Abstract
Ground-based optical astronomy necessarily involves sensing the light of astronomical objects along with the contributions of many natural sources ranging from the Earth’s atmosphere to cosmological light. In addition, astronomers have long contended with artificial light pollution, which further adds to the ‘background’ against which astronomical objects are seen. Understanding the brightness of the night sky is therefore fundamental to astronomy. The last comprehensive review of this subject was nearly a half-century ago, and we have learned much about both the natural and artificial night sky since. This Review considers which influences determine the total optical brightness of the night sky, the means by which this brightness is measured and how night sky quality is assessed and monitored in the long term.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Gaston, K. J., Gaston, S., Bennie, J. & Hopkins, J. Benefits and costs of artificial nighttime lighting of the environment. Environ. Rev. 23, 14–23 (2015).
Falchi, F. in Urban Pollution: Science and Management (eds Charlesworth, S. M. & Booth, C. A.) 147–156 (Wiley-Blackwell, 2018).
Green, R. F., Luginbuhl, C. B., Wainscoat, R. J. & Duriscoe, D. The growing threat of light pollution to ground-based observatories. Astron. Astrophys. Rev. 30, 1 (2022).
Falchi, F. et al. The new world atlas of artificial night sky brightness. Sci. Adv. 2, 1600377 (2016).
Gaston, K. J., Duffy, J. P., Gaston, S., Bennie, J. & Davies, T. W. Human alteration of natural light cycles: causes and ecological consequences. Oecologia 176, 917–931 (2014).
Gaston, K. J. et al. Pervasiveness of biological impacts of artificial light at night. Integr. Comp. Biol. 61, 1098–1110 (2021).
Kyba, C. C. M. et al. Artificially lit surface of earth at night increasing in radiance and extent. Sci. Adv. 3, 1701528 (2017).
Falchi, F. et al. Light pollution in USA and Europe: the good, the bad and the ugly. J. Environ. Manag. 248, 109227 (2019).
Sim, Y., Kim, I., Choi, A. & Sung, M. A preliminary study of an evaluation method for discomfort glare due to light trespass. Light. Res. Technol. 49, 632–650 (2016).
Schroer, S. & Hölker, F. in Handbook of Advanced Lighting Technology (eds Karlicek, R. et al.) 1–33 (Springer, 2016).
Svechkina, A., Portnov, B. A. & Trop, T. The impact of artificial light at night on human and ecosystem health: a systematic literature review. Landsc. Ecol. 35, 1725–1742 (2020).
Boyce, P. Light, lighting and human health. Light. Res. Technol. 54, 101–144 (2021).
Wanvik, P. O. Effects of road lighting on motorways. Traffic Inj. Prev. 10, 279–289 (2009).
Marchant, P., Hale, J. D. & Sadler, J. P. Does changing to brighter road lighting improve road safety? Multilevel longitudinal analysis of road traffic collision frequency during the relighting of a UK city. J. Epidemiol. Community Health 74, 467–472 (2020).
Kyba, C. C. M., Hänel, A. & Hölker, F. Redefining efficiency for outdoor lighting. Energy Environ. Sci. 7, 1806–1809 (2014).
Schulte-Römer, N., Meier, J., Söding, M. & Dannemann, E. The LED paradox: how light pollution challenges experts to reconsider sustainable lighting. Sustainability 11, 6160 (2019).
Cinzano, P. & Falchi, F. Toward an atlas of the number of visible stars. J. Quant. Spectrosc. Radiat. Transf. 253, 107059 (2020).
Garstang, R. H. Model for artificial night-sky illumination. Publ. Astron. Soc. Pac. 98, 364–375 (1986).
Kocifaj, M. & Lamphar, H. A. S. Skyglow: a retrieval of the approximate radiant intensity function of ground-based light sources. Mon. Not. R. Astron. Soc. 439, 3405–3413 (2014).
Duriscoe, D. M. Measuring anthropogenic sky glow using a natural sky brightness model. Publ. Astron. Soc. Pac. 125, 1370–1382 (2013).
Hung, L.-W. Identifying distinct metrics for assessing night sky brightness. Mon. Not. R. Astron. Soc. 511, 5683–5688 (2022).
Barentine, J. C. Methods for assessment and monitoring of light pollution around ecologically sensitive sites. J. Imaging 5, 54 (2019).
Roach, F. & Gordon, J. The Light of the Night Sky (Geophysics and Astrophysics Monographs Vol. 4, Reidel, 1973).
Belikov, Y. E. Modelling of the twilight sky brightness using a numerical solution of the radiation transfer equation. J. Atmos. Terr. Phys. 58, 1843–1848 (1996).
Adams, C. N., Plass, G. N. & Kattawar, G. W. The influence of ozone and aerosols on the brightness and color of the twilight sky. J. Atmos. Sci. 31, 1662–1674 (1974).
Burki, G. et al. The atmospheric extinction at the E.S.O. La Silla observatory. Astron. Astrophys. Suppl. Ser. 112, 383 (1995).
Hunten, D. M. Metallic emissions from the upper atmosphere. Science 145, 26–31 (1964).
Lee, R. L. & Hernández-Andrés, J. Measuring and modeling twilight’s purple light. Appl. Opt. 42, 445–457 (2003).
Tinsley, B. A. et al. Excitation of oxygen permitted line emissions in the tropical nightglow. J. Geophys. Res. 78, 1174–1186 (1973).
Slanger, T. G., Cosby, P. C., Huestis, D. L. & Sharpee, B. D. Review of tropical nightglow studies with astronomical instruments. J. Atmos. Sol.–Terr. Phys. 68, 1426–1440 (2006).
Bates, D. R. Forbidden oxygen and nitrogen lines in the nightglow. Planet. Space Sci. 26, 897–912 (1978).
Patat, F. The dancing sky: 6 years of night-sky observations at Cerro Paranal. Astron. Astrophys. 481, 575–591 (2008).
Leinert, C. et al. The 1997 reference of diffuse night sky brightness. Astron. Astrophys. Suppl. Ser. 127, 1–99 (1998).
Kocifaj, M., Kundracik, F., Barentine, J. C. & Bará, S. The proliferation of space objects is a rapidly increasing source of artificial night sky brightness. Mon. Not. R. Astron. Soc. Lett. 504, 40–44 (2021).
Kyba, C. C. M. et al. Worldwide variations in artificial skyglow. Sci. Rep. 5, 8409 (2015).
Hänel, A. et al. Measuring night sky brightness: methods and challenges. J. Quant. Spectrosc. Radiat. Transf. 205, 278–290 (2018).
Borovsky, J. E. et al. Quiescent discrete auroral arcs: a review of magnetospheric generator mechanisms. Space Sci. Rev. 216, 1 (2019).
Gallardo-Lacourt, B., Liang, J., Nishimura, Y. & Donovan, E. On the origin of STEVE: particle precipitation or ionospheric skyglow? Geophys. Res. Lett. 45, 7968–7973 (2018).
Tarasick, D. W. & Hines, C. O. The observable effects of gravity waves on airglow emissions. Planet. Space Sci. 38, 1105–1119 (1990).
Shepherd, G. G. & Cho, Y.-M. WINDII airglow observations of wave superposition and the possible association with historical ‘bright nights’. Geophys. Res. Lett. 44, 7036–7043 (2017).
Grauer, A. D. & Grauer, P. A. Linking solar minimum, space weather, and night sky brightness. Sci. Rep. 11, 23893 (2021).
Hart, M. Long-term spectroscopic observations of the atmospheric airglow by the Sloan Digital Sky Survey. Publ. Astron. Soc. Pac. 131, 015003 (2018).
Grauer, A. D., Grauer, P. A., Davies, N. & Davies, G. Impact of space weather on the natural night sky. Publ. Astron. Soc. Pac. 131, 114508 (2019).
Broadfoot, A. L. & Kendall, K. R. The airglow spectrum, 3100–10,000 A. J. Geophys. Res. 73, 426–428 (1968).
Sternberg, J. R. & Ingham, M. F. Observations of the airglow continuum. Mon. Not. R. Astron. Soc. 159, 1–20 (1972).
Kenner, R. D. & Ogryzlo, E. A. Orange chemiluminescence from NO2. J. Chem. Phys. 80, 1–6 (1984).
Bates, D. R. Cause of terrestrial nightglow continuum. Proc. R. Soc. A 443, 227–237 (1993).
Kocifaj, M. Are population-based models advantageous in estimating the lumen outputs from light-pollution sources? Mon. Not. R. Astron.Soc. Lett. 496, L138–L141 (2020).
Jechow, A., Kyba, C. C. M. & Hölker, F. Mapping the brightness and color of urban to rural skyglow with all-sky photometry. J. Quant. Spectrosc. Radiat. Transf. 250, 106988 (2020).
Aubé, M. Physical behaviour of anthropogenic light propagation into the nocturnal environment. Phil. Trans. R. Soc. B 370, 20140117 (2015).
Falchi, F. Campaign of sky brightness and extinction measurements using a portable CCD camera. Mon. Not. R. Astron. Soc. 412, 33–48 (2010).
Jechow & Hölker Snowglow—the amplification of skyglow by snow and clouds can exceed full moon illuminance in suburban areas. J. Imaging 5, 69 (2019).
Wallner, S. & Kocifaj, M. Impacts of surface albedo variations on the night sky brightness—a numerical and experimental analysis. J. Quant. Spectrosc. Radiat. Transf. 239, 106648 (2019).
Liu, M. et al. Research on the influence of weather conditions on urban night light environment. Sustain. Cities Soc. 54, 101980 (2020).
Kocifaj, M. & Barentine, J. C. Air pollution mitigation can reduce the brightness of the night sky in and near cities. Sci. Rep. 11, 14622 (2021).
Ściężor, T. The impact of clouds on the brightness of the night sky. J. Quant. Spectrosc. Radiat. Transf. 247, 106962 (2020).
Kyba, C. C. M., Ruhtz, T., Fischer, J. & Hölker, F. Cloud coverage acts as an amplifier for ecological light pollution in urban ecosystems. PLoS ONE 6, 17307 (2011).
Jechow, A., Hölker, F. & Kyba, C. C. M. Using all-sky differential photometry to investigate how nocturnal clouds darken the night sky in rural areas. Sci. Rep. 9, 1391 (2019).
Luginbuhl, C. B., Lockwood, G. W., Davis, D. R., Pick, K. & Selders, J. From the ground up I: light pollution sources in Flagstaff, Arizona. Publ. Astron. Soc. Pac. 121, 185–203 (2009).
Kocifaj, M., Solano Lamphar, H. A. & Kundracik, F. Retrieval of Garstang’s emission function from all-sky camera images. Mon. Not. R. Astron. Soc. 453, 819–827 (2015).
Kocifaj, M. Towards a comprehensive city emission function (CCEF). J. Quant. Spectrosc. Radiat. Transf. 205, 253–266 (2018).
Kocifaj, M., Solano-Lamphar, H. A. & Videen, G. Night-sky radiometry can revolutionize the characterization of light-pollution sources globally. Proc. Natl Acad. Sci. USA 116, 7712–7717 (2019).
Luginbuhl, C. B., Boley, P. A. & Davis, D. R. The impact of light source spectral power distribution on sky glow. J. Quant. Spectrosc. Radiat. Transf. 139, 21–26 (2014).
Cinzano, P., Falchi, F. & Elvidge, C. D. Naked-eye star visibility and limiting magnitude mapped from DMSP-OLS satellite data. Mon. Not. R. Astron. Soc. 323, 34–46 (2001).
Rybicki, G. B. & Lightman, A. P. Radiative Processes in Astrophysics (Wiley-VCH, 1985).
Schäfer, R. Direct solution of the radiative transfer equation for plane-parallel atmospheres. J. Quant. Spectrosc. Radiat. Transf. 23, 455–466 (1980).
Cinzano, P. Night Sky Photometry with Sky Quality Meter Technical Report 9 (Istituto di Scienza e Tecnologia dell’Inquinamento Luminoso, 2005).
Cinzano, P. Report on Sky Quality Meter, Version l Technical Report (Istituto di Scienza e Tecnologia dell’Inquinamento Luminoso, 2007).
Bessell, M. S. UBVRI passbands. Publ. Astron. Soc. Pac. 102, 1181 (1990).
Zamorano, J., Sánchez de Miguel, A, Rosillo, M. N. & Ayuga, C. T. NixNox procedure to build Night Sky Brightness maps from SQM photometers observations. Preprint at E-Prints Complutense https://eprints.ucm.es/26982/ (2014).
Aceituno, J. et al. An all-sky transmission monitor: ASTMON. Publ. Astron. Soc. Pac. 123, 1076–1086 (2011).
Duriscoe, D. M., Luginbuhl, C. B. & Moore, C. A. Measuring night-sky brightness with a wide-field CCD camera. Publ. Astron. Soc. Pac. 119, 192–213 (2007).
Mohar, A. Sky Quality Camera as a quick and reliable tool for light pollution monitoring. In International Conference on Light Pollution Theory, Modelling and Measurements, May 26–28, Jouvence, Quebec, Canada, Book of Abstracts (eds Aubé, M. et al.) 47 (2015); https://w1.cegepsherbrooke.qc.ca/~aubema/LPTMM/uploads/Site/Abstract-booklet-lptmm-2015.pdf
Kolláth, Z. & Dömény, A. Night sky quality monitoring in existing and planned dark sky parks by digital cameras. Int. J. Sustain. Light. 19, 61–68 (2017).
Bará, S., Aubé, M., Barentine, J. & Zamorano, J. Magnitude to luminance conversions and visual brightness of the night sky. Mon. Not. R. Astron. Soc. 493, 2429–2437 (2020).
Sánchez de Miguel, A. et al. Sky Quality Meter measurements in a colour-changing world. Mon. Not. R. Astron. Soc. 467, 2966–2979 (2017).
Kolláth, Z. Introducing the dark sky unit for multispectral measurement of the night sky quality with commercial digital cameras. J. Quant. Spectrosc. Radiat. Transf. 253, 107162 (2020).
Kolláth, K. & Kolláth, Z. On the feasibility of using ceilometer backscatter profile as input data for skyglow simulation. J. Quant. Spectrosc. Radiat. Transf. 253, 107158 (2020).
Levin, N. et al. Remote sensing of night lights: a review and an outlook for the future. Remote Sens. Environ. 237, 111443 (2020).
Sánchez de Miguel, A. S. et al. Colour remote sensing of the impact of artificial light at night (I): the potential of the International Space Station and other DSLR-based platforms. Remote Sens. Environ. 224, 92–103 (2019).
Barducci, A., Marcoionni, P., Pippi, I. & Poggesi, M. Effects of light pollution revealed during a nocturnal aerial survey by two hyperspectral imagers. Appl. Opt. 42, 4349 (2003).
Kuechly, H. U. et al. Aerial survey and spatial analysis of sources of light pollution in Berlin, Germany. Remote Sens. Environ. 126, 39–50 (2012).
Li, X., Levin, N., Xie, J. & Li, D. Monitoring hourly night-time light by an unmanned aerial vehicle and its implications to satellite remote sensing. Remote Sens. Environ. 247, 111942 (2020).
Walczak, K., Gyuk, G., Garcia, J. & Tarr, C. Light pollution mapping from a stratospheric high-altitude balloon platform. Int. J. Sustain. Light. 23, 20–32 (2021).
Bettanini, C., Bartolomei, M., Aboudan, A., Colombatti, G. & Olivieri, L. Flight test of an autonomous payload for measuring sky brightness and ground light pollution using a stratospheric sounding balloon. Acta Astronaut. 191, 11–21 (2022).
L.Imhoff, M., Lawrence, W. T., Stutzer, D. C. & Elvidge, C. D. A technique for using composite DMSP/OLS ‘City Lights’ satellite data to map urban area. Remote Sens. Environ. 61, 361–370 (1997).
Li, X. & Zhou, Y. Urban mapping using DMSP/OLS stable night-time light: a review. Int. J. Remote Sens. 38, 6030–6046 (2017).
Kocifaj, M. & Bará, S. Aerosol characterization using satellite remote sensing of light pollution sources at night. Mon. Not. R. Astron. Soc. Lett. 495, 76–80 (2020).
Sánchez de Miguel, A., Kyba, C. C. M., Zamorano, J., Gallego, J. & Gaston, K. J. The nature of the diffuse light near cities detected in nighttime satellite imagery. Sci. Rep. 10, 7829 (2020).
Bará, S., Lima, R. C. & Zamorano, J. Monitoring long-term trends in the anthropogenic night sky brightness. Sustainability 11, 3070 (2019).
Bará, S. et al. Direct assessment of the sensitivity drift of SQM sensors installed outdoors. Int. J. Sustain. Light. 23, 1–6 (2021).
Puschnig, J., Näslund, M., Schwope, A. & Wallner, S. Correcting sky quality meter measurements for aging effects using twilight as calibrator. Mon. Not. R. Astron. Soc. 502, 1095–1103 (2021).
Rosa Infantes, D. The Road Runner system. In IV International Symposium for Dark Sky Parks, Montsec, Spain (2011) (Accessed 13 March 2019); http://darkskyparks.splet.arnes.si/files/2011/09/RoadRunner.pdf
Zamorano, J. et al. STARS4ALL night sky brightness photometer. Int. J. Sustain. Light. 18, 49–54 (2017).
Kyba, C. C. M. & Lolkema, D. E. A community standard for recording skyglow data. Astron. Geophys. 53, 6.17–6.18 (2012).
Puschnig, J., Wallner, S. & Posch, T. Circalunar variations of the night sky brightness—an FFT perspective on the impact of light pollution. Mon. Not. R. Astron. Soc. 492, 2622–2637 (2019).
Bará, S. Characterizing the zenithal night sky brightness in large territories: how many samples per square kilometre are needed? Mon. Not. R. Astron. Soc. 473, 4164–4173 (2017).
Fryc, I., Bará, S., Aubé, M., Barentine, J. C. & Zamorano, J. On the relation between the astronomical and visual photometric systems in specifying the brightness of the night sky for mesopically adapted observers. LEUKOS https://doi.org/10.1080/15502724.2021.1921593 (2021).
Crumey, A. Human contrast threshold and astronomical visibility. Mon. Not. R. Astron. Soc. 442, 2600–2619 (2014).
Kyba, C. C. M. et al. Citizen science provides valuable data for monitoring global night sky luminance. Sci. Rep. 3, 1835 (2013).
Bortle, J. E. Introducing the Bortle Dark-Sky Scale. Sky Telesc. 101, 126–129 (2001).
Moore, C., Turina, F. & White, J. Recommended Indicators and Thresholds of Night Sky Quality for NPS State of the Park Reports—Interim Guidance https://irma.nps.gov/Datastore/DownloadFile/476525 (2013).
Duriscoe, D. M., Anderson, S. J., Luginbuhl, C. B. & Baugh, K. E. A simplified model of all-sky artificial sky glow derived from VIIRS Day/Night band data. J. Quant. Spectrosc. Radiat. Transf. 214, 133–145 (2018).
Patat, F. UBVRI night sky brightness during sunspot maximum at ESO-Paranal. Astron. Astrophys. 400, 1183–1198 (2003).
Bertolo, A., Binotto, R., Ortolani, S. & Sapienza, S. Measurements of night sky brightness in the Veneto region of Italy: Sky Quality Meter network results and differential photometry by digital single lens reflex. J. Imaging 5, 56 (2019).
Seaton, M. J. Excitation processes in the aurora and airglow 1. Absolute intensities, relative ultra-violet intensities and electron densities in high latitude aurorae. J. Atmos. Terr. Phys. 4, 285–294 (1954).
Hunten, D. M. Some photometric observations of auroral spectra. J. Atmos. Terr. Phys. 7, 141–151 (1955).
Chamberlain, J. in International Geophysics (ed. Van Mieghem, J.) Vol. 2, 704 (Academic, 1961).
Hong, S. S., Kwon, S. M., Park, Y.-S. & Park, C. Transfer of diffuse astronomical light and airglow in scattering earth atmosphere. Earth Planets Space 50, 487–491 (1998).
Hong, S. S., Park, Y.-S., Kwon, S. M., Park, C. & Weinberg, J. L. Radiative transfer in a scattering spherical atmosphere. J. Korean Astron. Soc. 35, 41–57 (2002).
Kwon, S. M., Hong, S. S. & Weinberg, J. L. An observational model of the zodiacal light brightness distribution. New Astron. 10, 91–107 (2004).
Kwon, S. M. Temporal and spatial variations of the atmospheric diffuse light. J. Korean Astron. Soc. 22, 141–159 (1989).
Bassa, C. G., Hainaut, O. R. & Galadí-Enríquez, D. Analytical simulations of the effect of satellite constellations on optical and near-infrared observations. Astron. Astrophys. 657, 75 (2022).
Tanabe, H. Photoelectric observations of the Gegenschein. Publ. Astron. Soc. Jpn 17, 339–366 (1965).
Leinert, C. Zodiacal light—a measure of the interplanetary environment. Space Sci. Rev. 18, 281–339 (1975).
James, J. F., Mukai, T., Watanabe, T., Ishiguro, M. & Nakamura, R. The morphology and brightness of the zodiacal light and gegenschein. Mon. Not. R. Astron. Soc. 288, 1022–1026 (1997).
Buffington, A. et al. Measurements of the Gegenschein brightness from the Solar Mass Ejection Imager (SMEI). Icarus 203, 124–133 (2009).
Nawar, S., Tadross, A., Mikhail, J. & Morcos, A. Brightness and color of the integrated starlight at celestial, ecliptic and galactic poles. Preprint at https://arxiv.org/abs/1011.2941 (2010).
Elsässer, H. & Haug, U. Über eine lichtelektrische Flächenphotometrie der südlichen und nördlichen Milchstraβe in zwei Farben und die Struktur des galaktischen Systems. Mit 10 Textabbildungen. Z. Astrophys. 50, 121 (1960).
Witt, A. N. & Lillie, C. F. Diffuse galactic light and the albedo of interstellar dust in the 1500 Å to 4250 Å region. Astron. Astrophys. 25, 397–404 (1973).
Toller, G. A Study of Galactic Light, Extragalactic Light, and Galactic Structure using Pioneer 10 Observations of Background Starlight. PhD thesis, State Univ. New York at Stony Brook (1981).
Dube, R. R., Wickes, W. C. & Wilkinson, D. T. Extragalactic background light at 5100 Å. Astrophys. J. 215, L51–L52 (1977).
Lauer, T. R. et al. New Horizons observations of the cosmic optical background. Astrophys. J. 906, 77 (2021).
Lauer, T. R. et al. Anomalous flux in the cosmic optical background detected with New Horizons observations. Astrophys. J. Lett. 927, L9 (2022).
Beier, P. in Ecological Consequences of Artificial Night Lighting (eds Rich, C. & Longcore, T.) 19–42 (Island, 2006).
Acknowledgements
Many individuals contributed positively to the content and clarity of this manuscript with their informal reviews and comments. In particular, we wish to thank S. Bará (Universidade de Santiago de Compostela, Spain), G. Esquerdo (Fred Lawrence Whipple Observatory, USA), L.-W. Hung (US NPS Natural Sounds and Night Skies Division, USA), Z. Kolláth (Konkoly Observatory, Hungary) and K. Walczak (Adler Planetarium, USA) for their helpful feedback.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares the following competing interests. Financial competing interests: the author is self-employed as a consultant in the field that is the subject of this Review. Non-financial competing interests: the author is an unpaid member of committees of the American Astronomical Society and International Astronomical Union that advocate or lobby for interests that are the subject of this Review.
Peer review
Peer review information
Nature Astronomy thanks Miroslav Kocifaj and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Barentine, J.C. Night sky brightness measurement, quality assessment and monitoring. Nat Astron 6, 1120–1132 (2022). https://doi.org/10.1038/s41550-022-01756-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41550-022-01756-2