Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiple gas acquisition events in galaxies with dual misaligned gas disks

Abstract

Frequent accretion of external cold gas is thought to play an important role in galaxy assembly. However, almost all known kinematically misaligned galaxies identify only one gas disk that is misaligned with the stellar disk, implying a single gas acquisition event. Here we report a new configuration in two galaxies where both contain two gas disks misaligned with each other and also with the stellar disk. Such systems are not expected to be stable or long-lasting, challenging the traditional picture of gas accretion of galaxies and their angular momentum build-up. The differences in kinematic position angles are larger than 120° between the two gas disks, and 40° between each gas disk and the stellar component. The star formation activity is enhanced at the interface of the two gas disks compared with the other regions within the same galaxy. Such systems illustrate that low-redshift galaxies can still experience multiple gas acquisition events, and provide a new view into the origins of galactic gas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Kinematics of the two gas–gas misaligned galaxies.
Fig. 2: SFRs versus stellar masses.
Fig. 3: Enhanced star formation at the interface of the two gas disks.
Fig. 4: Gas-phase metallicity of the two galaxies.
Fig. 5: Three dimensional configuration of two gas disks.
Fig. 6: Line-of-sight velocity curves and modelling the Hα emission line.

Similar content being viewed by others

Data availability

The MPL-11 data (including all the MPL-10 data) that support the findings of this paper are available through SDSS Data Release 17 that can be downloaded from https://www.sdss.org/dr17/manga/. The multi-waveband images from DESI Legacy Surveys can be downloaded from https://www.legacysurvey.org/.

References

  1. Rubin, V. C. Kinematics of NGC 4826: a sleeping beauty galaxy, not an evil eye. Astron. J. 107, 173 (1994).

    Article  ADS  Google Scholar 

  2. Schweizer, F. & Seitzer, P. Ages and metallicities of young globular clusters in the merger remnant NGC 7252. Astron. J. 116, 2206–2219 (1998).

    Article  ADS  Google Scholar 

  3. Bettoni, D. On the observed state of the stellar rotation curve in bars. Astron. J. 97, 79 (1989).

    Article  ADS  Google Scholar 

  4. Bertola, F. & Bettoni, D. The counterrotation of gas and stars in the dust lane elliptical NGC 5898. Astrophys. J. 329, 102 (1988).

    Article  ADS  Google Scholar 

  5. Bertola, F., Buson, L. M. & Zeilinger, W. W. Counter-rotation in dust-lane ellipticals and the implications for accretion events in galaxies. Nature 335, 705–706 (1988).

    Article  ADS  Google Scholar 

  6. Kuijken, K., Fisher, D. & Merrifield, M. R. A search for counter-rotating stars in S0 galaxies. Mon. Not. R. Astron. Soc. 283, 543–550 (1996).

    Article  ADS  Google Scholar 

  7. Kannappan, S. J. & Fabricant, D. G. A broad search for counterrotating gas and stars: evidence for mergers and accretion. Astron. J. 121, 140–147 (2001).

    Article  ADS  Google Scholar 

  8. Pizzella, A., Corsini, E. M., Vega Beltrán, J. C. & Bertola, F. Ionized gas and stellar kinematics of seventeen nearby spiral galaxies. Astron. Astrophys. 424, 447–454 (2004).

    Article  ADS  Google Scholar 

  9. Davis, T. A. et al. The ATLAS3D project - X. On the origin of the molecular and ionized gas in early-type galaxies. Mon. Not. R. Astron. Soc. 417, 882–899 (2011).

    Article  ADS  Google Scholar 

  10. Chen, Y.-M. et al. The growth of the central region by acquisition of counterrotating gas in star-forming galaxies. Nat. Commun. 7, 13269 (2016).

    Article  ADS  Google Scholar 

  11. Jin, Y.-F. et al. SDSS-IV MaNGA: properties of galaxies with kinematically decoupled stellar and gaseous components. Mon. Not. R. Astron. Soc. 463, 913–926 (2016).

    Article  ADS  Google Scholar 

  12. Martinsson, T. P. K. et al. MUSE observations of the counter-rotating nuclear ring in NGC 7742. Astron. Astrophys. 612, A66 (2018).

    Article  Google Scholar 

  13. Bryant, J. J. et al. The SAMI Galaxy Survey: stellar and gas misalignments and the origin of gas in nearby galaxies. Mon. Not. R. Astron. Soc. 483, 458–479 (2019).

    Article  ADS  Google Scholar 

  14. Bevacqua, D., Cappellari, M. & Pellegrini, S. SDSS-IV MaNGA: integral-field kinematics and stellar population of a sample of galaxies with counter-rotating stellar discs selected from about 4000 galaxies. Mon. Not. R. Astron. Soc. 511, 139–157 (2022).

    Article  ADS  Google Scholar 

  15. Bao, M. et al. Different formation scenarios of counter-rotating stellar disks in nearby galaxies. Astrophys. J. Lett. 926, L13 (2022).

    Article  ADS  Google Scholar 

  16. Bundy, K. et al. Overview of the SDSS-IV MaNGA Survey: Mapping nearby Galaxies at Apache Point Observatory. Astrophys. J. 798, 7 (2015).

    Article  ADS  Google Scholar 

  17. Drory, N. et al. The MaNGA Integral Field Unit Fiber Feed System for the Sloan 2.5 m Telescope. Astron. J. 149, 77 (2015).

    Article  ADS  Google Scholar 

  18. Wake, D. A. et al. The SDSS-IV MaNGA sample: design, optimization, and usage considerations. Astron. J. 154, 86 (2017).

    Article  ADS  Google Scholar 

  19. Braun, R., Walterbos, R. A. M., Kennicutt, R. C., Jr. & Tacconi, L. J. Counterrotating gaseous disks in NGC 4826. Astrophys. J. 420, 558 (1994).

    Article  ADS  Google Scholar 

  20. Fisher, D., Illingworth, G. & Franx, M. The dynamics and structure of the S0 galaxy NGC 7332. Astron. J. 107, 160 (1994).

    Article  ADS  Google Scholar 

  21. Plana, H. & Boulesteix, J. Extended ionized gas in elliptical galaxies. I. Multicomponents in NGC 1052 and NGC 7332. Astron. Astrophys. 307, 391–402 (1996).

    ADS  Google Scholar 

  22. Hunter, D. A., van Woerden, H. & Gallagher, J. S. Neutral hydrogen and star formation in the irregular galaxy NGC 4449. Astron. J. 118, 2184–2210 (1999).

    Article  ADS  Google Scholar 

  23. Corsini, E. M., Pizzella, A. & Bertola, F. The orthogonal gaseous kinematical decoupling in the Sa spiral NGC 2855. Astron. Astrophys. 382, 488–494 (2002).

    Article  ADS  Google Scholar 

  24. Roy, J.-R. & Kunth, D. Dispersal and mixing of oxygen in the interstellar medium of gas-rich galaxies. Astron. Astrophys. 294, 432–442 (1995).

    ADS  Google Scholar 

  25. de Avillez, M. A. & Mac Low, M.-M. Mixing timescales in a Supernova-driven Interstellar Medium. Astrophys. J. 581, 1047–1060 (2002).

    Article  ADS  Google Scholar 

  26. Krajnović, D., Cappellari, M., de Zeeuw, P. T. & Copin, Y. Kinemetry: a generalization of photometry to the higher moments of the line-of-sight velocity distribution. Mon. Not. R. Astron. Soc. 366, 787–802 (2006).

    Article  ADS  Google Scholar 

  27. Salim, S. et al. GALEX-SDSS-WISE Legacy Catalog (GSWLC): star formation rates, stellar masses, and dust attenuations of 700,000 low-redshift galaxies. Astrophys. J. Suppl. Ser. 227, 2 (2016).

    Article  ADS  Google Scholar 

  28. Chang, Y.-Y., van der Wel, A., da Cunha, E. & Rix, H.-W. Stellar masses and star formation rates for 1M galaxies from SDSS+WISE. Astrophys. J. Suppl. Ser. 219, 8 (2015).

    Article  ADS  Google Scholar 

  29. Baldwin, A., Phillips, M. M. & Terlevich, R. Classification parameters for the emission-line spectra of extragalactic objects. Publ. Astron. Soc. Pac. 93, 5–19 (1981).

    Article  ADS  Google Scholar 

  30. Dey, A. et al. Overview of the DESI legacy imaging surveys. Astron. J. 157, 168 (2019).

    Article  ADS  Google Scholar 

  31. Kewley, L. J. et al. Theoretical modeling of starburst galaxies. Astrophys. J. 556, 121–140 (2001).

    Article  ADS  Google Scholar 

  32. Kauffmann, G. et al. The host galaxies of active galactic nuclei. Mon. Not. R. Astron. Soc. 346, 1055–1077 (2003).

    Article  ADS  Google Scholar 

  33. Li, S.-L. et al. The impact of merging on the origin of kinematically misaligned and counter-rotating galaxies in MaNGA. Mon. Not. R. Astron. Soc. 501, 14–23 (2021).

    Article  ADS  Google Scholar 

  34. Sánchez Almeida, J., Elmegreen, B. G., Muñoz-Tuñón, C. & Elmegreen, D. M. Star formation sustained by gas accretion. Astron. Astrophys. Rev. 22, 71 (2014).

    Article  ADS  Google Scholar 

  35. Wang, S. et al. From large-scale environment to CGM angular momentum to star-forming activities - I. Star-forming galaxies. Mon. Not. R. Astron. Soc. 509, 3148–3162 (2022).

    Article  ADS  Google Scholar 

  36. Hwang, H. C. et al. Anomalously low-metallicity regions in MaNGA star-forming galaxies: accretion caught in action? Astrophys. J. 872, 144 (2019).

    Article  ADS  Google Scholar 

  37. Sánchez Almeida, J. et al. Metallicity inhomogeneities in local star-forming galaxies as a sign of recent metal-poor gas accretion. Astrophys. J. 783, 45 (2014).

    Article  ADS  Google Scholar 

  38. Kewley, L. J. & Dopita, M. A. Using strong lines to estimate abundances in extragalactic H II regions and starburst galaxies. Astrophys. J. Suppl. Ser. 142, 35–52 (2002).

    Article  ADS  Google Scholar 

  39. Smirnova-Pinchukova, I. et al. The Close AGN Reference Survey (CARS). No obvious signature of AGN feedback on star formation, but subtle trends. Astron. Astrophys. 659, A125 (2022).

    Article  Google Scholar 

  40. Dalcanton, J. The metallicity of galaxy disks: infall versus outflow. Astrophys. J. 658, 941–959 (2007).

    Article  ADS  Google Scholar 

  41. Khoperskov, S. et al. Extreme kinematic misalignment in IllustrisTNG galaxies: the origin, structure, and internal dynamics of galaxies with a large-scale counterrotation. Mon. Not. R. Astron. Soc. 500, 3870–3888 (2021).

    Article  ADS  Google Scholar 

  42. Battaglia, G., Fraternali, F., Oosterloo, T. & Sancisi, R. HI study of the warped spiral galaxy NGC5055: a disk/dark matter halo offset? Astron. Astrophys. 447, 49–62 (2006).

    Article  ADS  Google Scholar 

  43. Józsa, G. I. G. Kinematic modelling of disk galaxies. II. A case-study of symmetrically warped galaxy disks. Astron. Astrophys. 468, 903–917 (2007).

    Article  ADS  Google Scholar 

  44. Schmidt, P. et al. Structure and kinematics of the nearby dwarf galaxy UGCA 105. Astron. Astrophys. 561, A28 (2014).

    Article  Google Scholar 

  45. Shetty, R., Vogel, S. N., Ostriker, E. C. & Teuben, P. J. Kinematics of spiral-arm streaming in M51. Astrophys. J. 665, 1138–1158 (2007).

    Article  ADS  Google Scholar 

  46. Smee, S. A. et al. The multi-object, fiber-fed spectrographs for the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey. Astron. J. 146, 32 (2013).

    Article  ADS  Google Scholar 

  47. Gunn, J. E. et al. The 2.5 m telescope of the Sloan Digital Sky Survey. Astron. J. 131, 2332–2359 (2006).

    Article  ADS  Google Scholar 

  48. Blanton, M. R. et al. Sloan Digital Sky Survey IV: mapping the Milky Way, nearby galaxies, and the distant universe. Astron. J. 154, 28 (2017).

    Article  ADS  Google Scholar 

  49. Westfall, K. B. et al. The data analysis pipeline for the SDSS-IV MaNGA IFU Galaxy Survey: overview. Astron. J. 158, 231 (2019).

    Article  ADS  Google Scholar 

  50. Cappellari, M. & Emsellem, E. Parametric recovery of line-of-sight velocity distributions from absorption-line spectra of galaxies via penalized likelihood. Publ. Astron. Soc. Pac. 116, 138–147 (2004).

    Article  ADS  Google Scholar 

  51. Yan, R. B. et al. SDSS-IV MaStar: a large and comprehensive empirical stellar spectral library—first release. Astrophys. J. 883, 175 (2019).

    Article  ADS  Google Scholar 

  52. Noll, S. et al. Analysis of galaxy spectral energy distributions from far-UV to far-IR with CIGALE: studying a SINGS test sample. Astron. Astrophys. 507, 1793–1813 (2009).

    Article  ADS  Google Scholar 

  53. Bertola, F. et al. Testing the gravitational field in elliptical galaxies: NGC 5077. Astrophys. J. 373, 369 (1991).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank D. Xu, S. Feng, T. Wang and M. Xiao for helpful discussion and comments. Y.M.C. acknowledges support from the National Key Research and Development Programme of China (grant No. 2017YFA0402700), the National Natural Science Foundation of China (grant Nos. 11922302, 11733002 and 12121003) and the China Manned Space Project (grant No. CMS-CSST-2021-A05). A.M. acknowledges support from the Special Astrophysical Observatory of the Russian Academy of Sciences government contract approved by the Ministry of Science and Higher Education of the Russian Federation. D.B. acknowledges partial support from the Russian Science Foundation (grant No. 22-12-00080). J.G.F-T. acknowledges support from Proyecto Fondecyt Iniciación (grant No. 11220340), ANID Concurso de Fomento a la Vinculación Internacional para Instituciones de Investigación Regionales Proyecto (grant No. FOVI210020) and the Joint Committee ESO-Government of Chile 2021 (grant No. ORP 023/2021). R.R. acknowledges support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Proj. 311223/2020-6, 304927/2017-1 and 400352/2016-8), Fundação de amparo à pesquisa do Rio Grande do Sul (FAPERGS, Proj. 16/2551-0000251-7 and 19/1750-2) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Proj. 0001). Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the US Department of Energy Office of Science and the participating institutions. SDSS-IV acknowledges support and resources from the Centre for High Performance Computing at the University of Utah. The SDSS website is www.sdss.org. SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, Center for Astrophysics Harvard & Smithsonian, the Chilean Participation Group, the French Participation Group, Instituto de Astrofísica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe/University of Tokyo, the Korean Participation Group, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam, Max-Planck-Institut für Astronomie (Heidelberg), Max-Planck-Institut für Astrophysik (Garching), Max-Planck-Institut für Extraterrestrische Physik, National Astronomical Observatories of China, New Mexico State University, New York University, University of Notre Dame, Observatário Nacional/MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University and Yale University.

Author information

Authors and Affiliations

Authors

Contributions

X.C. made the plots and led the writing of the very preliminary version of the draft manuscript. Y.-M.C. discovered these two galaxies and conceived the project. Y.-M.C. and Y.S. suggested the physical pictures discussed in this paper and edited the manuscript. M.B. helped in fitting the disk models. A.M., D.B., S.-L.L., J.G.F.-T., R.A.R., R.R. and R.R.L. were involved in the comments in the manuscript and the interpretation of the results.

Corresponding author

Correspondence to Yan-Mei Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Glenn Kacprzak and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Chen, YM., Shi, Y. et al. Multiple gas acquisition events in galaxies with dual misaligned gas disks. Nat Astron 6, 1464–1472 (2022). https://doi.org/10.1038/s41550-022-01788-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01788-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing