Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An X-ray-quiet black hole born with a negligible kick in a massive binary within the Large Magellanic Cloud

Abstract

Stellar-mass black holes are the final remnants of stars born with more than 15 solar masses. Billions are expected to reside in the Local Group, yet only a few are known, mostly detected through X-rays emitted as they accrete material from a companion star. Here, we report on VFTS 243: a massive X-ray-faint binary in the Large Magellanic Cloud. With an orbital period of 10.4 d, it comprises an O-type star of 25 solar masses and an unseen companion of at least nine solar masses. Our spectral analysis excludes a non-degenerate companion at a 5σ confidence level. The minimum companion mass implies that it is a black hole. No other X-ray-quiet black hole is unambiguously known outside our Galaxy. The (near-)circular orbit and kinematics of VFTS 243 imply that the collapse of the progenitor into a black hole was associated with little or no ejected material or black-hole kick. Identifying such unique binaries substantially impacts the predicted rates of gravitational-wave detections and properties of core-collapse supernovae across the cosmos.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Visualization of the O + BH binary VFTS 243.
Fig. 2: Dynamical spectra of VFTS 243.
Fig. 3: χreduced2(K1, K2) m He i λ4,471 line (equation (1)).
Fig. 4: Disentangled spectra of VFTS 243.
Fig. 5: Results from simulated spectra of mock binaries.

Similar content being viewed by others

Data availability

The VFTS and TMBM spectra are available in the ESO archives (archive.eso.org/cms.html). The input files of our stellar evolution model (Supplementary Information) are available at https://zenodo.org/record/6514646. The OGLE light curve is available for download at https://cdsarc.u-strasbg.fr/ftp/vizier.submit/OGLE_VFTS243. Any other processed materials are available from the corresponding author upon reasonable request.

Code availability

The fd3 tool used for Fourier disentangling is available online (http://sail.zpf.fer.hr/fdbinary/). The shift-and-add Python implementation used here is available from the corresponding author upon reasonable request. We refer the reader to the CMFGEN (http://kookaburra.phyast.pitt.edu/hillier/web/CMFGEN.htm), PoWR (www.astro.physik.uni-potsdam.de/PoWR), FASTWIND (fys.kuleuven.be/ster/research-projects/equation-folder/codes-folder/fastwind) and PHOEBE (http://phoebe-project.org/) webpages for access and availability policies.

References

  1. The LIGO Scientific Collaboration et al. GWTC-3: compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run. Preprint at https://arxiv.org/abs/2111.03606 (2021).

  2. Mandel, I. & Broekgaarden, F. S. Rates of compact object coalescences. Living Rev. Relativ. 25, 1 (2022).

    Article  ADS  Google Scholar 

  3. Mapelli, M., Bouffanais, Y., Santoliquido, F., Arca Sedda, M. & Artale, M. C. The cosmic evolution of binary black holes in young, globular, and nuclear star clusters: rates, masses, spins, and mixing fractions. Mon. Not. R. Astron. Soc. 511, 5797–5816 (2022).

    Article  ADS  Google Scholar 

  4. Israelian, G., Rebolo, R., Basri, G., Casares, J. & Martín, E. L. Evidence of a supernova origin for the black hole in the system GRO J1655-40. Nature 401, 142–144 (1999).

    Article  ADS  Google Scholar 

  5. Mirabel, I. F. & Rodrigues, I. Formation of a black hole in the dark. Science 300, 1119–1121 (2003).

    Article  ADS  Google Scholar 

  6. Gal-Yam, A. et al. A WC/WO star exploding within an expanding carbon–oxygen–neon nebula. Nature 601, 201–204 (2022).

    Article  ADS  Google Scholar 

  7. Belczynski, K., Kalogera, V. & Bulik, T. A comprehensive study of binary compact objects as gravitational wave sources: evolutionary channels, rates, and physical properties. Astrophys. J. 572, 407–431 (2002).

    Article  ADS  Google Scholar 

  8. Marchant, P., Langer, N., Podsiadlowski, P., Tauris, T. M. & Moriya, T. J. A new route towards merging massive black holes. Astron. Astrophys. 588, A50 (2016).

    Article  ADS  Google Scholar 

  9. Langer, N. et al. γ Cas stars: normal Be stars with discs impacted by the wind of a helium-star companion? Astron. Astrophys. 633, A40 (2020).

    Article  Google Scholar 

  10. Geier, S. et al. Hot subdwarf stars in close-up view. I. Rotational properties of subdwarf B stars in close binary systems and nature of their unseen companions. Astron. Astrophys. 519, A25 (2010).

    Article  Google Scholar 

  11. Giesers, B. et al. A detached stellar-mass black hole candidate in the globular cluster NGC 3201. Mon. Not. R. Astron. Soc. 475, L15–L19 (2018).

    Article  ADS  Google Scholar 

  12. Thompson, T. A. et al. A noninteracting low-mass black hole–giant star binary system. Science 366, 637–640 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  13. Liu, J. et al. A wide star–black-hole binary system from radial-velocity measurements. Nature 575, 618–621 (2019).

    Article  ADS  Google Scholar 

  14. Rivinius, T., Baade, D., Hadrava, P., Heida, M. & Klement, R. A naked-eye triple system with a nonaccreting black hole in the inner binary. Astron. Astrophys. 637, L3 (2020).

    Article  ADS  Google Scholar 

  15. Lennon, D. J. et al. The VLT-FLAMES survey of massive stars. NGC2004#115: a triple system hosting a possible short period B+BH binary. Preprint at https://arxiv.org/abs/2111.12173 (2021).

  16. Saracino, S. et al. A black hole detected in the young massive LMC cluster NGC 1850. Mon. Not. R. Astron. Soc. 511, 2914–2924 (2022).

    Article  ADS  Google Scholar 

  17. Abdul-Masih, M. et al. On the signature of a 70-solar-mass black hole in LB-1. Nature 580, E11–E15 (2020).

    Article  Google Scholar 

  18. Shenar, T. et al. The ‘hidden’ companion in LB-1 unveiled by spectral disentangling. Astron. Astrophys. 639, L6 (2020).

    Article  ADS  Google Scholar 

  19. El-Badry, K., Burdge, K. B. & Mróz, P. NGC 2004 #115: a black hole imposter containing three luminous stars. Mon. Not. R. Astron. Soc. 511, 3089–3100 (2022).

    Article  ADS  Google Scholar 

  20. Bodensteiner, J. et al. Is HR 6819 a triple system containing a black hole? An alternative explanation. Astron. Astrophys. 641, A43 (2020).

  21. El-Badry, K. & Burdge, K. B. NGC 1850 BH1 is another stripped-star binary masquerading as a black hole. Mon. Not. R. Astron. Soc. 511, 24–29 (2022).

    Article  ADS  Google Scholar 

  22. Casares, J. et al. A Be-type star with a black-hole companion. Nature 505, 378–381 (2014).

    Article  ADS  Google Scholar 

  23. Gomez, S. & Grindlay, J. E. Optical analysis and modeling of HD96670, a new black hole x-ray binary candidate. Astrophys. J. 913, 48 (2021).

    Article  ADS  Google Scholar 

  24. Almeida, L. A. et al. The Tarantula Massive Binary Monitoring. I. Observational campaign and OB-type spectroscopic binaries. Astron. Astrophys. 598, A84 (2017).

    Article  Google Scholar 

  25. Evans, C. J. et al. The VLT-FLAMES Tarantula Survey. I. Introduction and observational overview. Astron. Astrophys. 530, A108 (2011).

    Article  Google Scholar 

  26. Udalski, A., Szymański, M. K. & Szymański, G. OGLE-IV: fourth phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015).

    ADS  Google Scholar 

  27. Hadrava, P. Orbital elements of multiple spectroscopic stars. Astron. Astrophys. Suppl. 114, 393 (1995).

    ADS  Google Scholar 

  28. El-Badry, K. et al. Unicorns and giraffes in the binary zoo: stripped giants with subgiant companions. Mon. Not. R. Astron. Soc. 512, 5620–5641 (2022).

    Article  ADS  Google Scholar 

  29. Irrgang, A., Geier, S., Kreuzer, S., Pelisoli, I. & Heber, U. A stripped helium star in the potential black hole binary LB-1. Astron. Astrophys. 633, L5 (2020).

    Article  ADS  Google Scholar 

  30. Bondi, H. On spherically symmetrical accretion. Mon. Not. R. Astron. Soc. 112, 195–204 (1952).

    Article  ADS  MathSciNet  Google Scholar 

  31. Rodriguez, J. et al. GS 2000+25: the least luminous black hole x-ray binary. Astrophys. J. 889, 58 (2020).

    Article  ADS  Google Scholar 

  32. Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. observational appearance. Astron. Astrophys. 24, 337–355 (1973).

    ADS  Google Scholar 

  33. Shapiro, S. L. & Teukolsky, S. A. Black Holes, White Dwarfs and Neutron Stars: the Physics of Compact Objects (1986).

  34. Sen, K. et al. X-ray emission from BH+O star binaries expected to descend from the observed galactic WR+O binaries. Astron. Astrophys. 652, A138 (2021).

    Article  Google Scholar 

  35. Lovegrove, E. & Woosley, S. E. Very low energy supernovae from neutrino mass loss. Astrophys. J. 769, 109 (2013).

    Article  ADS  Google Scholar 

  36. Miller-Jones, J. C. A. et al. Cygnus X-1 contains a 21-solar mass black hole—implications for massive star winds. Science 371, 1046–1049 (2021).

    Article  ADS  Google Scholar 

  37. Sukhbold, T., Ertl, T., Woosley, S. E., Brown, J. M. & Janka, H. T. Core-collapse supernovae from 9 to 120 solar masses based on neutrino-powered explosions. Astrophys. J. 821, 38 (2016).

    Article  ADS  Google Scholar 

  38. Gaia Collaboration et al. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 649, A1 (2021).

  39. Breivik, K., Chatterjee, S. & Larson, S. L. Revealing black holes with Gaia. Astrophys. J. Lett. 850, L13 (2017).

    Article  ADS  Google Scholar 

  40. Janssens, S. et al. Uncovering astrometric black hole binaries with massive main-sequence companions with Gaia. Astron. Astrophys. 658, A129 (2022).

    Article  Google Scholar 

  41. Gomel, R., Faigler, S., Mazeh, T. & Pawlak, M. Search for dormant black holes in ellipsoidal variables—III. The OGLE BULGE short-period sample. Mon. Not. R. Astron. Soc. 504, 5907–5918 (2021).

    Article  ADS  Google Scholar 

  42. Schneider, F. R. N. et al. The VLT-FLAMES Tarantula Survey. XXIX. Massive star formation in the local 30 Doradus starburst. Astron. Astrophys. 618, A73 (2018).

    Article  Google Scholar 

  43. Schneider, F. R. N. et al. BONNSAI: a Bayesian tool for comparing stars with stellar evolution models. Astron. Astrophys. 570, A66 (2014).

    Article  Google Scholar 

  44. Brott, I. et al. Rotating massive main-sequence stars. I. Grids of evolutionary models and isochrones. Astron. Astrophys. 530, A115 (2011).

    Article  Google Scholar 

  45. Köhler, K. et al. The evolution of rotating very massive stars with LMC composition. Astron. Astrophys. 573, A71 (2015).

    Article  Google Scholar 

  46. Hillier, D. J. & Miller, D. L. The treatment of non-LTE line blanketing in spherically expanding outflows. Astrophys. J. 496, 407–427 (1998).

    Article  ADS  Google Scholar 

  47. Marchenko, S. V., Moffat, A. F. J. & Eenens, P. R. J. The Wolf–Rayet binary WR 141 (WN5O + O5 V–III) revisited. Publ. Astron. Soc. Pac. 110, 1416–1422 (1998).

    Article  ADS  Google Scholar 

  48. Shenar, T. et al. The Wolf–Rayet binaries of the nitrogen sequence in the Large Magellanic Cloud. Spectroscopy, orbital analysis, formation, and evolution. Astron. Astrophys. 627, A151 (2019).

    Article  Google Scholar 

  49. Quintero, E. A., Eenens, P. & Rauw, G. The massive binary system 9 Sgr revisited: new insights into disentangling methods. Astron. Nachr. 341, 628–637 (2020).

    Article  ADS  Google Scholar 

  50. Abdul-Masih, M. et al. Spectroscopic patch model for massive stars using PHOEBE II and FASTWIND. Astron. Astrophys. 636, A59 (2020).

    Article  Google Scholar 

  51. Hubeny, I. & Lanz, T. Non-LTE line-blanketed model atmospheres of hot stars. I. Hybrid complete linearization/accelerated lambda iteration method. Astrophys. J. 439, 875–904 (1995).

    Article  ADS  Google Scholar 

  52. Lanz, T. & Hubeny, I. A grid of NLTE line-blanketed model atmospheres of early B-type stars. Astrophys. J. Suppl. 169, 83–104 (2007).

    Article  ADS  Google Scholar 

  53. Hamann, W. R. & Gräfener, G. A temperature correction method for expanding atmospheres. Astron. Astrophys. 410, 993–1000 (2003).

    Article  ADS  MATH  Google Scholar 

  54. Sander, A. et al. On the consistent treatment of the quasi-hydrostatic layers in hot star atmospheres. Astron. Astrophys. 577, A13 (2015).

    Article  Google Scholar 

  55. Prša, A. & Zwitter, T. A computational guide to physics of eclipsing binaries. I. Demonstrations and perspectives. Astrophys. J. 628, 426–438 (2005).

    Article  ADS  Google Scholar 

  56. Evans, C. J. et al. The VLT-FLAMES Tarantula Survey. XVIII. Classifications and radial velocities of the B-type stars. Astron. Astrophys. 574, A13 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This research has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (T.S. and H.S., grant agreement 772225: MULTIPLES). T.S. acknowledges support from the European Union’s Horizon 2020 programme under Marie Skłodowska-Curie grant agreement 101024605. This work is based on observations collected at the ESO under programme IDs 182.D-0222, 090.D-0323 and 092.D-0136. L.M. thanks the ESA and the Belgian Federal Science Policy Office (BELSPO) for their support in the framework of the PRODEX programme. P. Marchant acknowledges support from FWO junior postdoctoral fellowship 12ZY520N. We thank J. Hillier for making the CMFGEN code available. C.H. acknowledges support from the KU Leuven Research Council (grant C16/17/007: MAESTRO). P.A.C. acknowledges support from UK Science and Technology Facilities Council research grant ST/V000853/1. V.H.-B. acknowledges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) through grant RGPIN-2020-05990. M. Gieles acknowledges support from the Ministry of Science and Innovation through a Europa Excelencia grant (EUR2020-112157). The PoWR code, as well as the associated post-processing and visualization tool WRplot, has been developed under the guidance of W.-R. Hamann with substantial contributions from L. Koesterke, G. Gräfener, A. Sander, T.S. and other co-workers and students. This work has received funding from the ERC under the European Union’s Horizon 2020 research and innovation programme (grant agreement 945806). It is also supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2181/1-390900948 (the Heidelberg STRUCTURES Excellence Cluster). S.T. acknowledges support from the Netherlands Research Council NWO (grants VENI 639.041.645, VIDI 203.061). A.H. and D.J.L. acknowledge support by the Spanish MCI through grant PGC-2018-0913741-B-C22 and the Severo Ochoa Programme through CEX2019-000920-S. J.M.A. acknowledges support from the Spanish Government Ministerio de Ciencia, Innovación y Universidades through grant PGC2018-095-049-B-C22. We thank I. Mayo and S. Pinilla for their work on the visualization of VFTS 243. We acknowledge the Cambridge Astronomical Survey Unit and ESO for the background image in Fig. 1. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France.

Author information

Authors and Affiliations

Authors

Contributions

T.S, H.S., L.M. and M.F. developed the analysis methodology. T.S. identified the target, performed the disentangling and simulations, derived the radial velocities, analysed the spectrum with PoWR and wrote the manuscript. H.S. led the TMBM observing campaign, prepared the observations and, together with L.A.A., performed data reduction, variability and orbital analysis of the TMBM sample and contributed to the interpretation. L.M. analysed the spectrum with CMFGEN. K.E.-B. performed the light-curve analysis, investigated the spectra independently and produced mock simulations for blind testing. P.M. and N.L. contributed to the interpretation of the evolutionary status and X-ray properties of the system. C.H. analysed the spectrum with FASTWIND. M.F. performed an independent test with Fourier disentangling. K.S. contributed to the discussion of X-ray production. D.J.L. contributed to the assessment of the light ratios of hypothetical main-sequence stars and investigated the spectra independently. J.M.A. provided an independent measure of the stellar parameters and luminosity. P.M., A.P., F.R.N.S. and M.G. contributed to the computation of synchronization and circularization timescales. All other authors contributed to acquisition of the data and discussion of the results and commented on the manuscript.

Corresponding author

Correspondence to Tomer Shenar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Sebastian Gomez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–10, Figs. 1–16 and Tables 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shenar, T., Sana, H., Mahy, L. et al. An X-ray-quiet black hole born with a negligible kick in a massive binary within the Large Magellanic Cloud. Nat Astron 6, 1085–1092 (2022). https://doi.org/10.1038/s41550-022-01730-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01730-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing