Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Geological diversity and microbiological potential of lakes on Mars

Abstract

Hundreds of ancient lake basins detected on Mars via orbital remote sensing represent rare oases of hydrosphere–atmosphere–lithosphere interactions with great astrobiological potential. These palaeolake basins, and associated lacustrine deposits, could preserve evidence of biogenesis on Mars, and their geology, mineralogy and geochemistry place strong constraints on past climate. Most Martian palaeolakes date to the Noachian (>3.7 Gyr ago (Ga)) and probably lasted ~102–106 years, representing only a small fraction of the ~400 Myr of Noachian time. However, some palaeolakes occurred during the Hesperian (3–3.7 Ga), and it is likely that many shallow thermokarst lakes occurred in the Amazonian (<3 Ga) but left few traces. Noachian lacustrine deposits contain detrital Fe/Mg-rich clay minerals as well as authigenic Fe/Mg carbonates, sulfates, silica, chlorides and clay minerals that potentially preserve the characteristics of the ancient atmosphere and climate. While Martian palaeolakes are undeniably among the top targets for future surface exploration and sample return, many questions surrounding prospects for biogenesis and biological productivity in short-lived lakes and transient warm climates on an otherwise cold planet remain. Martian lakes also provide tremendous comparative value for reconstructing the geology and geobiology of inland waters on the Archaean Earth.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Four categories of lakes identified on Mars.
Fig. 2: Compiled global distribution of lake basins on Mars.
Fig. 3: Size characteristics of lakes on Mars.
Fig. 4: Connecting orbital and surface observations.
Fig. 5: Schematic diagram of geobiological considerations in a Martian lake.
Fig. 6: Conceptual diagram comparing important aspects of the geology of Mars and Earth.

References

  1. Carr, M. H. Water on Mars. Nature 326, 30–35 (1987).

  2. Cabrol, N. A. & Grin, E. A. Distribution, classification, and ages of martian impact crater lakes. Icarus 142, 160–172 (1999).

    ADS  Article  Google Scholar 

  3. Goldspiel, J. M., Squyres, S. W. & Jankowski, D. G. Topography of small martian valleys. Icarus 105, 479–500 (1993).

    ADS  Article  Google Scholar 

  4. Fassett, C. I. & Head, J. W. Valley network-fed, open-basin lakes on Mars: distribution and implications for Noachian surface and subsurface hydrology. Icarus 198, 37–56 (2008).

    ADS  Article  Google Scholar 

  5. Goudge, T. A., Morgan, A. M., Stucky de Quay, G. & Fassett, C. I. The importance of lake breach floods for valley incision on early Mars. Nature 597, 645–649 (2021).

    ADS  Article  Google Scholar 

  6. Goudge, T. A., Aureli, K. L., Head, J. W., Fassett, C. I. & Mustard, J. F. Classification and analysis of candidate impact crater-hosted closed-basin lakes on Mars. Icarus https://doi.org/10.1016/j.icarus.2015.07.026 (2015).

  7. Michalski, J. R. et al. The geology and astrobiology of McLaughlin crater, Mars: an ancient lacustrine basin containing turbidites, mudstones, and serpentinites. J. Geophys. Res. Planets 124, 910–940 (2019).

    ADS  Article  Google Scholar 

  8. Boatwright, B. D. & Head, J. W. Noachian proglacial paleolakes on Mars: regionally recurrent fluvial activity and lake formation within closed-source drainage basin craters. Planet. Sci. J. 3, 38 (2022).

    Article  Google Scholar 

  9. Michalski, J. R. et al. Groundwater activity on Mars and implications for a deep biosphere. Nat. Geosci. 6, 133–138 (2013).

    ADS  Article  Google Scholar 

  10. Newsom, H. E., Brittelle, G. E., Hibbitts, C. A., Crossey, L. J. & Kudo, A. M. Impact crater lakes on Mars. J. Geophys. Res. 101, 14951–14955 (1996).

    ADS  Article  Google Scholar 

  11. Wray, J. J. et al. Columbus crater and other possible groundwater-fed paleolakes of Terra Sirenum, Mars. J. Geophys. Res. Planets https://doi.org/10.1029/2010JE003694 (2011).

  12. Osterloo, M. M., Anderson, F. S., Hamilton, V. E. & Hynek, B. M. Geologic context of proposed chloride-bearing materials on Mars. J. Geophys. Res. Planets 115, JE003613 (2010).

    Article  Google Scholar 

  13. Ehlmann, B. L. et al. Clay minerals in delta deposits and organic preservation potential on Mars. Nat. Geosci. https://doi.org/10.1038/ngeo207 (2008).

  14. Soare, R. J., Osinki, G. R. & Roehm, C. L. Thermokarst lakes and ponds on Mars in the very recent (late Amazonian) past. Earth Planet. Sci. Lett. 272, 382–393 (2008).

    ADS  Article  Google Scholar 

  15. Sejourne, A. et al. Scalloped depressions and small-sized polygons in western Utopia Planitia, Mars: a new formation hypothesis. Planet. Space Sci. 59, 412–422 (2011).

    ADS  Article  Google Scholar 

  16. Warner, N. et al. Late Noachian to Hesperian climate change on Mars: evidence of episodic warming from transient crater lakes near Ares Vallis. J. Geophys. Res. 115, JE003522 (2010).

    Google Scholar 

  17. Orosei, R. et al. Radar evidence of subglacial liquid water on Mars. Science 361, 490–493 (2018).

    ADS  Article  Google Scholar 

  18. Lauro, S. E. et al. Multiple subglacial water bodies below the south pole of Mars unveiled by new MARSIS data. Nat. Astron. 5, 63–70 (2021).

    ADS  Article  Google Scholar 

  19. Bierson, C. J., Tulaczyk, S., Courville, S. W. & Putzig, N. E. Strong MARSIS radar reflections from the base of Martiansouth polar cap may be due to conductive ice or minerals. Geophys. Res. Lett. 48, GL093880 (2021).

    Article  Google Scholar 

  20. Irwin, R. P., Howard, A. D. & Maxwell, T. A. Geomorphology of Ma’adim Vallis, Mars, and associated paleolake basins. J. Geophys. Res. 109, JE002287 (2004).

    Google Scholar 

  21. Michalski, J. R., Dobrea, E. Z. N., Niles, P. B. & Cuadros, J. Ancient hydrothermal seafloor deposits in Eridania basin on Mars. Nat. Commun. 8, 15978 (2017).

    ADS  Article  Google Scholar 

  22. Fassett, C. I. & Head, J. W. Sequence and timing of conditions on early Mars. Icarus 211, 1204–1214 (2011).

    ADS  Article  Google Scholar 

  23. Goudge, T. A., Fassett, C. I., Head, J. W., Mustard, J. F. & Aureli, K. L. Insights into surface runoff on early Mars from paleolake basin morphology and stratigraphy. Geology 44, 419–422 (2016).

    ADS  Article  Google Scholar 

  24. Summons, R. E. et al. Preservation of martian organic and environmental records: final report of the Mars Biosignature Working Group. Astrobiology 11, 157–181 (2011).

    ADS  Article  Google Scholar 

  25. Ruff, S. W., Niles, P. B., Alfano, F. & Clarke, A. B. Evidence for a Noachian-aged ephemeral lake in Gusev crater, Mars. Geology 42, 359–362 (2014).

    ADS  Article  Google Scholar 

  26. Grotzinger, J. P. et al. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science 350, aac7575 (2015).

    ADS  Article  Google Scholar 

  27. Goudge, T. A., Mohrig, D., Cardenas, B. T., Hughes, C. M. & Fassett, C. I. Stratigraphy and paleohydrology of delta channel deposits, Jezero crater, Mars. Icarus https://doi.org/10.1016/j.icarus.2017.09.034 (2018).

  28. Lehner, B. & Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1–22 (2004).

    ADS  Article  Google Scholar 

  29. Downing, J. A. et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 51, 2388–2397 (2006).

    ADS  Article  Google Scholar 

  30. Wetzel, R. G., Limnology: Lake and River Ecosystems (Elsevier, 2001).

  31. Cohen, A. S. Paleolimnology: The History and Evolution of Lake Systems (Oxford Univ. Press, 2003).

  32. Cabrol, N. A. & Grin, E. A. Lakes on Mars (Elsevier, 2010).

  33. Goudge, T. A., Aureli, K. L., Head, J. W., Fassett, C. I. & Mustard, J. F. Classification and analysis of candidate impact crater-hosted closed-basin lakes on Mars. Icarus 260, 346–367 (2015).

    ADS  Article  Google Scholar 

  34. Irwin, R. P., Lewis, K. W., Howard, A. D. & Grant, J. A. Paleohydrology of Eberswalde crater, Mars. Geomorphology 240, 83–101 (2015).

    ADS  Article  Google Scholar 

  35. Mangold, N. et al. The origin and timing of fluvial activity at Eberswalde crater, Mars. Icarus 220, 530–551 (2012).

    ADS  Article  Google Scholar 

  36. Kite, E. S. Geologic constraints on early Mars climate. Space Sci. Rev. 215, 10 (2019).

    ADS  Article  Google Scholar 

  37. Moore, J. M., Howard, A. D., Dietrich, W. E. & Schenk, P. M. Martian layered fluvial deposits: implications for Noachian climate scenarios. Geophys. Res. Lett. 30, GL019002 (2003).

    Google Scholar 

  38. Stucky de Quay, G., Goudge, T. A. & Fassett, C. I. Precipitation and aridity constraints from paleolakes on early Mars. Geology 48, 1189–1193 (2020).

    ADS  Article  Google Scholar 

  39. Buhler, P. B., Fassett, C. I., Head, J. W. & Lamb, M. P. Timescales of fluvial activity and intermittency in Milna Crater, Mars. Icarus 241, 130–147 (2014).

    ADS  Article  Google Scholar 

  40. Lapôtre, M. G. A. & Ielpi, A. The pace of fluvial meanders on Mars and implications for the western delta deposits of Jezero crater. AGU Adv. 1, e2019AV000141 (2020).

    ADS  Article  Google Scholar 

  41. Werner, S. C. & Tanaka, K. L. Redefinition of the crater-density and absolute-age boundaries for the chronostratigraphic system of Mars. Icarus 215, 603–607 (2011).

    ADS  Article  Google Scholar 

  42. Guyard, H. et al. New insights into Late Pleistocene glacial and postglacial history of northernmost Ungava (Canada) from Pingualuit crater lake sediments. Quat. Sci. Rev. 30, 3892–3907 (2011).

    ADS  Article  Google Scholar 

  43. Wilson, S. A., Howard, A. D., Moore, J. M. & Grant, J. A. A cold-wet middle-latitude environment on Mars during the Hesperian-Amazonian transition: evidence from northern Arabia valleys and paleolakes. J. Geophys. Res. Planets 121, 1667–1694 (2016).

    ADS  Article  Google Scholar 

  44. Hargitai, H. I., Gulick, V. C. & Glines, N. H. Paleolakes of northeast hellas: precipitation, groundwater-fed, and fluvial lakes in the Navua-Hadriacus-Ausonia region, Mars. Astrobiology 18, 1435–1459 (2018).

    ADS  Article  Google Scholar 

  45. Warren, A. O., Holo, S., Kite, E. S. & Wilson, S. A. Overspilling small craters on a dry Mars: insights from breach erosion modeling. Earth Planet. Sci. Lett. 554, 116671 (2021).

    Article  Google Scholar 

  46. Cabrol, N. A. & Grin, E. A. Overview on the formation of paleolakes and ponds on Mars. Glob. Planet. Change 35, 199–219 (2003).

    ADS  Article  Google Scholar 

  47. Zhao, J., Xiao, L. & Glotch, T. D. Paleolakes in the northwest Hellas region, Mars: implications for the regional geologic history and paleoclimate. J. Geophys. Res. Planets 125, e2019JE006196 (2020).

    ADS  Article  Google Scholar 

  48. Citron, R. I., Manga, M. & Hemingway, D. J. Timing of oceans on Mars from shoreline deformation. Nature 555, 643–646 (2018).

    ADS  Article  Google Scholar 

  49. Malin, M. C. & Edgett, K. S. Evidence for persistent flow and aqueous sedimentation on early Mars. Science 302, 1931–1934 (2003).

    ADS  Article  Google Scholar 

  50. Fassett, C. I. & Head, J. W. III. Fluvial sedimentary deposits on Mars: ancient deltas in a crater lake in the Nili Fossae region. Geophys. Res. Lett. 32, GL023456 (2005).

    Article  Google Scholar 

  51. Brown, A. J. et al. Hydrothermal formation of Clay-Carbonate alteration assemblages in the Nili Fossae region of Mars. Earth Planet. Sci. Lett. https://doi.org/10.1016/j.epsl.2010.06.018 (2010).

  52. Bramble, M. S., Goudge, T. A., Milliken, R. E. & Mustard, J. F. Testing the deltaic origin of fan deposits at Bradbury Crater, Mars. Icarus 319, 363–366 (2019).

    ADS  Article  Google Scholar 

  53. Mangold, N. et al. Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars. Science 374, 711–717 (2021).

    ADS  Article  Google Scholar 

  54. Ansan, V. et al. Stratigraphy, mineralogy, and origin of layered deposits inside Terby crater, Mars. Icarus 211, 273–304 (2011).

    ADS  Article  Google Scholar 

  55. Di Achille, G., Hynek, B. M. & Searls, M. L. Positive identification of lake strandlines in Shalbatana Vallis, Mars. Geophys. Res. Lett. 36, GL038854 (2009).

    Article  Google Scholar 

  56. Irwin, R. P. & Zimbelman, J. R. Morphometry of Great Basin pluvial shore landforms: implications for paleolake basins on Mars. J. Geophys. Res. Planets https://doi.org/10.1029/2012JE004046 (2012).

  57. Malin, M. C. & Edgett, K. S. Mars Global Surveyor Mars Orbiter Camera: interplanetary cruise through primary mission. J. Geophys. Res. 106, 23429–23570 (2001).

    ADS  Article  Google Scholar 

  58. Milliken, R. E. & Bish, D. L. Sources and sinks of clay minerals on Mars. Phil. Mag. 90, 2293–2308 (2010).

    ADS  Article  Google Scholar 

  59. Bristow, T. F. & Milliken, R. E. Terrestrial perspective on authigenic clay mineral production in ancient martian lakes. Clays Clay Miner. 59, 339–358 (2011).

    ADS  Article  Google Scholar 

  60. Ehlmann, B. L. et al. Clay minerals in delta deposits and organic preservation potential on Mars. Nat. Geosci. 1, 355–358 (2008).

    ADS  Article  Google Scholar 

  61. Poulet, F., Carter, J., Bishop, J. L., Loizeau, D. & Murchie, S. M. Mineral abundances at the final four Curiosity study sites and implications for their formation. Icarus 231, 65–76 (2014).

    ADS  Article  Google Scholar 

  62. Grant, J. A. et al. HiRISE imaging of impact megabreccia and sub-meter aqueous strata in Holden crater, Mars. Geology 36, 195–198 (2008).

    ADS  MathSciNet  Article  Google Scholar 

  63. Horgan, B. H. N., Anderson, R. B., Dromart, G., Amador, E. S. & Rice, M. S. The mineral diversity of Jezero crater: evidence for possible lacustrine carbonates on Mars. Icarus 339, 70211826 (2020).

    Article  Google Scholar 

  64. Carter, J., Poulet, F., Bibring, J. P., Mangold, N. & Murchie, S. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: updated global view. J. Geophys. Res. 118, 831–858 (2013).

    Article  Google Scholar 

  65. Michalski, J. R. et al. Constraints on the crystal-chemistry of Fe/Mg-rich smectitic clays on Mars and links to global alteration trends. Earth Planet. Sci. Lett. 427, 215–225 (2015).

    ADS  Article  Google Scholar 

  66. Carter, J. et al. Composition of deltas and alluvial fans on Mars. In 43rd Lunar and Planetary Science Conference 1978 (2012); https://ui.adsabs.harvard.edu/abs/2012LPI....43.1978C/abstract

  67. Ehlmann, B. L. et al. Discovery of alunite in Cross crater, Terra Sirenum, Mars: evidence for acidic, sulfurous waters. Am. Mineral. 101, 1527–1542 (2016).

    ADS  Article  Google Scholar 

  68. Tarnas, J. D. et al. Radiolytic H2 production on Noachian Mars: implications for habitability and atmospheric warming. Earth Planet. Sci. Lett. 502, 133–145 (2018).

    ADS  Article  Google Scholar 

  69. Grotzinger, J. P. et al. A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale crater, Mars. Science 343, 1242777 (2014).

    Article  Google Scholar 

  70. Deocampo, D. M. Authigenic clay minerals in lacustrine mudstones. GSA Spec. Pap. 515, 49–64 (2015).

    Google Scholar 

  71. Cuadros, J., Michalski, J. R., Dekov, V. & Bishop, J. L. Octahedral chemistry of 2:1 clay minerals and hydroxyl band position in the near-infrared: application to Mars. Am. Mineral. 101, 554–563 (2016).

    ADS  Article  Google Scholar 

  72. Panagiotis, M. & C., A. R. Rapid clay mineral formation in Amazon delta sediments: reverse weathering and oceanic elemental cycles. Science 270, 614–617 (1995).

    Article  Google Scholar 

  73. Isson, T. T. & Planavsky, N. J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate. Nature 560, 471–475 (2018).

    ADS  Article  Google Scholar 

  74. Tosca, N. J. & McLennan, S. M. Chemical divides and evaporite assemblages on Mars. Earth Planet. Sci. Lett. 241, 21–31 (2006).

    ADS  Article  Google Scholar 

  75. Leask, E. K. & Ehlmann, B. L. Evidence for deposition of chloride on Mars from small-volume surface water events into the Late Hesperian-Early Amazonian. AGU Adv. 3, e2021AV000534 (2022).

    ADS  Article  Google Scholar 

  76. Cabrol, N. A., Grin, E. A., di Achille, G. & Hynek, B. M. Lakes on Mars (Elsevier, 2010); https://doi.org/10.1016/B978-0-444-52854-4.00008-8

  77. Glotch, T. D. & Rogers, A. D. Evidence for aqueous deposition of hematite- and sulfate-rich light-toned layered deposits in Aureum and Iani Chaos, Mars. J. Geophys. Res. Planets https://doi.org/10.1029/2006JE002863 (2007).

  78. Metz, J. M. et al. Sublacustrine depositional fans in southwest Melas Chasma. J. Geophys. Res. 114, JE003365 (2009).

    Google Scholar 

  79. Wilson, L. & Head, J. W. Tharsis-radial graben systems as the surface manifestation of plume-related dike intrusion complexes: models and implications. J. Geophys. Res. 107, E8 (2002).

    Google Scholar 

  80. Ramirez, R. M. & Craddock, R. A. The geological and climatological case for a warmer and wetter early Mars. Nat. Geosci. 11, 230–237 (2018).

    ADS  Article  Google Scholar 

  81. Ramirez, R. M. et al. Warming early Mars with CO2 and H2. Nat. Geosci. 7, 59–63 (2014).

    ADS  Article  Google Scholar 

  82. Wordsworth, R. et al. Transient reducing greenhouse warming on early Mars. Geophys. Res. Lett. 44, 665–671 (2017).

    ADS  Article  Google Scholar 

  83. Brown, A. J., Viviano, C. E. & Goudge, T. A. Olivine-carbonate mineralogy of the Jezero crater region. J. Geophys. Res. Planets 125, e2019JE006011 (2020).

    ADS  Article  Google Scholar 

  84. Zastrow, A. M. & Glotch, T. D. Distinct carbonate lithologies in Jezero crater, Mars. Geophys. Res. Lett. 48, GL092365 (2021).

    Article  Google Scholar 

  85. Rampe, E. B. et al. Mineralogy and geochemistry of sedimentary rocks and eolian sediments in Gale crater, Mars: a review after six Earth years of exploration with Curiosity. Geochemistry 80, 125605 (2020).

    Article  Google Scholar 

  86. Grin, E. A. & Cabrol, N. A. Limnologic analysis of Gusev crater paleolake, Mars. Icarus 130, 461–474 (1997).

    ADS  Article  Google Scholar 

  87. Squyres, S. W. et al. Rocks of the Columbia Hills. J. Geophys. Res. 111, JE002562 (2006).

    Google Scholar 

  88. Carter, J. & Poulet, F. Orbital identification of clays and carbonates in Gusev crater. Icarus 219, 250–253 (2012).

    ADS  Article  Google Scholar 

  89. Goudge, T. A., Head, J. W., Mustard, J. F. & Fassett, C. I. An analysis of open-basin lake deposits on Mars: evidence for the nature of associated lacustrine deposits and post-lacustrine modification processes. Icarus 219, 211–229 (2012).

    ADS  Article  Google Scholar 

  90. Milliken, R. E., Grotzinger, J. P. & Thomson, B. J. Paleoclimate of Mars as captured by the stratigraphic record in Gale crater. Geophys. Res. Lett. 37, GL041870 (2010).

    Article  Google Scholar 

  91. Frydenvang, J. et al. The chemostratigraphy of the Murray formation and role of diagenesis at Vera Rubin ridge in Gale crater, Mars, as observed by the ChemCam instrument. J. Geophys. Res. Planets 125, JE006320 (2020).

    Article  Google Scholar 

  92. Vaniman, D. T. et al. Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars. Science 343, 24324271 (2014).

    Article  Google Scholar 

  93. Palucis, M. C. et al. Sequence and relative timing of large lakes in Gale crater (Mars) after the formation of Mount Sharp. J. Geophys. Res. Planets https://doi.org/10.1002/2015JE004905 (2016).

  94. Rivera-Hernández, F. et al. Grain size variations in the Murray formation: stratigraphic evidence for changing depositional environments in Gale crater, Mars. J. Geophys. Res. Planets 125, e2019JE006230 (2020).

    ADS  Article  Google Scholar 

  95. Williams, R. M. E. et al. Martian fluvial conglomerates at Gale crater. Science 340, 1068–1072 (2013).

    ADS  Article  Google Scholar 

  96. Jiacheng, L., R., M. J. & Mei-Fu, Z. Intense subaerial weathering of eolian sediments in Gale crater, Mars. Sci. Adv. 7, eabh2687 (2021).

    Article  Google Scholar 

  97. Schon, S. C., Head, J. W. & Fassett, C. I. An overfilled lacustrine system and progradational delta in Jezero crater, Mars: implications for Noachian climate. Planet. Space Sci. 67, 28–45 (2012).

    ADS  Article  Google Scholar 

  98. Salvatore, M. R. et al. Bulk mineralogy of the NE Syrtis and Jezero crater regions of Mars derived through thermal infrared spectral analyses. Icarus 301, 76–96 (2018).

    ADS  Article  Google Scholar 

  99. Tarnas, J. D. et al. Orbital identification of hydrated silica in Jezero crater, Mars. Geophys. Res. Lett. 46, 12771–12782 (2019).

    ADS  Article  Google Scholar 

  100. Salese, F. et al. Estimated minimum life span of the Jezero fluvial delta (Mars). Astrobiology 20, 977–993 (2020).

    ADS  Article  Google Scholar 

  101. Mangold, N. et al. Chemical alteration of fine-grained sedimentary rocks at Gale crater. Icarus 321, 619–631 (2019).

    ADS  Article  Google Scholar 

  102. Onstott, T. C. et al. Paleo-rock-hosted life on Earth and the search on Mars: a review and strategy for exploration. Astrobiology 19, 1230–1262 (2019).

    ADS  Article  Google Scholar 

  103. Irwin, R. P., Howard, A. D., Craddock, R. A. & Moore, J. M. An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development. J. Geophys. Res. 110, JE002460 (2005).

    Google Scholar 

  104. Tarnas, J. D. et al. Earth-like habitable environments in the subsurface of Mars. Astrobiology 21, 741–756 (2021).

    ADS  Article  Google Scholar 

  105. Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506 LP–6506511 (2018).

    Article  Google Scholar 

  106. Canfield, D. E., Rosing, M. T. & Bjerrum, C. Early anaerobic metabolisms. Phil. Trans. R. Soc. B 361, 1819–1836 (2006).

    Article  Google Scholar 

  107. Michalski, J. R. et al. The Martian subsurface as a potential window into the origin of life. Nat. Geosci. 11, 21–26 (2018).

    ADS  Article  Google Scholar 

  108. Goldblatt, C. & Zahnle, K. J. Faint young Sun paradox remains. Nature 474, E1 (2011).

    ADS  Article  Google Scholar 

  109. Davies, N. S. & Gibling, M. R. Cambrian to Devonian evolution of alluvial systems: the sedimentological impact of the earliest land plants. Earth Sci. Rev. 98, 171–200 (2010).

    ADS  Article  Google Scholar 

  110. Davies-Colley, R. J. & Smith, D. G. Turbidity suspended sediment, and water clarity: a review. J. Am. Water Resour. Assoc. 37, 1085–1101 (2001).

  111. Crowe, S. A. et al. Deep-water anoxygenic photosythesis in a ferruginous chemocline. Geobiology 12, 322–339 (2014).

    Article  Google Scholar 

  112. Haas, S. et al. Low-light anoxygenic photosynthesis and Fe-S-biogeochemistry in a microbial mat. Front. Microbiol. 9, 858 (2018).

    Article  Google Scholar 

  113. Cuadros, J. Clay minerals interaction with microorganisms: a review. Clay Miner. 52, 235–261 (2017).

    ADS  Article  Google Scholar 

  114. Pedreira-Segade, U. et al. How do nucleotides adsorb onto clays? Life 8, 59 (2018).

    Article  Google Scholar 

  115. Hays, L. E. et al. Biosignature preservation and detection in Mars analog environments. Astrobiology 17, 363–400 (2017).

    ADS  Article  Google Scholar 

  116. Beatty, J. T. et al. An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc. Natl Acad. Sci. USA 102, 9306–9310 (2005).

    ADS  Article  Google Scholar 

  117. Toner, J. D. & Catling, D. C. A carbonate-rich lake solution to the phosphate problem of the origin of life. Proc. Natl Acad. Sci. USA 117, 883–888 (2020).

    ADS  Article  Google Scholar 

  118. Stern, J. C. et al. Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the—Curiosity—rover investigations at Gale crater, Mars. Proc. Natl Acad. Sci. USA 112, 4245–4250 (2015).

    ADS  Article  Google Scholar 

  119. Laskar, J. et al. Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170, 343–364 (2004).

    ADS  Article  Google Scholar 

  120. Flannery, D. T., Summons, R. E. & Walter, M. R. in From Habitability to Life on Mars (eds Cabrol, N. A. et al.) 127–152 (Elsevier, 2018).

  121. Deamer, D. W. & Georgiou, C. D. Hydrothermal conditions and the origin of cellular life. Astrobiology 15, 1091–1095 (2015).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

J.R.M. was funded by the Hong Kong Research Grants Council General Research Fund Number 17301718 and Collaborative Research Fund (grant number C7004-21GF), and acknowledges support from the CIFAR Earth 4-D programme. T.A.G. acknowledges support from the CIFAR Azrieli Global Scholar programme. S.A.C. acknowledges support from the Natural Sciences and Engineering Research Council of Canada Discovery Grants Program (grant number 0487).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph R. Michalski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Elizabeth Rampe and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Michalski, J.R., Goudge, T.A., Crowe, S.A. et al. Geological diversity and microbiological potential of lakes on Mars. Nat Astron (2022). https://doi.org/10.1038/s41550-022-01743-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-022-01743-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing