-wave amplitude spectra meet the pre-event noise at 1.1 Hz. For easier comparison, the noise spectra are plotted 3 times: (i) raw, and using the correction terms for (ii) P- and (iii) S-waves. Bottom: Ratio of P- and S-wave spectrum. The colored part highlights the frequency range in which both P- and S-wave are above noise. The black line marks a theoretical spectrum (eq. (3)) with fc = 0.5 Hz and n = 2.

Extended Data Fig. 7 Spectral fit of marsquake S0173a with different attenuation model.

Event S0173a, with the attenuation model of11. The value of Qμ = 400 leads to a significant over-prediction of the S-wave amplitude above 0.5 Hz.

Extended Data Fig. 8 Test for Poissonian distribution of marsquakes.

Cumulative count of events (left), and lag time distribution (right). For a stationary Poisson process, the cumulative count as function of time should follow a straight line in linear coordinates. The event rate defines the slope of this line. For the first year of operation (cycle 1, blue), we corrected the count after the three weeks down time in August/September 2019 by assuming that the rate during the down time equalled that afterwards. After Sol 400, increasing wind speeds at night made detection impossible until the second Martian year, starting around Sol 700. For the second year (cycle 2), no such correction was necessary. Pale lines indicate the nominal slope (cycle 1: 0.021 ± 0.007 events/sol, cycle 2: 0.053 ± 0.02 events/sol) and the 95% confidence intervals for likely scatter. The event series end with the end of the catalog (MQS v9). The lag times of a stationary Poisson process are exponentially distributed and thus follow a straight line in a semi-logarithmic plot. Lag times shorter than 1 sol were not considered; the daily noise regime makes them unreliable. All confidence were intervals estimated numerically from 1e5 synthetic event sequences with the same rate and covering the same duration.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stähler, S.C., Mittelholz, A., Perrin, C. et al. Tectonics of Cerberus Fossae unveiled by marsquakes. Nat Astron 6, 1376–1386 (2022). https://doi.org/10.1038/s41550-022-01803-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01803-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing