Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Explaining Bright Radar Reflections Below The South Pole of Mars Without Liquid Water

Matters Arising to this article was published on 09 January 2023

The Original Article was published on 28 September 2020

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagrams of the three simulated scenarios.
Fig. 2: Comparison between observed and simulated MARSIS echoes.
Fig. 3: Simulated normalized basal echo power as a function of layer thickness.

Data availability

MARSIS data is available through the ESA Planetary Science Archive as well as the NASA Planetary Data System. Superframe data is available through the Orosei et al.2 supplementary material.


  1. Byrne, S. The polar deposits of Mars. Annu. Rev. Earth Planet. Sci. 37, 535–560 (2009).

    Article  ADS  Google Scholar 

  2. Orosei, R. et al. Radar evidence of subglacial liquid water on Mars. Science 361, 490–493 (2018).

    Article  ADS  Google Scholar 

  3. Lauro, S. E. et al. Liquid water detection under the south polar layered deposits of Mars—a probabilistic inversion approach. Remote Sens. 11, 2445 (2019).

    Article  ADS  Google Scholar 

  4. Lauro, S. E. et al. Multiple subglacial water bodies below the south pole of Mars unveiled by new MARSIS data. Nat. Astron. 5, 63–70 (2021).

  5. Schroeder, D. M., Blankenship, D. D., Raney, R. K. & Grima, C. Estimating subglacial water geometry using radar bed echo specularity: application to Thwaites Glacier, West Antarctica. IEEE Geosci. Remote Sens. Lett. 12, 443–447 (2015).

    Article  ADS  Google Scholar 

  6. Young, D. A., Schroeder, D. M., Blankenship, D. D., Kempf, S. D. & Quartini, E. The distribution of basal water between Antarctic subglacial lakes from radar sounding. Phil. Trans. R. Soc. A 374, 20140297 (2016).

    Article  ADS  Google Scholar 

  7. Oswald, G. K. A., Rezvanbehbahani, S. & Stearns, L. A. Radar evidence of ponded subglacial water in Greenland. J. Glaciol. 64, 711–729 (2018).

    Article  ADS  Google Scholar 

  8. Sori, M. M. & Bramson, A. M. Water on Mars, with a grain of salt: local heat anomalies are required for basal melting of ice at the south pole today. Geophys. Res. Lett. 46, 1222–1231 (2019).

    Article  ADS  Google Scholar 

  9. Ojha, L. et al. Martian mantle heat flow estimate from the lack of lithospheric flexure in the south pole of Mars: implications for planetary evolution and basal melting. Geophys. Res. Lett. 48, e2020GL091409 (2021).

    Article  ADS  Google Scholar 

  10. Arnold, N. S., Conway, S. J., Butcher, F. E. G. & Balme, M. R. Modeled subglacial water flow routing supports localized intrusive heating as a possible cause of basal melting of Mars’ south polar ice cap. J. Geophys. Res. Planets 124, 2101–2116 (2019).

    Article  ADS  Google Scholar 

  11. Lalich, D. E. & Holt, J. W. New Martian climate constraints from radar reflectivity within the north polar layered deposits. Geophys. Res. Lett. 44, 657–664 (2017).

    Article  ADS  Google Scholar 

  12. Campbell, B. A. & Morgan, G. A. Fine-scale layering of Mars polar deposits and signatures of ice content in nonpolar material from multiband SHARAD data processing. Geophys. Res. Lett. 45, 1759–1766 (2018).

    Article  ADS  Google Scholar 

  13. Lalich, D. E., Holt, J. W. & Smith, I. B. Radar reflectivity as a proxy for the dust content of individual layers in the Martian north polar layered deposits. J. Geophys. Res. Planets 124, 1690–1703 (2019).

    Article  ADS  Google Scholar 

  14. Nunes, D. C. & Phillips, R. J. Radar subsurface mapping of the polar layered deposits on Mars. J. Geophys. Res. Planets 111, E06S21 (2006).

    Article  ADS  Google Scholar 

  15. Byrne, S. & Ivanov, A. B. Internal structure of the Martian south polar layered deposits. J. Geophys. Res. 109, E11001 (2004).

    Article  ADS  Google Scholar 

  16. Milkovich, S. M. & Plaut, J. J. Martian south polar layered deposit stratigraphy and implications for accumulation history. J. Geophys. Res. 113, E06007 (2008).

    ADS  Google Scholar 

  17. Limaye, A. B. S., Aharonson, O. & Perron, J. T. Detailed stratigraphy and bed thickness of the Mars north and south polar layered deposits. J. Geophys. Res. 117, E06009 (2012).

    ADS  Google Scholar 

  18. Plaut, J. J. et al. Subsurface radar sounding of the south polar layered deposits of Mars. Science 316, 92–95 (2007).

    Article  ADS  Google Scholar 

  19. Byrne, S. & Ingersoll, A. P. A sublimation model for Martian south polar ice features. Science 299, 1051–1053 (2003).

    Article  ADS  Google Scholar 

  20. Lauro, S. E. et al. Dielectric constant estimation of the uppermost basal unit layer in the martian Boreales Scopuli region. Icarus 219, 458–467 (2012).

    Article  ADS  Google Scholar 

  21. Phillips, R. J. et al. Massive CO2 ice deposits sequestered in the south polar layered deposits of Mars. Science 332, 838–841 (2011).

    Article  ADS  Google Scholar 

  22. Bierson, C. J. et al. Stratigraphy and evolution of the buried CO2 deposit in the Martian south polar cap. Geophys. Res. Lett. 43, 2016GL068457 (2016).

    Article  Google Scholar 

  23. Nerozzi, S. & Holt, J. W. Buried ice and sand caps at the north pole of Mars: revealing a record of climate change in the Cavi Unit with SHARAD. Geophys. Res. Lett. 46, 7278–7286 (2019).

    Article  ADS  Google Scholar 

  24. Head, J. W. & Pratt, S. Extensive Hesperian-aged south polar ice sheet on Mars: evidence for massive melting and retreat, and lateral flow and ponding of meltwater. J. Geophys. Res. Planets 106, 12275–12299 (2001).

    Article  ADS  Google Scholar 

  25. Milkovich, S. M. et al. Stratigraphy of Promethei Lingula, south polar layered deposits, Mars, in radar and imaging data sets. J. Geophys. Res. 114, E03002 (2009).

    ADS  Google Scholar 

  26. Picardi, G. et al. Radar soundings of the subsurface of Mars. Science 310, 1925–1928 (2005).

    Article  ADS  Google Scholar 

  27. Ulaby, F. T., Moore, R. K. & Fung, A. K. Microwave Remote Sensing Active and Passive (Artech House, 1986).

  28. Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light 5th edn (Pergamon, 1975).

  29. Pascoe, K. J. Reflectivity and Transmissivity Through Layered, Lossy Media: A User-Friendly Approach (Air Force Institute of Technology, 2001).

  30. Neumann, G. A. et al. Mars Orbiter Laser Altimeter pulse width measurements and footprint-scale roughness. Geophys. Res. Lett. 30, 1561 (2003).

    Article  ADS  Google Scholar 

  31. Matzler, C. Microwave properties of ice and snow. In Solar System Ices: Based on Reviews Presented at the International Symposium ‘Solar System Ices’ held in Toulouse, France, on March 27–30, 1995 (eds Schmitt, B. et al.) 241–257 (Springer, 1998).

  32. Garnett, J. C. M. Colours in metal glasses, in metallic films, and in metallic solutions. II. Phil. Trans. R. Soc. Lond. A 205, 237–288 (1906).

    Article  ADS  Google Scholar 

  33. Pettinelli, E. et al. Frequency and time domain permittivity measurements on solid CO2 and solid CO2–soil mixtures as Martian soil simulants. J. Geophys. Res. Planets 108, 8029 (2003).

    Article  ADS  Google Scholar 

Download references


This work was funded in part by a NASA Mars Data Analysis grant awarded to D.E.L.

Author information

Authors and Affiliations



D.E.L. conceptualized the study, performed simulations, and prepared the manuscript. A.G.H. assisted with conceptualization, interpretation, and manuscript preparation. V.P. assisted with simulations, data analysis, and manuscript preparation.

Corresponding author

Correspondence to D. E. Lalich.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lalich, D.E., Hayes, A.G. & Poggiali, V. Explaining Bright Radar Reflections Below The South Pole of Mars Without Liquid Water. Nat Astron 6, 1142–1146 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing