Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A strangely light neutron star within a supernova remnant

Abstract

To constrain the equation of state of cold dense matter, astrophysical measurements are essential. These are mostly based on observations of neutron stars in the X-ray band, and, more recently, also on gravitational wave observations. Of particular interest are observations of unusually heavy or light neutron stars which extend the range of central densities probed by observations and thus permit the testing of nuclear-physics predictions over a wider parameter space. Here we report on the analysis of such a star, a central compact object within the supernova remnant HESS J1731-347. We estimate the mass and radius of the neutron star to be \(M=0.7{7}_{-0.17}^{+0.20}\,{M}_{\odot }\) and \(R=10.{4}_{-0.78}^{+0.86}\) km, respectively, based on modelling of the X-ray spectrum and a robust distance estimate from Gaia observations. Our estimate implies that this object is either the lightest neutron star known, or a ‘strange star’ with a more exotic equation of state. Adopting a standard neutron star matter hypothesis allows the corresponding equations of state to be constrained.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Equation of state predictions and observational constraints as a function of the radius and mass of the compact star.

Similar content being viewed by others

Data availability

XMM-Newton and Suzaku data used in the publication are publicly available at the respective missions’ data centres and HEASARC archives. The data reduction was carried out using the software and instructions provided by the respective missions’ science operation centres. The tabulated EOSs considered in this work are available as part of the original publications23,24,25. The posterior samples for neutron star mass and radius obtained in this work are available via https://doi.org/10.5281/zenodo.6702216 (ref. 47).

Code availability

Model atmospheres are included as part of HEASOFT package at https://heasarc.gsfc.nasa.gov/docs/software/heasoft/. BXA software is also in the public domain and available at https://johannesbuchner.github.io/BXA/index.html. Code for calculation of theoretically expected pulsed fraction for arbitrary local spectra is available upon reasonable request from the authors.

References

  1. Pavlov, G. G., Zavlin, V. E. & Sanwal, D. Thermal radiation from neutron stars: Chandra results. In Proc. 270th Heraeus Seminar on Neutron Stars, Pulsars and Supernova Remnants MPE Reports 278 (eds Becker, W. et al.) 273 (MPE, 2002).

  2. Pavlov, G. G., Sanwal, D. & Teter, M. A. Central compact objects in supernova remnants. In Young Neutron Stars and Their Environments, IAU Symposium, Vol. 218 (eds Camilo, F. & Gaensler, B. M.) 239 (Astronomical Society of the Pacific, 2004).

  3. De Luca, A. Central compact objects in supernova remnants. J. Phys. Conf. Ser. 932, 012006 (2017).

  4. Halpern, J. P. & Gotthelf, E. V. Spin-down measurement of PSR J1852+0040 in Kesteven 79: central compact objects as anti-magnetars. Astrophys. J. 709, 436–446 (2010).

    Article  ADS  Google Scholar 

  5. Gotthelf, E. V., Halpern, J. P. & Alford, J. The spin-down of PSR J0821-4300 and PSR J1210-5226: confirmation of central compact objects as anti-magnetars. Astrophys. J. 765, 58-74 (2013).

    Article  ADS  Google Scholar 

  6. Lattimer, J. M. & Prakash, M. The equation of state of hot, dense matter and neutron stars. Phys. Rep. 621, 127–164 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  7. Degenaar, N. & Suleimanov, V. F. Testing the equation of state with electromagnetic observations. Astrophys. Space Sci. Libr. 457, 185–253 (2018).

  8. Zavlin, V. E., Pavlov, G. G. & Trumper, J. The neutron star in the supernova remnant PKS 1209-52. Astron. Astrophys. 331, 821–828 (1998).

    ADS  Google Scholar 

  9. Pavlov, G. G. & Luna, G. J. M. A dedicated Chandra ACIS observation of the central compact object in the Cassiopeia A supernova remnant. Astrophys. J. 703, 910–921 (2009).

    Article  ADS  Google Scholar 

  10. Klochkov, D. et al. A non-pulsating neutron star in the supernova remnant HESS J1731-347/G353.6-0.7 with a carbon atmosphere. Astron. Astrophys. 556, A41 (2013).

    Article  Google Scholar 

  11. Elshamouty, K. G., Heinke, C. O., Morsink, S. M., Bogdanov, S. & Stevens, A. L. The impact of surface temperature inhomogeneities on quiescent neutron star radius measurements. Astrophys. J. 826, 162 (2016).

    Article  ADS  Google Scholar 

  12. Suleimanov, V. F., Klochkov, D., Poutanen, J. & Werner, K. Probing the possibility of hotspots on the central neutron star in HESS J1731-347. Astron. Astrophys. 600, A43 (2017).

    Article  ADS  Google Scholar 

  13. Ho, W. C. G. & Heinke, C. O. A neutron star with a carbon atmosphere in the Cassiopeia A supernova remnant. Nature 462, 71–73 (2009).

    Article  ADS  Google Scholar 

  14. Klochkov, D. et al. The neutron star in HESS J1731-347: central compact objects as laboratories to study the equation of state of superdense matter. Astron. Astrophys. 573, A53 (2015).

    Article  Google Scholar 

  15. Doroshenko, V., Suleimanov, V. & Santangelo, A. CXOU J160103.1-513353: another central compact object with a carbon atmosphere? Astron. Astrophys. 618, A76 (2018).

    Article  ADS  Google Scholar 

  16. Wu, Q. et al. What causes the absence of pulsations in central compact objects in supernova remnants? Res. Astron. Astrophys. 21, 294 (2021).

    Article  ADS  Google Scholar 

  17. Halpern, J. P. & Gotthelf, E. V. Spin-down measurement of PSR J1852+0040 in Kesteven 79: central compact objects as anti-magnetars. Astrophys. J. 709, 436–446 (2010).

    Article  ADS  Google Scholar 

  18. Ho, W. C. G. et al. X-ray bounds on cooling, composition, and magnetic field of the Cassiopeia A neutron star and young central compact objects. Mon. Not. R. Astron. Soc. 506, 5015–5029 (2021).

    Article  ADS  Google Scholar 

  19. Doroshenko, V. et al. Evidence for a binary origin of a central compact object. Mon. Not. R. Astron. Soc. 458, 2565–2572 (2016).

    Article  ADS  Google Scholar 

  20. Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Demleitner, M. & Andrae, R. Estimating distances from parallaxes. V: geometric and photogeometric distances to 1.47 billion stars in Gaia Early Data Release 3. Astron. J. 161, 147 (2021).

    Article  ADS  Google Scholar 

  21. Landstorfer, A., Doroshenko, V. & Pühlhofer, G. Dust scattering halo around the CCO in HESS J1731-347: a detailed analysis. Astron. Astrophys. 659, A82 (2022).

    Article  ADS  Google Scholar 

  22. Lallement, R. et al. Gaia-2MASS 3D maps of galactic interstellar dust within 3 kpc. Astron. Astrophys. 625, A135 (2019).

    Article  Google Scholar 

  23. Dietrich, T. et al. Multimessenger constraints on the neutron-star equation of state and the Hubble constant. Science 370, 1450–1453 (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Pang, P. T. H. et al. Nuclear physics multimessenger astrophysics constraints on the neutron star equation of state: adding NICER’s PSR J0740+6620 measurement. Astrophys. J. 922, 14 (2021).

    Article  ADS  Google Scholar 

  25. Nättilä, J. et al. Neutron star mass and radius measurements from atmospheric model fits to X-ray burst cooling tail spectra. Astron. Astrophys. 608, A31 (2017).

    Article  Google Scholar 

  26. Hessels, J. W. T. et al. A radio pulsar spinning at 716 Hz. Science 311, 1901–1904 (2006).

    Article  ADS  Google Scholar 

  27. Al-Mamun, M. et al. Combining electromagnetic and gravitational-wave constraints on neutron-star masses and radii. Phys. Rev. Lett. 126, 061101 (2021).

    Article  ADS  Google Scholar 

  28. Adhikari, D. et al. Accurate determination of the neutron skin thickness of 208Pb through parity-violation in electron scattering. Phys. Rev. Lett. 126, 172502 (2021).

    Article  ADS  Google Scholar 

  29. Suwa, Y., Yoshida, T., Shibata, M., Umeda, H. & Takahashi, K. On the minimum mass of neutron stars. Mon. Not. R. Astron. Soc. 481, 3305–3312 (2018).

    Article  ADS  Google Scholar 

  30. Yakovlev, D. G. & Pethick, C. J. Neutron star cooling. Annu. Rev. Astron. Astrophys. 42, 169–210 (2004).

    Article  ADS  Google Scholar 

  31. Ho, W. C. G. Evolution of a buried magnetic field in the central compact object neutron stars. Mon. Not. R. Astron. Soc. 414, 2567–2575 (2011).

    Article  ADS  Google Scholar 

  32. Viganò, D. & Pons, J. A. Central compact objects and the hidden magnetic field scenario. Mon. Not. R. Astron. Soc. 425, 2487–2492 (2012).

    Article  ADS  Google Scholar 

  33. Buchner, J. et al. X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue. Astron. Astrophys. 564, A125 (2014).

    Article  Google Scholar 

  34. Buchner, J. UltraNest – a robust, general purpose Bayesian inference engine. J. Open Source Softw. 6, 3001 (2021).

    Article  ADS  Google Scholar 

  35. Freeman, P., Doe, S. & Siemiginowska, A. Sherpa: a mission-independent data analysis application. In Astronomical Data Analysis, Vol. 4477 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (eds Starck, J.-L. & Murtagh, F. D.) 76–87 (SPIE, 2001).

  36. Astropy Collaboration. et al. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

    Article  Google Scholar 

  37. Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. Astron. Astrophys. 649, A2 (2021).

    Article  Google Scholar 

  38. Groenewegen, M. A. T. The parallax zero-point offset from Gaia EDR3 data. Astron. Astrophys. 654, A20 (2021).

    Article  ADS  Google Scholar 

  39. Huang, Y., Yuan, H., Beers, T. C. & Zhang, H. The parallax zero-point of Gaia Early Data Release 3 from LAMOST primary red clump stars. Astrophys. J. Lett. 910, L5 (2021).

    Article  ADS  Google Scholar 

  40. Zinn, J. C. Validation of the Gaia Early Data Release 3 parallax zero-point model with asteroseismology. Astron. J. 161, 214 (2021).

    Article  ADS  Google Scholar 

  41. Cash, W. Parameter estimation in astronomy through application of the likelihood ratio. Astrophys. J. 228, 939–947 (1979).

    Article  ADS  Google Scholar 

  42. Arnaud, K. A. XSPEC: the first ten years. In Astronomical Data Analysis Software and Systems V, Vol. 101 of Astronomical Society of the Pacific Conference Series (eds Jacoby, G. H. & Barnes, J.) 17 (Astronomical Society of the Pacific, 1996).

  43. Wilms, J., Allen, A. & McCray, R. On the absorption of X-rays in the interstellar medium. Astrophys. J. 542, 914–924 (2000).

    Article  ADS  Google Scholar 

  44. Posselt, B., Pavlov, G. G., Suleimanov, V. & Kargaltsev, O. New constraints on the cooling of the central compact object in Cas A. Astrophys. J. 779, 186 (2013).

    Article  ADS  Google Scholar 

  45. Smith, R. K., Valencic, L. A. & Corrales, L. The impact of accurate extinction measurements for X-ray spectral models. Astrophys. J. 818, 143 (2016).

    Article  ADS  Google Scholar 

  46. Mathis, J. S., Rumpl, W. & Nordsieck, K. H. The size distribution of interstellar grains. Astrophys. J. 217, 425–433 (1977).

    Article  ADS  Google Scholar 

  47. Doroshenko, V., Suleimanov, V. F., Pühlhofer, G. & Santangelo, A. MCMC samples for X-ray spectra fits summarised in the paper ‘A strangely light neutron star’. Zenodo https://doi.org/10.5281/zenodo.6702216 (2022).

  48. Suleimanov, V. F., Klochkov, D., Pavlov, G. G. & Werner, K. Carbon neutron star atmospheres. Astrophys. J. Suppl. 210, 13 (2014).

    Article  ADS  Google Scholar 

  49. Schwope, A. et al. Phase-resolved X-ray spectroscopy of PSR B0656+14 with SRG/eROSITA and XMM-Newton. Astron. Astrophys. 661, A41 (2022).

  50. Greenstein, G. & Hartke, G. J. Pulselike character of uchlackbody radiation from neutron stars. Astrophys. J. 271, 283–293 (1983).

    Article  ADS  Google Scholar 

  51. Miller, M. C. et al. The radius of PSR J0740+6620 from NICER and XMM-Newton data. Astrophys. J. Lett. 918, L28 (2021).

    Article  ADS  Google Scholar 

  52. Buccheri, R. et al. Search for pulsed γ-ray emission from radio pulsars in the COS-B data. Astr. Astrophys. 128, 245–251 (1983).

    ADS  Google Scholar 

  53. Huppenkothen, D. et al. Stingray: a modern Python library for spectral timing. Astrophys. J. 881, 39 (2019).

    Article  ADS  Google Scholar 

  54. Vaughan, B. A. et al. Searches for millisecond pulsations in low-mass X-ray binaries. II. Astrophys. J. 435, 362 (1994).

    Article  ADS  Google Scholar 

  55. Miller, M. C. et al. PSR J0030+0451 mass and radius from NICER data and implications for the properties of neutron star matter. Astro. Phys. J. Lett. 87, L24 (2019).

    ADS  Google Scholar 

Download references

Acknowledgements

This research made use of observations obtained with XMM-Newton, a European Space Agency (ESA) science mission with instruments and contributions directly funded by ESA Member States and NASA. For analysing X-ray spectra, we use the analysis software BXA33, which connects the nested sampling algorithm UltraNest34 with the fitting environment CIAO/Sherpa35. This research also made use of the astropy package36. The work was supported by the German Research Foundation (DFG) grant WE 1312/53-1 (VFS).

Author information

Authors and Affiliations

Authors

Contributions

V.D. carried out data analysis and modelling and drafted the initial version of the manuscript. V.S. developed atmosphere models used in the work and calculated upper limits on theoretically allowed pulsation amplitudes. G.P. and A.S. contributed to the interpretation of the results. G.P. was also principal investigator for some of the XMM observations used in this work. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Victor Doroshenko.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Adriana Pires and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Comparison of the fit results for NS mass and radius from this work with those reported by 14.

The dotted line shows results from the latter work for a fixed distance of 3.2 kpc (1σ credible interval). The labeled contours show results obtained in this work: (1) - same model and energy range as 14, (2) - same as 1 but with data below 1 keV included, (3) - same as 2 but with the wabs model component substituted with tbabs, (3a) - same as (3) but also accounting for the scattering component, (4) same as (3a) but with distance fixed to 2.5 kpc, and (5) - same as 4 but with distance priors set to the Gaia estimate as described in the text.

Extended Data Fig. 2 Theoretically expected pulsed fraction limits as a function of angles defining the viewing geometry.

The expected pulsed fraction is calculated given the best-fit spectral parameters for each model as described in section ‘More complex temperature distributions’ of the Methods, and contours represent limits on possible angle values when upper limits on the observed pulsed fraction obtained in this work for various frequency ranges and reported in the Extended Data Table 2 are considered. The region to the lower left of the respective contours represents the range of angles allowed for a given model and corresponding upper limit on pulsed fraction. The shaded region corresponds thus to the weakest of the upper limits on the observed pulsed fraction (that is 9.7%), and thus represents the most conservative estimate.

Extended Data Fig. 3 Corner plots corresponding to the final fit with single temperature carbon atmosphere model including full distance priors and EOS constrain priors.

Unweighted samples from the BXA modeling described in the text for all relevant parameters are used to produce the plots, using the corner module for 1σ credibility intervals. The panels corresponding to the (well constrained) cross-normalization constants also included in the fit are omitted for clarity.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doroshenko, V., Suleimanov, V., Pühlhofer, G. et al. A strangely light neutron star within a supernova remnant. Nat Astron 6, 1444–1451 (2022). https://doi.org/10.1038/s41550-022-01800-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01800-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing