Abstract
Hundreds of ancient lake basins detected on Mars via orbital remote sensing represent rare oases of hydrosphere–atmosphere–lithosphere interactions with great astrobiological potential. These palaeolake basins, and associated lacustrine deposits, could preserve evidence of biogenesis on Mars, and their geology, mineralogy and geochemistry place strong constraints on past climate. Most Martian palaeolakes date to the Noachian (>3.7 Gyr ago (Ga)) and probably lasted ~102–106 years, representing only a small fraction of the ~400 Myr of Noachian time. However, some palaeolakes occurred during the Hesperian (3–3.7 Ga), and it is likely that many shallow thermokarst lakes occurred in the Amazonian (<3 Ga) but left few traces. Noachian lacustrine deposits contain detrital Fe/Mg-rich clay minerals as well as authigenic Fe/Mg carbonates, sulfates, silica, chlorides and clay minerals that potentially preserve the characteristics of the ancient atmosphere and climate. While Martian palaeolakes are undeniably among the top targets for future surface exploration and sample return, many questions surrounding prospects for biogenesis and biological productivity in short-lived lakes and transient warm climates on an otherwise cold planet remain. Martian lakes also provide tremendous comparative value for reconstructing the geology and geobiology of inland waters on the Archaean Earth.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Carr, M. H. Water on Mars. Nature 326, 30–35 (1987).
Cabrol, N. A. & Grin, E. A. Distribution, classification, and ages of martian impact crater lakes. Icarus 142, 160–172 (1999).
Goldspiel, J. M., Squyres, S. W. & Jankowski, D. G. Topography of small martian valleys. Icarus 105, 479–500 (1993).
Fassett, C. I. & Head, J. W. Valley network-fed, open-basin lakes on Mars: distribution and implications for Noachian surface and subsurface hydrology. Icarus 198, 37–56 (2008).
Goudge, T. A., Morgan, A. M., Stucky de Quay, G. & Fassett, C. I. The importance of lake breach floods for valley incision on early Mars. Nature 597, 645–649 (2021).
Goudge, T. A., Aureli, K. L., Head, J. W., Fassett, C. I. & Mustard, J. F. Classification and analysis of candidate impact crater-hosted closed-basin lakes on Mars. Icarus https://doi.org/10.1016/j.icarus.2015.07.026 (2015).
Michalski, J. R. et al. The geology and astrobiology of McLaughlin crater, Mars: an ancient lacustrine basin containing turbidites, mudstones, and serpentinites. J. Geophys. Res. Planets 124, 910–940 (2019).
Boatwright, B. D. & Head, J. W. Noachian proglacial paleolakes on Mars: regionally recurrent fluvial activity and lake formation within closed-source drainage basin craters. Planet. Sci. J. 3, 38 (2022).
Michalski, J. R. et al. Groundwater activity on Mars and implications for a deep biosphere. Nat. Geosci. 6, 133–138 (2013).
Newsom, H. E., Brittelle, G. E., Hibbitts, C. A., Crossey, L. J. & Kudo, A. M. Impact crater lakes on Mars. J. Geophys. Res. 101, 14951–14955 (1996).
Wray, J. J. et al. Columbus crater and other possible groundwater-fed paleolakes of Terra Sirenum, Mars. J. Geophys. Res. Planets https://doi.org/10.1029/2010JE003694 (2011).
Osterloo, M. M., Anderson, F. S., Hamilton, V. E. & Hynek, B. M. Geologic context of proposed chloride-bearing materials on Mars. J. Geophys. Res. Planets 115, JE003613 (2010).
Ehlmann, B. L. et al. Clay minerals in delta deposits and organic preservation potential on Mars. Nat. Geosci. https://doi.org/10.1038/ngeo207 (2008).
Soare, R. J., Osinki, G. R. & Roehm, C. L. Thermokarst lakes and ponds on Mars in the very recent (late Amazonian) past. Earth Planet. Sci. Lett. 272, 382–393 (2008).
Sejourne, A. et al. Scalloped depressions and small-sized polygons in western Utopia Planitia, Mars: a new formation hypothesis. Planet. Space Sci. 59, 412–422 (2011).
Warner, N. et al. Late Noachian to Hesperian climate change on Mars: evidence of episodic warming from transient crater lakes near Ares Vallis. J. Geophys. Res. 115, JE003522 (2010).
Orosei, R. et al. Radar evidence of subglacial liquid water on Mars. Science 361, 490–493 (2018).
Lauro, S. E. et al. Multiple subglacial water bodies below the south pole of Mars unveiled by new MARSIS data. Nat. Astron. 5, 63–70 (2021).
Bierson, C. J., Tulaczyk, S., Courville, S. W. & Putzig, N. E. Strong MARSIS radar reflections from the base of Martiansouth polar cap may be due to conductive ice or minerals. Geophys. Res. Lett. 48, GL093880 (2021).
Irwin, R. P., Howard, A. D. & Maxwell, T. A. Geomorphology of Ma’adim Vallis, Mars, and associated paleolake basins. J. Geophys. Res. 109, JE002287 (2004).
Michalski, J. R., Dobrea, E. Z. N., Niles, P. B. & Cuadros, J. Ancient hydrothermal seafloor deposits in Eridania basin on Mars. Nat. Commun. 8, 15978 (2017).
Fassett, C. I. & Head, J. W. Sequence and timing of conditions on early Mars. Icarus 211, 1204–1214 (2011).
Goudge, T. A., Fassett, C. I., Head, J. W., Mustard, J. F. & Aureli, K. L. Insights into surface runoff on early Mars from paleolake basin morphology and stratigraphy. Geology 44, 419–422 (2016).
Summons, R. E. et al. Preservation of martian organic and environmental records: final report of the Mars Biosignature Working Group. Astrobiology 11, 157–181 (2011).
Ruff, S. W., Niles, P. B., Alfano, F. & Clarke, A. B. Evidence for a Noachian-aged ephemeral lake in Gusev crater, Mars. Geology 42, 359–362 (2014).
Grotzinger, J. P. et al. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science 350, aac7575 (2015).
Goudge, T. A., Mohrig, D., Cardenas, B. T., Hughes, C. M. & Fassett, C. I. Stratigraphy and paleohydrology of delta channel deposits, Jezero crater, Mars. Icarus https://doi.org/10.1016/j.icarus.2017.09.034 (2018).
Lehner, B. & Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1–22 (2004).
Downing, J. A. et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 51, 2388–2397 (2006).
Wetzel, R. G., Limnology: Lake and River Ecosystems (Elsevier, 2001).
Cohen, A. S. Paleolimnology: The History and Evolution of Lake Systems (Oxford Univ. Press, 2003).
Cabrol, N. A. & Grin, E. A. Lakes on Mars (Elsevier, 2010).
Goudge, T. A., Aureli, K. L., Head, J. W., Fassett, C. I. & Mustard, J. F. Classification and analysis of candidate impact crater-hosted closed-basin lakes on Mars. Icarus 260, 346–367 (2015).
Irwin, R. P., Lewis, K. W., Howard, A. D. & Grant, J. A. Paleohydrology of Eberswalde crater, Mars. Geomorphology 240, 83–101 (2015).
Mangold, N. et al. The origin and timing of fluvial activity at Eberswalde crater, Mars. Icarus 220, 530–551 (2012).
Kite, E. S. Geologic constraints on early Mars climate. Space Sci. Rev. 215, 10 (2019).
Moore, J. M., Howard, A. D., Dietrich, W. E. & Schenk, P. M. Martian layered fluvial deposits: implications for Noachian climate scenarios. Geophys. Res. Lett. 30, GL019002 (2003).
Stucky de Quay, G., Goudge, T. A. & Fassett, C. I. Precipitation and aridity constraints from paleolakes on early Mars. Geology 48, 1189–1193 (2020).
Buhler, P. B., Fassett, C. I., Head, J. W. & Lamb, M. P. Timescales of fluvial activity and intermittency in Milna Crater, Mars. Icarus 241, 130–147 (2014).
Lapôtre, M. G. A. & Ielpi, A. The pace of fluvial meanders on Mars and implications for the western delta deposits of Jezero crater. AGU Adv. 1, e2019AV000141 (2020).
Werner, S. C. & Tanaka, K. L. Redefinition of the crater-density and absolute-age boundaries for the chronostratigraphic system of Mars. Icarus 215, 603–607 (2011).
Guyard, H. et al. New insights into Late Pleistocene glacial and postglacial history of northernmost Ungava (Canada) from Pingualuit crater lake sediments. Quat. Sci. Rev. 30, 3892–3907 (2011).
Wilson, S. A., Howard, A. D., Moore, J. M. & Grant, J. A. A cold-wet middle-latitude environment on Mars during the Hesperian-Amazonian transition: evidence from northern Arabia valleys and paleolakes. J. Geophys. Res. Planets 121, 1667–1694 (2016).
Hargitai, H. I., Gulick, V. C. & Glines, N. H. Paleolakes of northeast hellas: precipitation, groundwater-fed, and fluvial lakes in the Navua-Hadriacus-Ausonia region, Mars. Astrobiology 18, 1435–1459 (2018).
Warren, A. O., Holo, S., Kite, E. S. & Wilson, S. A. Overspilling small craters on a dry Mars: insights from breach erosion modeling. Earth Planet. Sci. Lett. 554, 116671 (2021).
Cabrol, N. A. & Grin, E. A. Overview on the formation of paleolakes and ponds on Mars. Glob. Planet. Change 35, 199–219 (2003).
Zhao, J., Xiao, L. & Glotch, T. D. Paleolakes in the northwest Hellas region, Mars: implications for the regional geologic history and paleoclimate. J. Geophys. Res. Planets 125, e2019JE006196 (2020).
Citron, R. I., Manga, M. & Hemingway, D. J. Timing of oceans on Mars from shoreline deformation. Nature 555, 643–646 (2018).
Malin, M. C. & Edgett, K. S. Evidence for persistent flow and aqueous sedimentation on early Mars. Science 302, 1931–1934 (2003).
Fassett, C. I. & Head, J. W. III. Fluvial sedimentary deposits on Mars: ancient deltas in a crater lake in the Nili Fossae region. Geophys. Res. Lett. 32, GL023456 (2005).
Brown, A. J. et al. Hydrothermal formation of Clay-Carbonate alteration assemblages in the Nili Fossae region of Mars. Earth Planet. Sci. Lett. https://doi.org/10.1016/j.epsl.2010.06.018 (2010).
Bramble, M. S., Goudge, T. A., Milliken, R. E. & Mustard, J. F. Testing the deltaic origin of fan deposits at Bradbury Crater, Mars. Icarus 319, 363–366 (2019).
Mangold, N. et al. Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars. Science 374, 711–717 (2021).
Ansan, V. et al. Stratigraphy, mineralogy, and origin of layered deposits inside Terby crater, Mars. Icarus 211, 273–304 (2011).
Di Achille, G., Hynek, B. M. & Searls, M. L. Positive identification of lake strandlines in Shalbatana Vallis, Mars. Geophys. Res. Lett. 36, GL038854 (2009).
Irwin, R. P. & Zimbelman, J. R. Morphometry of Great Basin pluvial shore landforms: implications for paleolake basins on Mars. J. Geophys. Res. Planets https://doi.org/10.1029/2012JE004046 (2012).
Malin, M. C. & Edgett, K. S. Mars Global Surveyor Mars Orbiter Camera: interplanetary cruise through primary mission. J. Geophys. Res. 106, 23429–23570 (2001).
Milliken, R. E. & Bish, D. L. Sources and sinks of clay minerals on Mars. Phil. Mag. 90, 2293–2308 (2010).
Bristow, T. F. & Milliken, R. E. Terrestrial perspective on authigenic clay mineral production in ancient martian lakes. Clays Clay Miner. 59, 339–358 (2011).
Ehlmann, B. L. et al. Clay minerals in delta deposits and organic preservation potential on Mars. Nat. Geosci. 1, 355–358 (2008).
Poulet, F., Carter, J., Bishop, J. L., Loizeau, D. & Murchie, S. M. Mineral abundances at the final four Curiosity study sites and implications for their formation. Icarus 231, 65–76 (2014).
Grant, J. A. et al. HiRISE imaging of impact megabreccia and sub-meter aqueous strata in Holden crater, Mars. Geology 36, 195–198 (2008).
Horgan, B. H. N., Anderson, R. B., Dromart, G., Amador, E. S. & Rice, M. S. The mineral diversity of Jezero crater: evidence for possible lacustrine carbonates on Mars. Icarus 339, 70211826 (2020).
Carter, J., Poulet, F., Bibring, J. P., Mangold, N. & Murchie, S. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: updated global view. J. Geophys. Res. 118, 831–858 (2013).
Michalski, J. R. et al. Constraints on the crystal-chemistry of Fe/Mg-rich smectitic clays on Mars and links to global alteration trends. Earth Planet. Sci. Lett. 427, 215–225 (2015).
Carter, J. et al. Composition of deltas and alluvial fans on Mars. In 43rd Lunar and Planetary Science Conference 1978 (2012); https://ui.adsabs.harvard.edu/abs/2012LPI....43.1978C/abstract
Ehlmann, B. L. et al. Discovery of alunite in Cross crater, Terra Sirenum, Mars: evidence for acidic, sulfurous waters. Am. Mineral. 101, 1527–1542 (2016).
Tarnas, J. D. et al. Radiolytic H2 production on Noachian Mars: implications for habitability and atmospheric warming. Earth Planet. Sci. Lett. 502, 133–145 (2018).
Grotzinger, J. P. et al. A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale crater, Mars. Science 343, 1242777 (2014).
Deocampo, D. M. Authigenic clay minerals in lacustrine mudstones. GSA Spec. Pap. 515, 49–64 (2015).
Cuadros, J., Michalski, J. R., Dekov, V. & Bishop, J. L. Octahedral chemistry of 2:1 clay minerals and hydroxyl band position in the near-infrared: application to Mars. Am. Mineral. 101, 554–563 (2016).
Panagiotis, M. & C., A. R. Rapid clay mineral formation in Amazon delta sediments: reverse weathering and oceanic elemental cycles. Science 270, 614–617 (1995).
Isson, T. T. & Planavsky, N. J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate. Nature 560, 471–475 (2018).
Tosca, N. J. & McLennan, S. M. Chemical divides and evaporite assemblages on Mars. Earth Planet. Sci. Lett. 241, 21–31 (2006).
Leask, E. K. & Ehlmann, B. L. Evidence for deposition of chloride on Mars from small-volume surface water events into the Late Hesperian-Early Amazonian. AGU Adv. 3, e2021AV000534 (2022).
Cabrol, N. A., Grin, E. A., di Achille, G. & Hynek, B. M. Lakes on Mars (Elsevier, 2010); https://doi.org/10.1016/B978-0-444-52854-4.00008-8
Glotch, T. D. & Rogers, A. D. Evidence for aqueous deposition of hematite- and sulfate-rich light-toned layered deposits in Aureum and Iani Chaos, Mars. J. Geophys. Res. Planets https://doi.org/10.1029/2006JE002863 (2007).
Metz, J. M. et al. Sublacustrine depositional fans in southwest Melas Chasma. J. Geophys. Res. 114, JE003365 (2009).
Wilson, L. & Head, J. W. Tharsis-radial graben systems as the surface manifestation of plume-related dike intrusion complexes: models and implications. J. Geophys. Res. 107, E8 (2002).
Ramirez, R. M. & Craddock, R. A. The geological and climatological case for a warmer and wetter early Mars. Nat. Geosci. 11, 230–237 (2018).
Ramirez, R. M. et al. Warming early Mars with CO2 and H2. Nat. Geosci. 7, 59–63 (2014).
Wordsworth, R. et al. Transient reducing greenhouse warming on early Mars. Geophys. Res. Lett. 44, 665–671 (2017).
Brown, A. J., Viviano, C. E. & Goudge, T. A. Olivine-carbonate mineralogy of the Jezero crater region. J. Geophys. Res. Planets 125, e2019JE006011 (2020).
Zastrow, A. M. & Glotch, T. D. Distinct carbonate lithologies in Jezero crater, Mars. Geophys. Res. Lett. 48, GL092365 (2021).
Rampe, E. B. et al. Mineralogy and geochemistry of sedimentary rocks and eolian sediments in Gale crater, Mars: a review after six Earth years of exploration with Curiosity. Geochemistry 80, 125605 (2020).
Grin, E. A. & Cabrol, N. A. Limnologic analysis of Gusev crater paleolake, Mars. Icarus 130, 461–474 (1997).
Squyres, S. W. et al. Rocks of the Columbia Hills. J. Geophys. Res. 111, JE002562 (2006).
Carter, J. & Poulet, F. Orbital identification of clays and carbonates in Gusev crater. Icarus 219, 250–253 (2012).
Goudge, T. A., Head, J. W., Mustard, J. F. & Fassett, C. I. An analysis of open-basin lake deposits on Mars: evidence for the nature of associated lacustrine deposits and post-lacustrine modification processes. Icarus 219, 211–229 (2012).
Milliken, R. E., Grotzinger, J. P. & Thomson, B. J. Paleoclimate of Mars as captured by the stratigraphic record in Gale crater. Geophys. Res. Lett. 37, GL041870 (2010).
Frydenvang, J. et al. The chemostratigraphy of the Murray formation and role of diagenesis at Vera Rubin ridge in Gale crater, Mars, as observed by the ChemCam instrument. J. Geophys. Res. Planets 125, JE006320 (2020).
Vaniman, D. T. et al. Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars. Science 343, 24324271 (2014).
Palucis, M. C. et al. Sequence and relative timing of large lakes in Gale crater (Mars) after the formation of Mount Sharp. J. Geophys. Res. Planets https://doi.org/10.1002/2015JE004905 (2016).
Rivera-Hernández, F. et al. Grain size variations in the Murray formation: stratigraphic evidence for changing depositional environments in Gale crater, Mars. J. Geophys. Res. Planets 125, e2019JE006230 (2020).
Williams, R. M. E. et al. Martian fluvial conglomerates at Gale crater. Science 340, 1068–1072 (2013).
Jiacheng, L., R., M. J. & Mei-Fu, Z. Intense subaerial weathering of eolian sediments in Gale crater, Mars. Sci. Adv. 7, eabh2687 (2021).
Schon, S. C., Head, J. W. & Fassett, C. I. An overfilled lacustrine system and progradational delta in Jezero crater, Mars: implications for Noachian climate. Planet. Space Sci. 67, 28–45 (2012).
Salvatore, M. R. et al. Bulk mineralogy of the NE Syrtis and Jezero crater regions of Mars derived through thermal infrared spectral analyses. Icarus 301, 76–96 (2018).
Tarnas, J. D. et al. Orbital identification of hydrated silica in Jezero crater, Mars. Geophys. Res. Lett. 46, 12771–12782 (2019).
Salese, F. et al. Estimated minimum life span of the Jezero fluvial delta (Mars). Astrobiology 20, 977–993 (2020).
Mangold, N. et al. Chemical alteration of fine-grained sedimentary rocks at Gale crater. Icarus 321, 619–631 (2019).
Onstott, T. C. et al. Paleo-rock-hosted life on Earth and the search on Mars: a review and strategy for exploration. Astrobiology 19, 1230–1262 (2019).
Irwin, R. P., Howard, A. D., Craddock, R. A. & Moore, J. M. An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development. J. Geophys. Res. 110, JE002460 (2005).
Tarnas, J. D. et al. Earth-like habitable environments in the subsurface of Mars. Astrobiology 21, 741–756 (2021).
Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506 LP–6506511 (2018).
Canfield, D. E., Rosing, M. T. & Bjerrum, C. Early anaerobic metabolisms. Phil. Trans. R. Soc. B 361, 1819–1836 (2006).
Michalski, J. R. et al. The Martian subsurface as a potential window into the origin of life. Nat. Geosci. 11, 21–26 (2018).
Goldblatt, C. & Zahnle, K. J. Faint young Sun paradox remains. Nature 474, E1 (2011).
Davies, N. S. & Gibling, M. R. Cambrian to Devonian evolution of alluvial systems: the sedimentological impact of the earliest land plants. Earth Sci. Rev. 98, 171–200 (2010).
Davies-Colley, R. J. & Smith, D. G. Turbidity suspended sediment, and water clarity: a review. J. Am. Water Resour. Assoc. 37, 1085–1101 (2001).
Crowe, S. A. et al. Deep-water anoxygenic photosythesis in a ferruginous chemocline. Geobiology 12, 322–339 (2014).
Haas, S. et al. Low-light anoxygenic photosynthesis and Fe-S-biogeochemistry in a microbial mat. Front. Microbiol. 9, 858 (2018).
Cuadros, J. Clay minerals interaction with microorganisms: a review. Clay Miner. 52, 235–261 (2017).
Pedreira-Segade, U. et al. How do nucleotides adsorb onto clays? Life 8, 59 (2018).
Hays, L. E. et al. Biosignature preservation and detection in Mars analog environments. Astrobiology 17, 363–400 (2017).
Beatty, J. T. et al. An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc. Natl Acad. Sci. USA 102, 9306–9310 (2005).
Toner, J. D. & Catling, D. C. A carbonate-rich lake solution to the phosphate problem of the origin of life. Proc. Natl Acad. Sci. USA 117, 883–888 (2020).
Stern, J. C. et al. Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the—Curiosity—rover investigations at Gale crater, Mars. Proc. Natl Acad. Sci. USA 112, 4245–4250 (2015).
Laskar, J. et al. Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170, 343–364 (2004).
Flannery, D. T., Summons, R. E. & Walter, M. R. in From Habitability to Life on Mars (eds Cabrol, N. A. et al.) 127–152 (Elsevier, 2018).
Deamer, D. W. & Georgiou, C. D. Hydrothermal conditions and the origin of cellular life. Astrobiology 15, 1091–1095 (2015).
Acknowledgements
J.R.M. was funded by the Hong Kong Research Grants Council General Research Fund Number 17301718 and Collaborative Research Fund (grant number C7004-21GF), and acknowledges support from the CIFAR Earth 4-D programme. T.A.G. acknowledges support from the CIFAR Azrieli Global Scholar programme. S.A.C. acknowledges support from the Natural Sciences and Engineering Research Council of Canada Discovery Grants Program (grant number 0487).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks Elizabeth Rampe and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Michalski, J.R., Goudge, T.A., Crowe, S.A. et al. Geological diversity and microbiological potential of lakes on Mars. Nat Astron 6, 1133–1141 (2022). https://doi.org/10.1038/s41550-022-01743-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41550-022-01743-7
This article is cited by
-
Evolution of the Geological Environment and Exploration for Life on Mars
Journal of Earth Science (2023)
-
Chemical weathering over hundreds of millions of years of greenhouse conditions on Mars
Communications Earth & Environment (2022)