Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A record of post-accretion asteroid surface mixing preserved in the Aguas Zarcas meteorite

Abstract

Particle ejection and redeposition events on the surface of asteroid 101955 Bennu, which led to transport, mixing and loss of material, have been observed frequently by NASA’s OSIRIS-REx mission. Besides large-scale impacts, this may be one of the most important post-accretional processes on small carbonaceous asteroids. Here we looked for relics of such activity in a Bennu analogue, the carbonaceous chondrite Aguas Zarcas. We discovered compact fragments that were strongly shocked, redistributed and deposited onto an unshocked lithology, consistent with surficial re-accretion on Aguas Zarcas’s parent body. Such re-accretion could be driven by large-scale impacts or by frequent pebble transport from endogenous asteroidal activity such as observed at Bennu. The latter hypothesis is supported by the matching size distribution of the Aguas Zarcas compact fragments with that of the Bennu ejecta. Such mixing has hitherto been unexplored in other regolith breccias, and further analysis will determine how common such processes are.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Slices from μCT image stacks of four types of rocks and BSE image of a polished compact AZ fragment.
Fig. 2: Chondrules fitted with ellipsoid shapes.
Fig. 3: Relationship between aspect ratio and shock pressure.
Fig. 4: Distribution of volume‐equivalent spherical diameters for particles ejected from asteroid Bennu and for the compact AZ fragments.
Fig. 5: Characteristics of modelled ejecta.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and the Supplementary Information. The original μCT data are deposited in MorphoSource, a data repository specialized for 3D representations of physical objects. The DOIs for the μCT data from the University of Chicago’s PaleoCT Lab are as follows: RF-1 (10.17602/M2/M450464), RF-2 (10.17602/M2/M450467), RF-3 (10.17602/M2/M450470), CF-1 (10.17602/M2/M450431), CF-2 (10.17602/M2/M450434), CF-3 (10.17602/M2/M450437), CF-4 (10.17602/M2/M450440), CF-5 (10.17602/M2/M450443), CF-6 (10.17602/M2/M450446), CF-7 (10.17602/M2/M450449), CF-8 (10.17602/M2/M450452), CF-9 (10.17602/M2/M450455), CF-10 (10.17602/M2/M450458), and CF-11 (10.17602/M2/M450461). The DOIs for the μCT Data from the University of Texas High-Resolution X-ray Computed Tomography Facility (UTCT) are as follows: Leoville (10.17602/M2/M446809), Murchison (10.17602/M2/M446787), RF-1 (10.17602/M2/M446768), and CF-10 (10.17602/M2/M446740). Source data are provided with this paper.

Code availability

Monte Carlo simulations with MATLAB code are deposited in Knowledge@UChicago47, a repository hosted by the University of Chicago.

References

  1. Lauretta, D. S. et al. Episodes of particle ejection from the surface of the active asteroid (101955) Bennu. Science 366, eaay544 (2019).

    Article  Google Scholar 

  2. Chesley, S. R. et al. Trajectory estimation for particles observed in the vicinity of (101955) Bennu. J. Geophys. Res. Planets 125, e2019JE006363 (2020).

    Article  ADS  Google Scholar 

  3. Rubin, A. E. Collisional facilitation of aqueous alteration of CM and CV carbonaceous chondrites. Geochim. Cosmochim. Acta 90, 181–194 (2012).

    Article  ADS  Google Scholar 

  4. Bischoff, A., Scott, E. R. D., Metzler, K. & Goodrich, C. A. in Meteorites and the Early Solar System II (eds Lauretta, D. S. & McSween, H. Y., Jr.) 679–712 (Univ. of Arizona Press, Tucson, AZ, 2006).

  5. Bischoff, A., Schleiting, M., Wieler, R. & Patzek, M. Brecciation among 2280 ordinary chondrites—constraints on the evolution of their parent bodies. Geochim. Cosmochim. Acta 238, 516–541 (2018).

    Article  ADS  Google Scholar 

  6. Hamilton, V. E. et al. Evidence for widespread hydrated minerals on asteroid (101955) Bennu. Nat. Astron. 3, 332–340 (2019).

    Article  ADS  Google Scholar 

  7. Kerraouch, I. et al. The polymict carbonaceous breccia Aguas Zarcas: a potential analog to samples being returned by the OSIRIS-REx and Hayabusa 2 missions. Meteorit. Planet. Sci. 56, 277–310 (2021).

    Article  ADS  Google Scholar 

  8. Garvie, L. A. Mineralogy of the 2019 Aguas Zarcas (CM2) carbonaceous chondrite meteorite fall. Am. Mineral. 106, 1900–1916 (2021).

    Article  ADS  Google Scholar 

  9. Nakamura, T., Tomeoka, K. & Takeda, H. Shock effects of the Leoville CV carbonaceous chondrite: a transmission electron microscope study. Earth Planet. Sci. Lett. 114, 159–170 (1992).

    Article  ADS  Google Scholar 

  10. Tomeoka, K., Yamahana, Y. & Sekine, T. Experimental shock metamorphism of the Murchison CM carbonaceous chondrite. Geochim. Cosmochim. Acta 63, 3683–3703 (1999).

    Article  ADS  Google Scholar 

  11. Cain, P. M., McSween, H. Y. Jr. & Woodward, N. B. Structural deformation of the Leoville chondrite. Earth Planet. Sci. Lett. 77, 165–175 (1986).

    Article  ADS  Google Scholar 

  12. Hanna, R. D., Ketcham, R. A., Zolensky, M. & Behr, W. M. Impact-induced brittle deformation, porosity loss, and aqueous alteration in the Murchison CM chondrite. Geochim. Cosmochim. Acta 171, 256–282 (2015).

    Article  ADS  Google Scholar 

  13. Sneed, E. D. & Folk, R. L. Pebbles in the lower Colorado River, Texas a study in particle morphogenesis. J. Geol. 66, 114–150 (1958).

    Article  ADS  Google Scholar 

  14. Graham, D. J. & Midgley, N. G. Graphical representation of particle shape using triangular diagrams: an excel spreadsheet method. Earth Surf. Proc. Landf. 25, 1473–1477 (2000).

    Article  ADS  Google Scholar 

  15. Woodcock, N. & Naylor, M. A. Randomness testing in three-dimensional orientation data. J. Struct. Geol. 5, 539–548 (1983).

    Article  ADS  Google Scholar 

  16. Lindgren, P., Hanna, R. D., Dobson, K. J., Tomkinson, T. & Lee, M. R. The paradox between low shock-stage and evidence for compaction in CM carbonaceous chondrites explained by multiple low-intensity impacts. Geochim. Cosmochim. Acta 148, 159–178 (2015).

    Article  ADS  Google Scholar 

  17. Friedrich, J. M. et al. Relationships among physical properties as indicators of high temperature deformation or post-shock thermal annealing in ordinary chondrites. Geochim. Cosmochim. Acta 203, 157–174 (2017).

    Article  ADS  Google Scholar 

  18. Scott, E. R. D., Keil, K. & Stöffler, D. Shock metamorphism of carbonaceous chondrites. Geochim. Cosmochim. Acta 56, 4281–4293 (1992).

    Article  ADS  Google Scholar 

  19. Rubin, A. E. & Swindle, T. D. Flattened chondrules in the LAP 04581 LL5 chondrite: evidence for an oblique impact into LL3 material and subsequent collisional heating. Meteorit. Planet. Sci. 46, 587–600 (2011).

    Article  ADS  Google Scholar 

  20. Nakamura, T., Tomeoka, K., Takaoka, N., Sekine, T. & Takeda, H. Impact-induced textural changes of CV carbonaceous chondrites: experimental reproduction. Icarus 146, 289–300 (2000).

    Article  ADS  Google Scholar 

  21. Stöffler, D., Keil, K. & Scott, E. R. D. Shock metamorphism of ordinary chondrites. Geochim. Cosmochim. Acta 55, 3845–3867 (1991).

    Article  ADS  Google Scholar 

  22. Rubin, A. E., Trigo-Rodríguez, J. M., Huber, H. & Wasson, J. T. Progressive aqueous alteration of CM carbonaceous chondrites. Geochim. Cosmochim. Acta 71, 2361–2382 (2007).

    Article  ADS  Google Scholar 

  23. Sharp, T. G. & DeCarli, P. S. in Meteorites and the Early Solar System II, (eds Lauretta, D. S. & McSween, H. Y., Jr.) 653–677 (Univ. of Arizona Press, Tucson, AZ, 2006).

  24. Ruzicka, A. M. & Hugo, R. C. Electron backscatter diffraction (EBSD) study of seven heavily metamorphosed chondrites: deformation systematics and variations in pre-shock temperature and post-shock annealing. Geochim. Cosmochim. Acta 234, 115–147 (2018).

    Article  ADS  Google Scholar 

  25. Ruzicka, A. M. & Hugo, R. C. Probing the thermal and deformation histories of chondrules in a cluster chondrite lithology of Northwest Africa 5205 with electron backscatter diffraction (EBSD) techniques. Meteorit. & Planet. Sci. 56, S1, Abstract 6109, (2021). https://doi.org/10.1111/maps.13727

  26. Kojima, T., Yatagai, T. & Tomeoka, K. A dark inclusion in the Manych LL (3.1) ordinary chondrite: a product of strong shock metamorphism. Antarct. Meteor. Res. 13, 39–54 (2000).

    ADS  Google Scholar 

  27. Kring, D. A. et al. Portales Valley: a meteoritic sample of the brecciated and metal-veined floor of an impact crater on an H-chondrite asteroid. Meteorit. Planet. Sci. 34, 663–669 (1999).

    Article  ADS  Google Scholar 

  28. Friedrich, J. M., Weisberg, M. K. & Rivers, M. L. Multiple impact events recorded in the NWA 7298 H chondrite breccia and the dynamical evolution of an ordinary chondrite asteroid. Earth Planet. Sci. Lett. 394, 13–19 (2014).

    Article  ADS  Google Scholar 

  29. Ohnishi, I. & Tomeoka, K. Dark inclusions in the Mokoia CV3 chondrite: evidence for aqueous alteration and subsequent thermal and shock metamorphism. Meteorit. Planet. Sci. 37, 1843–1856 (2002).

    Article  ADS  Google Scholar 

  30. Stöffler, D. & Grieve, R. A. F. in Metamorphic Rocks: A Classification and Glossary of Terms (eds Fettes, D. & Desmons, J.) 82–92 (Cambridge Univ. Press, 2007).

  31. Okada, T. et al. Highly porous nature of a primitive asteroid revealed by thermal imaging. Nature 579, 518–522 (2020).

    Article  ADS  Google Scholar 

  32. Hergenrother, C. W. et al. Photometry of particles ejected from active asteroid (101955) Bennu. J. Geophys. Res. Planets 125, e2020JE006381 (2020).

    Article  ADS  Google Scholar 

  33. Bottke, W. F. et al. Meteoroid impacts as a source of Bennu’s particle ejection events. J. Geophys. Res. Planets 125, e2019JE006282 (2020).

    Article  ADS  Google Scholar 

  34. Molaro, J. L. et al. Thermal fatigue as a driving mechanism for activity on asteroid Bennu. J. Geophys. Res. Planets 125, e2019JE006325 (2020).

    Article  ADS  Google Scholar 

  35. Fedorov, A. et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 30, 1323–1341 (2012).

    Article  Google Scholar 

  36. Ketcham, R. A. Three-dimensional grain fabric measurements using high-resolution X-ray computed tomography. J. Struct. Geol. 27, 1217–1228 (2005).

    Article  ADS  Google Scholar 

  37. Ketcham, R. A. Computational methods for quantitative analysis of three-dimensional features in geological specimens. Geosphere 1, 32–41 (2005).

    Article  ADS  Google Scholar 

  38. Turner, F. J. & Weiss, L. E. Structural Analysis of Metamorphic Tectonites (McGraw–Hill, 1963).

  39. Britt, D. T. & Consolmagno, G. Stony meteorite porosities and densities: a review of the data through 2001. Meteorit. Planet. Sci. 38, 1161–1180 (2003).

    Article  ADS  Google Scholar 

  40. Consolmagno, G. J., Britt, D. T. & Macke, R. J. The significance of meteorite density and porosity. Geochem 68, 1–29 (2008).

    Article  Google Scholar 

  41. Rai, N. & van Westrenen, W. Lunar core formation: new constraints from metal–silicate partitioning of siderophile elements. Earth Planet. Sci. Lett. 388, 343–352 (2014).

    Article  ADS  Google Scholar 

  42. van Kan Parker, M. et al. Neutral buoyancy of titanium-rich melts in the deep lunar interior. Nat. Geosci. 5, 186–189 (2012).

    Article  ADS  Google Scholar 

  43. Weber, R. C., Lin, P.-Y., Garnero, E. J., Williams, Q. & Lognonné, P. Seismic detection of the lunar core. Science 331, 309–312 (2011).

    Article  ADS  Google Scholar 

  44. Walsh, K. J. Rubble pile asteroids. Annu. Rev. Astron. Astrophys. 56, 593–624 (2018).

    Article  ADS  Google Scholar 

  45. Lauretta, D. S. et al. The OSIRIS-REx target asteroid (101955) Bennu: constraints on its physical, geological, and dynamical nature from astronomical observations. Meteorit. Planet. Sci. 50, 834–849 (2015).

    Article  ADS  Google Scholar 

  46. Krasinsky, G. Hidden mass in the asteroid belt. Icarus 158, 98–105 (2002).

    Article  ADS  Google Scholar 

  47. Yang, X. MATLAB code for a simple model of ejection events on small asteroids. Knowledge@UChicago https://doi.org/10.6082/uchicago.3914 (2022).

Download references

Acknowledgements

P.R.H. thanks the Boudreaux family for donating Aguas Zarcas to the Field Museum’s Robert A. Pritzker Center. Funding from NASA’s Emerging Worlds program (80NSSC21K0389 to P.R.H. and 80NSSC21K0374 to A.M.D.) and from National Science Foundation (grant EAR-1762458 to UTCT Facility) is gratefully acknowledged. P.R.H., X.Y. acknowledge support for this project from the Field Museum’s Science Innovation Award and the TAWANI Foundation. We thank J. Holstein and K. Keating for help with sample preparation, J. Maisano for µCT data acquisition of samples acquired at the High-Resolution X-ray Computed Tomography Facility of the University of Texas at Austin (UTCT), G. Olack for maintaining the FIB-SEM facility at the University of Chicago and J. Greer for discussions regarding components of AZ and scientific illustration. X.Y. acknowledges support from UTCT for attending the UTCT Short Course: Quantitative Analysis with XCT.

Author information

Authors and Affiliations

Authors

Contributions

X.Y. and P.R.H. conceived the study and wrote the paper with input from all authors. R.D.H provided expertise on the data processing, interpretation and visualization. A.M.D contributed to the investigation and Monte Carlo model. A.I.N. conducted the initial μCT scanning of samples. X.Y. and P.R.H prepared the samples for SEM/EDS analysis and A.M.D helped explain the data.

Corresponding author

Correspondence to Xin Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 3D aspect ratios of fitted ellipsoids of chondrules in AZ fragments versus C parameters.

Two groups, regular AZ and compact AZ, are clearly separated, with RF-3 in the compact group. Error bars are one standard deviation (n = 22–85).

Source data

Extended Data Fig. 2 Back-scattered electron (BSE) images of regular AZ (left panel; Kerraouch et al. 7) and compact AZ (right panel; this study).

Both lithologies show the same texture, that is, chondrules at low abundance embedded in an aqueously altered matrix enriched with phyllosilicates (irregular patchy light grey material in the matrix between the chondrules). Right panel adapted from ref. 7 under a Creative Commons license CC BY 4.0.

Extended Data Fig. 3 BSE images of chondrules from the compact fragment CF-10.

a, Chondrule mainly consisting of forsterite (Fo), containing round sulfide grains. b, Radial pyroxene (Py) chondrule. c, Porphyritic olivine–pyroxene chondrule containing sulfide (Sul) grains. d, Porphyritic olivine–pyroxene chondrule containing sulfide veins and phyllosilicate (Phy).

Extended Data Fig. 4 Distributions of absolute locations (upper panel) and of displacement angles (lower panel) for redeposition onto a Bennu-like asteroid.

The modeled body has the same size and bulk density as that of Bennu (490 m in diameter and 1.26 g cm–3 in bulk density).

Source data

Extended Data Fig. 5 Schematic portrayal of the history of the formation of the Aguas Zarcas chondrite.

Fractures were generated in chondrules before or during the accretion of the parent body and were filled simultaneously by shock mobilization or later by thermal/aqueous alteration. Then a hypervelocity impact caused chondrule flattening and fracturing in the matrix, and the compact AZ lithology was formed. The compact AZ was fragmented by meteoroid impacts and thermal fracturing. Then particle ejection and reaccretion events redistributed rock fragments with distinct lithologies, mixing compact AZ into regular AZ. Later impacts consolidated the mixed lithologies and resulted in the final ejection.

Supplementary information

Supplementary Information

Supplementary discussion, Figs. 1–4 and Table 1.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Hanna, R.D., Davis, A.M. et al. A record of post-accretion asteroid surface mixing preserved in the Aguas Zarcas meteorite. Nat Astron 6, 1051–1058 (2022). https://doi.org/10.1038/s41550-022-01746-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01746-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing