Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Night sky brightness measurement, quality assessment and monitoring

Abstract

Ground-based optical astronomy necessarily involves sensing the light of astronomical objects along with the contributions of many natural sources ranging from the Earth’s atmosphere to cosmological light. In addition, astronomers have long contended with artificial light pollution, which further adds to the ‘background’ against which astronomical objects are seen. Understanding the brightness of the night sky is therefore fundamental to astronomy. The last comprehensive review of this subject was nearly a half-century ago, and we have learned much about both the natural and artificial night sky since. This Review considers which influences determine the total optical brightness of the night sky, the means by which this brightness is measured and how night sky quality is assessed and monitored in the long term.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Natural light in the sky from day to night.
Fig. 2: Night airglow phenomena seen from Earth orbit.
Fig. 3: The colour and brightness of the light-polluted night sky.
Fig. 4: Typical broadband digital imaging passbands and night sky spectra.
Fig. 5: NSB histogram made by integrating a time series of measurements obtained over one year at Páramos, Spain.
Fig. 6: A comparison of subjective and objective night sky quality metrics.

References

  1. Gaston, K. J., Gaston, S., Bennie, J. & Hopkins, J. Benefits and costs of artificial nighttime lighting of the environment. Environ. Rev. 23, 14–23 (2015).

    Article  Google Scholar 

  2. Falchi, F. in Urban Pollution: Science and Management (eds Charlesworth, S. M. & Booth, C. A.) 147–156 (Wiley-Blackwell, 2018).

  3. Green, R. F., Luginbuhl, C. B., Wainscoat, R. J. & Duriscoe, D. The growing threat of light pollution to ground-based observatories. Astron. Astrophys. Rev. 30, 1 (2022).

  4. Falchi, F. et al. The new world atlas of artificial night sky brightness. Sci. Adv. 2, 1600377 (2016).

    Article  ADS  Google Scholar 

  5. Gaston, K. J., Duffy, J. P., Gaston, S., Bennie, J. & Davies, T. W. Human alteration of natural light cycles: causes and ecological consequences. Oecologia 176, 917–931 (2014).

    Article  ADS  Google Scholar 

  6. Gaston, K. J. et al. Pervasiveness of biological impacts of artificial light at night. Integr. Comp. Biol. 61, 1098–1110 (2021).

    Article  Google Scholar 

  7. Kyba, C. C. M. et al. Artificially lit surface of earth at night increasing in radiance and extent. Sci. Adv. 3, 1701528 (2017).

    Article  ADS  Google Scholar 

  8. Falchi, F. et al. Light pollution in USA and Europe: the good, the bad and the ugly. J. Environ. Manag. 248, 109227 (2019).

    Article  Google Scholar 

  9. Sim, Y., Kim, I., Choi, A. & Sung, M. A preliminary study of an evaluation method for discomfort glare due to light trespass. Light. Res. Technol. 49, 632–650 (2016).

    Article  Google Scholar 

  10. Schroer, S. & Hölker, F. in Handbook of Advanced Lighting Technology (eds Karlicek, R. et al.) 1–33 (Springer, 2016).

  11. Svechkina, A., Portnov, B. A. & Trop, T. The impact of artificial light at night on human and ecosystem health: a systematic literature review. Landsc. Ecol. 35, 1725–1742 (2020).

    Article  Google Scholar 

  12. Boyce, P. Light, lighting and human health. Light. Res. Technol. 54, 101–144 (2021).

    Article  Google Scholar 

  13. Wanvik, P. O. Effects of road lighting on motorways. Traffic Inj. Prev. 10, 279–289 (2009).

    Article  Google Scholar 

  14. Marchant, P., Hale, J. D. & Sadler, J. P. Does changing to brighter road lighting improve road safety? Multilevel longitudinal analysis of road traffic collision frequency during the relighting of a UK city. J. Epidemiol. Community Health 74, 467–472 (2020).

    Article  Google Scholar 

  15. Kyba, C. C. M., Hänel, A. & Hölker, F. Redefining efficiency for outdoor lighting. Energy Environ. Sci. 7, 1806–1809 (2014).

    Article  Google Scholar 

  16. Schulte-Römer, N., Meier, J., Söding, M. & Dannemann, E. The LED paradox: how light pollution challenges experts to reconsider sustainable lighting. Sustainability 11, 6160 (2019).

    Article  Google Scholar 

  17. Cinzano, P. & Falchi, F. Toward an atlas of the number of visible stars. J. Quant. Spectrosc. Radiat. Transf. 253, 107059 (2020).

    Article  Google Scholar 

  18. Garstang, R. H. Model for artificial night-sky illumination. Publ. Astron. Soc. Pac. 98, 364–375 (1986).

    Article  ADS  Google Scholar 

  19. Kocifaj, M. & Lamphar, H. A. S. Skyglow: a retrieval of the approximate radiant intensity function of ground-based light sources. Mon. Not. R. Astron. Soc. 439, 3405–3413 (2014).

    Article  ADS  Google Scholar 

  20. Duriscoe, D. M. Measuring anthropogenic sky glow using a natural sky brightness model. Publ. Astron. Soc. Pac. 125, 1370–1382 (2013).

    Article  ADS  Google Scholar 

  21. Hung, L.-W. Identifying distinct metrics for assessing night sky brightness. Mon. Not. R. Astron. Soc. 511, 5683–5688 (2022).

  22. Barentine, J. C. Methods for assessment and monitoring of light pollution around ecologically sensitive sites. J. Imaging 5, 54 (2019).

    Article  Google Scholar 

  23. Roach, F. & Gordon, J. The Light of the Night Sky (Geophysics and Astrophysics Monographs Vol. 4, Reidel, 1973).

  24. Belikov, Y. E. Modelling of the twilight sky brightness using a numerical solution of the radiation transfer equation. J. Atmos. Terr. Phys. 58, 1843–1848 (1996).

    Article  ADS  Google Scholar 

  25. Adams, C. N., Plass, G. N. & Kattawar, G. W. The influence of ozone and aerosols on the brightness and color of the twilight sky. J. Atmos. Sci. 31, 1662–1674 (1974).

    Article  ADS  Google Scholar 

  26. Burki, G. et al. The atmospheric extinction at the E.S.O. La Silla observatory. Astron. Astrophys. Suppl. Ser. 112, 383 (1995).

    ADS  Google Scholar 

  27. Hunten, D. M. Metallic emissions from the upper atmosphere. Science 145, 26–31 (1964).

    Article  ADS  Google Scholar 

  28. Lee, R. L. & Hernández-Andrés, J. Measuring and modeling twilight’s purple light. Appl. Opt. 42, 445–457 (2003).

    Article  ADS  Google Scholar 

  29. Tinsley, B. A. et al. Excitation of oxygen permitted line emissions in the tropical nightglow. J. Geophys. Res. 78, 1174–1186 (1973).

    Article  ADS  Google Scholar 

  30. Slanger, T. G., Cosby, P. C., Huestis, D. L. & Sharpee, B. D. Review of tropical nightglow studies with astronomical instruments. J. Atmos. Sol.–Terr. Phys. 68, 1426–1440 (2006).

    Article  ADS  Google Scholar 

  31. Bates, D. R. Forbidden oxygen and nitrogen lines in the nightglow. Planet. Space Sci. 26, 897–912 (1978).

    Article  ADS  Google Scholar 

  32. Patat, F. The dancing sky: 6 years of night-sky observations at Cerro Paranal. Astron. Astrophys. 481, 575–591 (2008).

    Article  ADS  Google Scholar 

  33. Leinert, C. et al. The 1997 reference of diffuse night sky brightness. Astron. Astrophys. Suppl. Ser. 127, 1–99 (1998).

    Article  ADS  Google Scholar 

  34. Kocifaj, M., Kundracik, F., Barentine, J. C. & Bará, S. The proliferation of space objects is a rapidly increasing source of artificial night sky brightness. Mon. Not. R. Astron. Soc. Lett. 504, 40–44 (2021).

    Article  ADS  Google Scholar 

  35. Kyba, C. C. M. et al. Worldwide variations in artificial skyglow. Sci. Rep. 5, 8409 (2015).

    Article  Google Scholar 

  36. Hänel, A. et al. Measuring night sky brightness: methods and challenges. J. Quant. Spectrosc. Radiat. Transf. 205, 278–290 (2018).

    Article  ADS  Google Scholar 

  37. Borovsky, J. E. et al. Quiescent discrete auroral arcs: a review of magnetospheric generator mechanisms. Space Sci. Rev. 216, 1 (2019).

  38. Gallardo-Lacourt, B., Liang, J., Nishimura, Y. & Donovan, E. On the origin of STEVE: particle precipitation or ionospheric skyglow? Geophys. Res. Lett. 45, 7968–7973 (2018).

    Article  ADS  Google Scholar 

  39. Tarasick, D. W. & Hines, C. O. The observable effects of gravity waves on airglow emissions. Planet. Space Sci. 38, 1105–1119 (1990).

    Article  ADS  Google Scholar 

  40. Shepherd, G. G. & Cho, Y.-M. WINDII airglow observations of wave superposition and the possible association with historical ‘bright nights’. Geophys. Res. Lett. 44, 7036–7043 (2017).

    Article  ADS  Google Scholar 

  41. Grauer, A. D. & Grauer, P. A. Linking solar minimum, space weather, and night sky brightness. Sci. Rep. 11, 23893 (2021).

    Article  ADS  Google Scholar 

  42. Hart, M. Long-term spectroscopic observations of the atmospheric airglow by the Sloan Digital Sky Survey. Publ. Astron. Soc. Pac. 131, 015003 (2018).

    Article  ADS  Google Scholar 

  43. Grauer, A. D., Grauer, P. A., Davies, N. & Davies, G. Impact of space weather on the natural night sky. Publ. Astron. Soc. Pac. 131, 114508 (2019).

    Article  ADS  Google Scholar 

  44. Broadfoot, A. L. & Kendall, K. R. The airglow spectrum, 3100–10,000 A. J. Geophys. Res. 73, 426–428 (1968).

    Article  ADS  Google Scholar 

  45. Sternberg, J. R. & Ingham, M. F. Observations of the airglow continuum. Mon. Not. R. Astron. Soc. 159, 1–20 (1972).

    Article  ADS  Google Scholar 

  46. Kenner, R. D. & Ogryzlo, E. A. Orange chemiluminescence from NO2. J. Chem. Phys. 80, 1–6 (1984).

    Article  ADS  Google Scholar 

  47. Bates, D. R. Cause of terrestrial nightglow continuum. Proc. R. Soc. A 443, 227–237 (1993).

    ADS  Google Scholar 

  48. Kocifaj, M. Are population-based models advantageous in estimating the lumen outputs from light-pollution sources? Mon. Not. R. Astron.Soc. Lett. 496, L138–L141 (2020).

  49. Jechow, A., Kyba, C. C. M. & Hölker, F. Mapping the brightness and color of urban to rural skyglow with all-sky photometry. J. Quant. Spectrosc. Radiat. Transf. 250, 106988 (2020).

    Article  Google Scholar 

  50. Aubé, M. Physical behaviour of anthropogenic light propagation into the nocturnal environment. Phil. Trans. R. Soc. B 370, 20140117 (2015).

    Article  Google Scholar 

  51. Falchi, F. Campaign of sky brightness and extinction measurements using a portable CCD camera. Mon. Not. R. Astron. Soc. 412, 33–48 (2010).

    Article  ADS  Google Scholar 

  52. Jechow & Hölker Snowglow—the amplification of skyglow by snow and clouds can exceed full moon illuminance in suburban areas. J. Imaging 5, 69 (2019).

    Article  Google Scholar 

  53. Wallner, S. & Kocifaj, M. Impacts of surface albedo variations on the night sky brightness—a numerical and experimental analysis. J. Quant. Spectrosc. Radiat. Transf. 239, 106648 (2019).

    Article  Google Scholar 

  54. Liu, M. et al. Research on the influence of weather conditions on urban night light environment. Sustain. Cities Soc. 54, 101980 (2020).

    Article  Google Scholar 

  55. Kocifaj, M. & Barentine, J. C. Air pollution mitigation can reduce the brightness of the night sky in and near cities. Sci. Rep. 11, 14622 (2021).

    Article  ADS  Google Scholar 

  56. Ściężor, T. The impact of clouds on the brightness of the night sky. J. Quant. Spectrosc. Radiat. Transf. 247, 106962 (2020).

    Article  Google Scholar 

  57. Kyba, C. C. M., Ruhtz, T., Fischer, J. & Hölker, F. Cloud coverage acts as an amplifier for ecological light pollution in urban ecosystems. PLoS ONE 6, 17307 (2011).

    Article  ADS  Google Scholar 

  58. Jechow, A., Hölker, F. & Kyba, C. C. M. Using all-sky differential photometry to investigate how nocturnal clouds darken the night sky in rural areas. Sci. Rep. 9, 1391 (2019).

    Article  ADS  Google Scholar 

  59. Luginbuhl, C. B., Lockwood, G. W., Davis, D. R., Pick, K. & Selders, J. From the ground up I: light pollution sources in Flagstaff, Arizona. Publ. Astron. Soc. Pac. 121, 185–203 (2009).

    Article  ADS  Google Scholar 

  60. Kocifaj, M., Solano Lamphar, H. A. & Kundracik, F. Retrieval of Garstang’s emission function from all-sky camera images. Mon. Not. R. Astron. Soc. 453, 819–827 (2015).

    Article  ADS  Google Scholar 

  61. Kocifaj, M. Towards a comprehensive city emission function (CCEF). J. Quant. Spectrosc. Radiat. Transf. 205, 253–266 (2018).

    Article  ADS  Google Scholar 

  62. Kocifaj, M., Solano-Lamphar, H. A. & Videen, G. Night-sky radiometry can revolutionize the characterization of light-pollution sources globally. Proc. Natl Acad. Sci. USA 116, 7712–7717 (2019).

    Article  ADS  Google Scholar 

  63. Luginbuhl, C. B., Boley, P. A. & Davis, D. R. The impact of light source spectral power distribution on sky glow. J. Quant. Spectrosc. Radiat. Transf. 139, 21–26 (2014).

    Article  ADS  Google Scholar 

  64. Cinzano, P., Falchi, F. & Elvidge, C. D. Naked-eye star visibility and limiting magnitude mapped from DMSP-OLS satellite data. Mon. Not. R. Astron. Soc. 323, 34–46 (2001).

    Article  ADS  Google Scholar 

  65. Rybicki, G. B. & Lightman, A. P. Radiative Processes in Astrophysics (Wiley-VCH, 1985).

  66. Schäfer, R. Direct solution of the radiative transfer equation for plane-parallel atmospheres. J. Quant. Spectrosc. Radiat. Transf. 23, 455–466 (1980).

    Article  ADS  Google Scholar 

  67. Cinzano, P. Night Sky Photometry with Sky Quality Meter Technical Report 9 (Istituto di Scienza e Tecnologia dell’Inquinamento Luminoso, 2005).

  68. Cinzano, P. Report on Sky Quality Meter, Version l Technical Report (Istituto di Scienza e Tecnologia dell’Inquinamento Luminoso, 2007).

  69. Bessell, M. S. UBVRI passbands. Publ. Astron. Soc. Pac. 102, 1181 (1990).

    Article  ADS  Google Scholar 

  70. Zamorano, J., Sánchez de Miguel, A, Rosillo, M. N. & Ayuga, C. T. NixNox procedure to build Night Sky Brightness maps from SQM photometers observations. Preprint at E-Prints Complutense https://eprints.ucm.es/26982/ (2014).

  71. Aceituno, J. et al. An all-sky transmission monitor: ASTMON. Publ. Astron. Soc. Pac. 123, 1076–1086 (2011).

    Article  ADS  Google Scholar 

  72. Duriscoe, D. M., Luginbuhl, C. B. & Moore, C. A. Measuring night-sky brightness with a wide-field CCD camera. Publ. Astron. Soc. Pac. 119, 192–213 (2007).

    Article  ADS  Google Scholar 

  73. Mohar, A. Sky Quality Camera as a quick and reliable tool for light pollution monitoring. In International Conference on Light Pollution Theory, Modelling and Measurements, May 26–28, Jouvence, Quebec, Canada, Book of Abstracts (eds Aubé, M. et al.) 47 (2015); https://w1.cegepsherbrooke.qc.ca/~aubema/LPTMM/uploads/Site/Abstract-booklet-lptmm-2015.pdf

  74. Kolláth, Z. & Dömény, A. Night sky quality monitoring in existing and planned dark sky parks by digital cameras. Int. J. Sustain. Light. 19, 61–68 (2017).

    Article  Google Scholar 

  75. Bará, S., Aubé, M., Barentine, J. & Zamorano, J. Magnitude to luminance conversions and visual brightness of the night sky. Mon. Not. R. Astron. Soc. 493, 2429–2437 (2020).

    Article  ADS  Google Scholar 

  76. Sánchez de Miguel, A. et al. Sky Quality Meter measurements in a colour-changing world. Mon. Not. R. Astron. Soc. 467, 2966–2979 (2017).

    Article  ADS  Google Scholar 

  77. Kolláth, Z. Introducing the dark sky unit for multispectral measurement of the night sky quality with commercial digital cameras. J. Quant. Spectrosc. Radiat. Transf. 253, 107162 (2020).

  78. Kolláth, K. & Kolláth, Z. On the feasibility of using ceilometer backscatter profile as input data for skyglow simulation. J. Quant. Spectrosc. Radiat. Transf. 253, 107158 (2020).

    Article  Google Scholar 

  79. Levin, N. et al. Remote sensing of night lights: a review and an outlook for the future. Remote Sens. Environ. 237, 111443 (2020).

    Article  ADS  Google Scholar 

  80. Sánchez de Miguel, A. S. et al. Colour remote sensing of the impact of artificial light at night (I): the potential of the International Space Station and other DSLR-based platforms. Remote Sens. Environ. 224, 92–103 (2019).

    Article  ADS  Google Scholar 

  81. Barducci, A., Marcoionni, P., Pippi, I. & Poggesi, M. Effects of light pollution revealed during a nocturnal aerial survey by two hyperspectral imagers. Appl. Opt. 42, 4349 (2003).

    Article  ADS  Google Scholar 

  82. Kuechly, H. U. et al. Aerial survey and spatial analysis of sources of light pollution in Berlin, Germany. Remote Sens. Environ. 126, 39–50 (2012).

    Article  ADS  Google Scholar 

  83. Li, X., Levin, N., Xie, J. & Li, D. Monitoring hourly night-time light by an unmanned aerial vehicle and its implications to satellite remote sensing. Remote Sens. Environ. 247, 111942 (2020).

    Article  ADS  Google Scholar 

  84. Walczak, K., Gyuk, G., Garcia, J. & Tarr, C. Light pollution mapping from a stratospheric high-altitude balloon platform. Int. J. Sustain. Light. 23, 20–32 (2021).

    Article  Google Scholar 

  85. Bettanini, C., Bartolomei, M., Aboudan, A., Colombatti, G. & Olivieri, L. Flight test of an autonomous payload for measuring sky brightness and ground light pollution using a stratospheric sounding balloon. Acta Astronaut. 191, 11–21 (2022).

    Article  ADS  Google Scholar 

  86. L.Imhoff, M., Lawrence, W. T., Stutzer, D. C. & Elvidge, C. D. A technique for using composite DMSP/OLS ‘City Lights’ satellite data to map urban area. Remote Sens. Environ. 61, 361–370 (1997).

    Article  ADS  Google Scholar 

  87. Li, X. & Zhou, Y. Urban mapping using DMSP/OLS stable night-time light: a review. Int. J. Remote Sens. 38, 6030–6046 (2017).

    Article  Google Scholar 

  88. Kocifaj, M. & Bará, S. Aerosol characterization using satellite remote sensing of light pollution sources at night. Mon. Not. R. Astron. Soc. Lett. 495, 76–80 (2020).

    Article  ADS  Google Scholar 

  89. Sánchez de Miguel, A., Kyba, C. C. M., Zamorano, J., Gallego, J. & Gaston, K. J. The nature of the diffuse light near cities detected in nighttime satellite imagery. Sci. Rep. 10, 7829 (2020).

    Article  ADS  Google Scholar 

  90. Bará, S., Lima, R. C. & Zamorano, J. Monitoring long-term trends in the anthropogenic night sky brightness. Sustainability 11, 3070 (2019).

    Article  Google Scholar 

  91. Bará, S. et al. Direct assessment of the sensitivity drift of SQM sensors installed outdoors. Int. J. Sustain. Light. 23, 1–6 (2021).

    Article  Google Scholar 

  92. Puschnig, J., Näslund, M., Schwope, A. & Wallner, S. Correcting sky quality meter measurements for aging effects using twilight as calibrator. Mon. Not. R. Astron. Soc. 502, 1095–1103 (2021).

    Article  ADS  Google Scholar 

  93. Rosa Infantes, D. The Road Runner system. In IV International Symposium for Dark Sky Parks, Montsec, Spain (2011) (Accessed 13 March 2019); http://darkskyparks.splet.arnes.si/files/2011/09/RoadRunner.pdf

  94. Zamorano, J. et al. STARS4ALL night sky brightness photometer. Int. J. Sustain. Light. 18, 49–54 (2017).

    Article  Google Scholar 

  95. Kyba, C. C. M. & Lolkema, D. E. A community standard for recording skyglow data. Astron. Geophys. 53, 6.17–6.18 (2012).

    Article  Google Scholar 

  96. Puschnig, J., Wallner, S. & Posch, T. Circalunar variations of the night sky brightness—an FFT perspective on the impact of light pollution. Mon. Not. R. Astron. Soc. 492, 2622–2637 (2019).

    Article  ADS  Google Scholar 

  97. Bará, S. Characterizing the zenithal night sky brightness in large territories: how many samples per square kilometre are needed? Mon. Not. R. Astron. Soc. 473, 4164–4173 (2017).

    Article  ADS  Google Scholar 

  98. Fryc, I., Bará, S., Aubé, M., Barentine, J. C. & Zamorano, J. On the relation between the astronomical and visual photometric systems in specifying the brightness of the night sky for mesopically adapted observers. LEUKOS https://doi.org/10.1080/15502724.2021.1921593 (2021).

  99. Crumey, A. Human contrast threshold and astronomical visibility. Mon. Not. R. Astron. Soc. 442, 2600–2619 (2014).

    Article  ADS  Google Scholar 

  100. Kyba, C. C. M. et al. Citizen science provides valuable data for monitoring global night sky luminance. Sci. Rep. 3, 1835 (2013).

  101. Bortle, J. E. Introducing the Bortle Dark-Sky Scale. Sky Telesc. 101, 126–129 (2001).

    Google Scholar 

  102. Moore, C., Turina, F. & White, J. Recommended Indicators and Thresholds of Night Sky Quality for NPS State of the Park Reports—Interim Guidance https://irma.nps.gov/Datastore/DownloadFile/476525 (2013).

  103. Duriscoe, D. M., Anderson, S. J., Luginbuhl, C. B. & Baugh, K. E. A simplified model of all-sky artificial sky glow derived from VIIRS Day/Night band data. J. Quant. Spectrosc. Radiat. Transf. 214, 133–145 (2018).

    Article  ADS  Google Scholar 

  104. Patat, F. UBVRI night sky brightness during sunspot maximum at ESO-Paranal. Astron. Astrophys. 400, 1183–1198 (2003).

    Article  ADS  Google Scholar 

  105. Bertolo, A., Binotto, R., Ortolani, S. & Sapienza, S. Measurements of night sky brightness in the Veneto region of Italy: Sky Quality Meter network results and differential photometry by digital single lens reflex. J. Imaging 5, 56 (2019).

    Article  Google Scholar 

  106. Seaton, M. J. Excitation processes in the aurora and airglow 1. Absolute intensities, relative ultra-violet intensities and electron densities in high latitude aurorae. J. Atmos. Terr. Phys. 4, 285–294 (1954).

    Article  ADS  Google Scholar 

  107. Hunten, D. M. Some photometric observations of auroral spectra. J. Atmos. Terr. Phys. 7, 141–151 (1955).

    Article  ADS  Google Scholar 

  108. Chamberlain, J. in International Geophysics (ed. Van Mieghem, J.) Vol. 2, 704 (Academic, 1961).

  109. Hong, S. S., Kwon, S. M., Park, Y.-S. & Park, C. Transfer of diffuse astronomical light and airglow in scattering earth atmosphere. Earth Planets Space 50, 487–491 (1998).

    Article  ADS  Google Scholar 

  110. Hong, S. S., Park, Y.-S., Kwon, S. M., Park, C. & Weinberg, J. L. Radiative transfer in a scattering spherical atmosphere. J. Korean Astron. Soc. 35, 41–57 (2002).

    Article  ADS  Google Scholar 

  111. Kwon, S. M., Hong, S. S. & Weinberg, J. L. An observational model of the zodiacal light brightness distribution. New Astron. 10, 91–107 (2004).

    Article  ADS  Google Scholar 

  112. Kwon, S. M. Temporal and spatial variations of the atmospheric diffuse light. J. Korean Astron. Soc. 22, 141–159 (1989).

    ADS  Google Scholar 

  113. Bassa, C. G., Hainaut, O. R. & Galadí-Enríquez, D. Analytical simulations of the effect of satellite constellations on optical and near-infrared observations. Astron. Astrophys. 657, 75 (2022).

    Article  ADS  Google Scholar 

  114. Tanabe, H. Photoelectric observations of the Gegenschein. Publ. Astron. Soc. Jpn 17, 339–366 (1965).

    ADS  Google Scholar 

  115. Leinert, C. Zodiacal light—a measure of the interplanetary environment. Space Sci. Rev. 18, 281–339 (1975).

    Article  ADS  Google Scholar 

  116. James, J. F., Mukai, T., Watanabe, T., Ishiguro, M. & Nakamura, R. The morphology and brightness of the zodiacal light and gegenschein. Mon. Not. R. Astron. Soc. 288, 1022–1026 (1997).

    Article  ADS  Google Scholar 

  117. Buffington, A. et al. Measurements of the Gegenschein brightness from the Solar Mass Ejection Imager (SMEI). Icarus 203, 124–133 (2009).

    Article  ADS  Google Scholar 

  118. Nawar, S., Tadross, A., Mikhail, J. & Morcos, A. Brightness and color of the integrated starlight at celestial, ecliptic and galactic poles. Preprint at https://arxiv.org/abs/1011.2941 (2010).

  119. Elsässer, H. & Haug, U. Über eine lichtelektrische Flächenphotometrie der südlichen und nördlichen Milchstraβe in zwei Farben und die Struktur des galaktischen Systems. Mit 10 Textabbildungen. Z. Astrophys. 50, 121 (1960).

    ADS  Google Scholar 

  120. Witt, A. N. & Lillie, C. F. Diffuse galactic light and the albedo of interstellar dust in the 1500 Å to 4250 Å region. Astron. Astrophys. 25, 397–404 (1973).

    ADS  Google Scholar 

  121. Toller, G. A Study of Galactic Light, Extragalactic Light, and Galactic Structure using Pioneer 10 Observations of Background Starlight. PhD thesis, State Univ. New York at Stony Brook (1981).

  122. Dube, R. R., Wickes, W. C. & Wilkinson, D. T. Extragalactic background light at 5100 Å. Astrophys. J. 215, L51–L52 (1977).

    Article  ADS  Google Scholar 

  123. Lauer, T. R. et al. New Horizons observations of the cosmic optical background. Astrophys. J. 906, 77 (2021).

    Article  ADS  Google Scholar 

  124. Lauer, T. R. et al. Anomalous flux in the cosmic optical background detected with New Horizons observations. Astrophys. J. Lett. 927, L9 (2022).

  125. Beier, P. in Ecological Consequences of Artificial Night Lighting (eds Rich, C. & Longcore, T.) 19–42 (Island, 2006).

Download references

Acknowledgements

Many individuals contributed positively to the content and clarity of this manuscript with their informal reviews and comments. In particular, we wish to thank S. Bará (Universidade de Santiago de Compostela, Spain), G. Esquerdo (Fred Lawrence Whipple Observatory, USA), L.-W. Hung (US NPS Natural Sounds and Night Skies Division, USA), Z. Kolláth (Konkoly Observatory, Hungary) and K. Walczak (Adler Planetarium, USA) for their helpful feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Barentine.

Ethics declarations

Competing interests

The author declares the following competing interests. Financial competing interests: the author is self-employed as a consultant in the field that is the subject of this Review. Non-financial competing interests: the author is an unpaid member of committees of the American Astronomical Society and International Astronomical Union that advocate or lobby for interests that are the subject of this Review.

Peer review

Peer review information

Nature Astronomy thanks Miroslav Kocifaj and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barentine, J.C. Night sky brightness measurement, quality assessment and monitoring. Nat Astron 6, 1120–1132 (2022). https://doi.org/10.1038/s41550-022-01756-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01756-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing