Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Vorticity and divergence at scales down to 200 km within and around the polar cyclones of Jupiter


Since 2017 the Juno spacecraft has observed a cyclone at the north pole of Jupiter surrounded by eight smaller cyclones arranged in a polygonal pattern. It is not clear why this configuration is so stable or how it is maintained. Here we use a time series of images obtained by the JIRAM mapping spectrometer on Juno to track the winds and measure the vorticity and horizontal divergence within and around the polar cyclone and two of the circumpolar ones. We find an anticyclonic ring between the polar cyclone and the surrounding cyclones, supporting the theory that such shielding is needed for the stability of the polygonal pattern. However, even at the smallest spatial scale (180 km) we do not find the expected signature of convection—a spatial correlation between divergence and anticyclonic vorticity—in contrast with a previous study using additional assumptions about the dynamics, which shows the correlation at scales from 20 to 200 km. We suggest that a smaller size, relative to atmospheric thickness, of Jupiter’s convective storms compared with Earth’s, can reconcile the two studies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Infrared image of the northern hemisphere as seen by JIRAM.
Fig. 2: Vorticity and divergence derived from two independent determinations of the wind.
Fig. 3: Covariances of the vorticity and divergence fields.
Fig. 4: Mean azimuthal velocity and vorticity and mean gravitational potential and potential vorticity.

Data availability

JIRAM data are available online at the Planetary Data System (PDS) at The filenames of the images are listed in Supplementary Table 1. Calibrated, geometrically controlled radiance data mapped onto an orthographic projection centred on the north pole and velocity vectors derived from the radiance data are available in Supplementary Data 1–2.


  1. Orton, G. S. et al. The first close-up images of Jupiter’s polar regions: results from the Juno mission JunoCam instrument. Geophys. Res. Lett. 44, 4599–4606 (2017).

    Article  ADS  Google Scholar 

  2. Adriani, A. et al. Clusters of cyclones encircling Jupiter’s poles. Nature 555, 216–219 (2018).

  3. Tabataba-Vakili, F. et al. Long-term tracking of circumpolar cyclones on Jupiter from polar observations with JunoCam. Icarus 335, 113405 (2020).

    Article  Google Scholar 

  4. Adriani, A. et al. Two-year observations of the Jupiter polar regions by JIRAM on board Juno. J. Geophys. Res. (2020).

  5. Mura, A., Adriani, A. & Bracco, A. Oscillations and stability of the Jupiter polar cyclones. Geophys. Res. Lett. 48, e2021GL094235. (2021).

  6. Grassi, D. et al. First estimate of wind fields in the Jupiter polar regions from JIRAM-Juno images. J. Geophys. Res. Planets 123, 1511–1524 (2018).

    Article  ADS  Google Scholar 

  7. Orton, G. S. & Yanamandra-Fisher, P. A. Saturn’s temperature field from high-resolution middle-infrared imaging. Science 307, 696–698 (2005).

    Article  ADS  Google Scholar 

  8. Dyudina, U. A. et al. Dynamics of Saturn’s south polar vortex. Science 319, 1801 (2008).

    Article  ADS  Google Scholar 

  9. Dyudina, U. A. et al. Saturn’s south polar vortex compared to other large vortices in the Solar System. Icarus 202, 240–248 (2009).

    Article  ADS  Google Scholar 

  10. Sommeria, J., Meyers, S. & Swinney, H. Laboratory model of a planetary eastward jet. Nature 337, 58–61 (1989).

    Article  ADS  Google Scholar 

  11. Allison, M., Godfrey, D. & Beebe, R. A wave-dynamic interpretation of Saturn’s polar hexagon. Science 247, 1061–1063 (1990).

    Article  ADS  Google Scholar 

  12. Aguiar, A. C. B., Read, P. L., Wordsworth, R. D., Salter, T. & Yamazaki, Y. H. A laboratory model of Saturn’s North Polar Hexagon. Icarus 206, 755–763 (2010).

    Article  ADS  Google Scholar 

  13. Sanchez-Lavega, A. et al. The long- term steady motion of Saturn’s hexagon and the stability of its enclosed jet stream under seasonal changes. Geophys. Res. Lett. 41, 1425–1431 (2014).

    Article  ADS  Google Scholar 

  14. Morales-Juberias, R., Sayanagi, K. M., Simon, A. A., Fletcher, L. N. & Cosentino, R. G. Meandering shallow atmospheric jet as a model of Saturn’s north-polar hexagon. Astrophys. J. Lett. 806, 1–6 (2015).

  15. Scott, R. K. Polar accumulation of cyclonic vorticity. Geophys. Astrophys. Fluid Dynam. 105, 409–420 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  16. O’Neill, M. E., Emanuel, K. A. & Flierl, G. R. Polar vortex formation in giant-planet atmospheres dues to moist convection. Nat. Geosci. 8, 523–526 (2015).

    Article  ADS  Google Scholar 

  17. O’Neill, M. E., Emanuel, K. A. & Flierl, G. R. Weak jets and strong cyclones: shallow-water modeling of giant planet polar caps. J. Atmos. Sci. 73, 1841–1855 (2016).

    Article  ADS  Google Scholar 

  18. Brueshaber, S. R., Sayanagi, K. M. & Dowling, T. E. Dynamical regimes of giant planet polar vortices. Icarus 323, 46–61 (2019).

    Article  ADS  Google Scholar 

  19. Siegelman, L., Young, W. R. & Ingersoll, A. P. Polar vortex crystals: emergence and structure. Proc. Natl Acad. Sci. USA 119, e2120486119 (2022).

    Article  MathSciNet  Google Scholar 

  20. Siegelman, L. et al. Moist convection drives an upscale energy transfer at Jovian high latitudes. Nat. Phys. 18, 357–361 (2022).

  21. Li, C., Ingersoll, A. P., Klipfel, A. P. & Brettle, H. Modeling the stability of polygonal patterns of vortices at the poles of Jupiter as revealed by the Juno spacecraft. Proc. Natl Acad. Sci. USA 117, 24082–24087 (2020).

    Article  ADS  Google Scholar 

  22. Thomson, S. I. & McIntyre, M. E. Jupiter’s unearthly jets: a new turbulent model exhibiting statistical steadiness without large-scale dissipation. J. Atmos. Sci. 73, 1119–1141 (2016).

    Article  ADS  Google Scholar 

  23. Rubio, A. M., Julien, K., Knobloch, E. & Weiss, J. B. Upscale energy transfer in three-dimensional rapidly rotating turbulent convection. Phys. Rev. Lett. 112, 144501 (2014).

    Article  ADS  Google Scholar 

  24. Novi, L., von Hardenberg, J., Hughes, D. W., Provenzale, A. & Spiegel, E. A. Rapidly rotating Rayleigh-Benard convection with a tilted axis. Phys. Rev. E 99, 053116 (2019).

    Article  ADS  Google Scholar 

  25. Yadav, R. K., Heimpel, M. & Bloxham, J. Deep convection-driven vortex formation on Jupiter and Saturn. Sci. Adv. 6, eabb9298 (2020).

    Article  ADS  Google Scholar 

  26. Kapyla, P. J., Mantere, M. J. & Hackman, T. Starspots due to large-scale vortices in rotating turbulent convection. Astrophys. J. 742, 34 (2011).

    Article  ADS  Google Scholar 

  27. Heimpel, M., Gastine, T. & Wicht, J. Simulation of deep-seated zonal jets and shallow vortices in gas giant atmospheres. Nat. Geosci. 9, 19–23 (2016).

  28. Cai, T., Chan, K. L. & Mayr, H. G. Deep closely packed long-lived cyclones on Jupiter’s poles. Planet. Sci. J. 2, 81 (2021).

    Article  Google Scholar 

  29. Ingersoll, A. & Cuzzi, J. Dynamics of Jupiter’s cloud bands. J. Atmos. Sci. 26, 981–985 (1969).

  30. Limaye, S. Jupiter: new estimates of the mean zonal flow at the cloud level. Icarus 65, 335–352 (1986).

    Article  ADS  Google Scholar 

  31. Li, L. M. et al. Life cycles of spots on Jupiter from Cassini images. Icarus 172, 9–23 (2004).

    Article  ADS  Google Scholar 

  32. Garcia-Melendo, E., Perez-Hoyos, S., Sanchez-Lavega, A. & Hueso, R. Saturn’s zonal wind profile in 2004–2009 from Cassini ISS images and its long-term variability. Icarus 215, 62–74 (2011).

    Article  ADS  Google Scholar 

  33. Dowling, T. A relationship between potential vorticity and zonal wind on Jupiter. J. Atmos. Sci. 50, 14–22 (1993).

    Article  ADS  Google Scholar 

  34. Achterberg, R. & Ingersoll, A. A normal-mode approach to Jovian atmospheric dynamics. J. Atmos. Sci. 46, 2448–2462 (1989).

    Article  ADS  Google Scholar 

  35. Wong, M. H., de Pater, I., Asay-Davis, X., Marcus, P. S. & Go, C. Y. Vertical structure of Jupiter’s Oval BA before and after it reddened: what changed? Icarus 215, 211–225 (2011).

    Article  ADS  Google Scholar 

  36. Hammel, H. et al. HST Imaging of atmospheric phenomena created by the impact of Comet Shoemaker-Levy-9. Science 267, 1288–1296 (1995).

    Article  ADS  Google Scholar 

  37. Rhines, P. Waves and turbulence on a beta-plane. J. Fluid Mech. 69, 417–443 (1975).

    Article  ADS  MATH  Google Scholar 

  38. Theiss, J. Equatorward energy cascade, critical latitude, and the predominance of cyclonic vortices in geostrophic turbulence. J. Phys. Oceanogr. 34, 1663–1678 (2004).

    Article  ADS  Google Scholar 

  39. Scott, R. K. & Polvani, L. M. Forced-dissipative shallow-water turbulence on the sphere and the atmospheric circulation of the giant planets. J. Atmos. Sci. 64, 3158–3176 (2007).

    Article  ADS  Google Scholar 

  40. Mied, R. & Lindemann, G. Propagation and evolution of cyclonic Gulf-Stream rings. J. Phys. Oceanogr. 9, 1183–1206 (1979).

    Article  ADS  Google Scholar 

  41. Chassignet, E. & Cushman-Roisin, B. On the influence of a lower layer on the propagation of nonlinear oceanic eddies. J. Phys. Oceanogr. 21, 939–957 (1991).

    Article  ADS  Google Scholar 

  42. Adriani, A. et al. JIRAM, the Jovian Infrared Auroral Mapper. Space Sci. Rev. 213, 393–446 (2017).

    Article  ADS  Google Scholar 

  43. Garcia-Ortega, E., Lopez, L. & Sanchez, J. L. Diagnosis and sensitivity study of two severe storm events in the Southeastern Andes. Atmos. Res. 93, 161–178 (2009).

    Article  Google Scholar 

  44. Marion, G. R. & Trapp, R. J. The dynamical coupling of convective updrafts, downdrafts, and cold pools in simulated supercell thunderstorms. J. Geophys. Res. Atmos. 124, 664–683 (2019).

    Article  ADS  Google Scholar 

  45. Solov’ev, A. A., Parfinenko, L. D., Efremov, V. I., Kirichek, E. A. & Korolkova, O. A. Structure of photosphere under high resolution: granules, faculae, micropores, intergranular lanes. Astrophys. Space Sci. 364, 222 (2019).

    Article  ADS  Google Scholar 

  46. Juckes, M. Quasi-geostrophic dynamics of the tropopause. J. Atmos. Sci. 51, 2756–2768 (1994).

    Article  ADS  Google Scholar 

  47. Held, I. M., Pierrehumbert, R. T., Garner, S. T. & Swanson, A. Surface quasi-geostrophic dynamics. J. Fluid Mech. 282, 1–20 (1995).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  48. Lapeyre, G. & Klein, P. Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory. J. Phys. Oceanogr. 36, 165–176 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  49. Lapeyre, G. Surface quasi-geostrophy. Fluids 2, 7–28 (2017).

    Article  ADS  Google Scholar 

  50. Young, R. M. B. & Read, P. L. Forward and inverse kinetic energy cascades in Jupiter’s turbulent weather layer. Nat. Phys. 13, 1135–1140 (2017).

    Article  Google Scholar 

  51. Gonzalez, R. C. & Woods, R. E. Digital Image Processing (Pearson, 2016).

  52. Scarica, P. et al. Stability of the Juoter southern polar vortices inspected through vorticity using Juno/JIRAM data. J. Geophys. Res., Planets, (2021).

    Article  Google Scholar 

Download references


This research was carried out at the California Institute of Technology under a contract with the National Aeronautics and Space Administration (NASA), grant/cooperative agreement number 80NSSC20K0555, which was awarded to A.P.I., and a contract with the Juno mission, which is administered for NASA by the Southwest Research Institute. C.L. was supported by the 51 peg-b Postdoctoral Fellowship. JIRAM was supported by the Italian Space Agency through ASI‐INAF agreement numbers I/010/10/0, 2014‐050‐R.0, 2016-23-H.0 and 2016-1495 f23-H.1-2018. A.A., A.M., D.G. and F.T. were supported by INAF. C.P. and G.S. were supported by ASI. L.S. is funded by the Scripps Institution of Oceanography Postdoctoral Fellowship. P.K. acknowledges funding from JPL/NASA.

Author information

Authors and Affiliations



A.P.I. led the research and wrote the document. S.P.E. conducted the data analysis and prepared the figures. F.T. prepared the geometric tables that were used in the analysis. A.A., A.M., D.G., C.P. and G.S. oversaw the successful functioning of the JIRAM instrument and provided expertise on using it for image processing. C.L., L.S., P.K. and W.R.Y. provided expertise on vortices.

Corresponding author

Correspondence to Andrew P. Ingersoll.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Jonathan Aurnou and Stephen Thomson for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, Tables 1 and 2 and Sections 1–7.

Supplementary Data 1

Infrared brightness mapped onto a tangent plane at the pole.

Supplementary Data 2

Velocity vectors derived from pairs of brightness images.

Supplementary Data 3

Measured azimuthal velocity for Fig. 4.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ingersoll, A.P., Ewald, S.P., Tosi, F. et al. Vorticity and divergence at scales down to 200 km within and around the polar cyclones of Jupiter. Nat Astron 6, 1280–1286 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing