Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Insights into the collapse and expansion of molecular clouds in outflows from observable pressure gradients

Abstract

The jets launched by actively accreting black holes can generate massive outflows in galaxies, which could suppress or enhance star formation by rarefying or compressing clouds of molecular gas. To study the stability of such jet-impacted clouds, we performed astrochemical, thermally balanced, radiative transfer modelling of the CO and HCO+ emission of the galaxy IC 5063. We found that jet-related mechanical heating and cosmic rays contribute to the molecular gas heating rate and could even individually sustain it. Clouds excited by these mechanisms have temperatures and densities reflecting an order-of-magnitude increase in their internal pressure. Variations of their external pressure, deduced from [S ii] and [N ii] ionized gas emission, further reveal that some clouds are undergoing rarefaction and others compression. Our work shows a new viewpoint on plausible links between galactic outflows and star formation conditions: that of observable pressure gradients. It also emphasizes the role of cosmic rays in contributing to these gradients.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Observational maps used for the spatially resolved SLED fitting.
Fig. 2: Spatially resolved CO and HCO+ SLED fitting results.
Fig. 3: Pressure maps.
Fig. 4: Optical gas properties derived from VLT MUSE data.

Data availability

All ALMA raw data can be retrieved from the ALMA archive using the project identifiers 2015.1.00420.S, 2015.1.00467.S, 2012.1.00435.S and 2016.1.01279.S. The line images and all other data presented in Fig. 1 can be obtained in .fits format from Figshare at https://doi.org/10.6084/m9.figshare.19742125. Fully reduced data cubes can be provided from the corresponding author upon reasonable request. The pipeline-processed MUSE data can be directly downloaded from the ESO data portal using the project identifier 60.A-9339.

Code availability

The RT code 3D-PDR is a publicly available radiative transfer code that can be obtained at https://uclchem.github.io/3dpdr.

References

  1. Fluetsch, A. et al. Cold molecular outflows in the local Universe. Mon. Not. R. Astron. Soc. 483, 4586–4614 (2019).

    ADS  Google Scholar 

  2. Veilleux, S., Maiolino, R., Bolatto, A. & Aalto, S. Cool outflows in galaxies and their implications. Astron. Astrophys. Rev. 28, 2 (2020).

    Article  ADS  Google Scholar 

  3. Bolatto, A. D., Wolfire, M. & Leroy, A. K. The CO-to-H2 conversion factor. Annu. Rev. Astron. Astrophys. 51, 207–268 (2013).

    Article  ADS  Google Scholar 

  4. Dasyra, K. M. et al. ALMA reveals optically thin, highly excited CO gas in the jet-driven winds of the galaxy IC 5063. Astron. Astrophys. 595, L7 (2016).

    Article  ADS  Google Scholar 

  5. Aalto, S. et al. A precessing molecular jet signaling an obscured, growing supermassive black hole in NGC 1377? Astron. Astrophys. 590, 73 (2016).

    Article  Google Scholar 

  6. Croft, S. et al. Minkowski’s object: a starburst triggered by a radio jet, revisited. Astrophys. J. 647, 1040–1055 (2006).

    Article  ADS  Google Scholar 

  7. Crockett, R. M. et al. Triggered star formation in the inner filament of Centaurus A. Mon. Not. R. Astron. Soc. 421, 1603–1623 (2012).

    Article  ADS  Google Scholar 

  8. Maiolino, R. et al. Star formation inside a galactic outflow. Nature 544, 202–206 (2017).

    Article  ADS  Google Scholar 

  9. Dasyra, K. M. et al. A radio jet drives a molecular and atomic gas outflow in multiple regions within one square kiloparsec of the nucleus of the nearby galaxy IC5063. Astrophys. J. 815, 34 (2015).

    Article  ADS  Google Scholar 

  10. Oosterloo, T. et al. A strong jet-cloud interaction in the Seyfert galaxy IC 5063: VLBI observations. Astrophys. J. 119, 2085–2091 (2000).

    Google Scholar 

  11. Morganti, R., Oosterloo, T., Oonk, R., Frieswijk, W. & Tadhunter, C. The fast molecular outflow in the Seyfert galaxy IC 5063 as seen by ALMA. Astron. Astrophys. 580, A1 (2015).

    Article  ADS  Google Scholar 

  12. Fabian, A. C. et al. A very deep Chandra observation of the Perseus cluster: shocks, ripples and conduction. Mon. Not. R. Astron. Soc. 366, 417–428 (2006).

    Article  ADS  Google Scholar 

  13. Ponti, G. et al. An X-ray chimney extending hundreds of parsecs above and below the Galactic Centre. Nature 567, 347–350 (2019).

    Article  ADS  Google Scholar 

  14. Hopkins, P. F. & Elvis, M. Quasar feedback: more bang for your buck. Mon. Not. R. Astron. Soc. 401, 7–14 (2010).

    Article  ADS  Google Scholar 

  15. Zubovas, K. & King, A. Galaxy-wide outflows: cold gas and star formation at high speeds. Mon. Not. R. Astron. Soc. 439, 400–406 (2014).

    Article  ADS  Google Scholar 

  16. Dannen, R., Progra, D., Waters, T. & Dyda, S. Clumpy AGN outflows due to thermal instability. Astrophys. J. 893, L34 (2020).

    Article  ADS  Google Scholar 

  17. Wagner, A. Y., Bicknell, G. V., Umemura, M., Sutherland, R. S. & Silk, J. Galaxy-scale AGN feedback—theory. Astron. Nachr. 337, 167–174 (2016).

    Article  ADS  Google Scholar 

  18. Ruszkowski, M., Karen Yang, H.-Y. & Zweibel, E. Global simulations of galactic winds including cosmic ray streaming. Astrophys. J. 834, 2 (2017).

    Article  Google Scholar 

  19. Klessen, R. S. & Glover, S. C. O. in Star Formation in Galaxy Evolution: Connecting Numerical Models to Reality Saas-Fee Advanced Course book series Vol. 43 (eds Revaz, Y. et al.) 85–249 (Springer, 2016).

  20. Papadopoulos, P. P. A cosmic-ray-dominated interstellar medium in ultra luminous infrared galaxies: new initial conditions for star formation. Astrophys. J. 720, 226–232 (2010).

    Article  ADS  Google Scholar 

  21. Padovani, M., Ivlev, A. V., Galli, D. & Caselli, P. Cosmic-ray ionisation in circumstellar discs. Astron. Astrophys. 614, 111 (2018).

    Article  ADS  Google Scholar 

  22. Gaches, B. A. L., Offner, S. S. R. & Bisbas, T. G. The astrochemical impact of cosmic rays in protoclusters. I. Molecular cloud chemistry. Astrophys. J. 878, 105 (2019).

    Article  ADS  Google Scholar 

  23. Girichidis, P. et al. Launching cosmic-ray-driven outflows from the magnetized interstellar medium. Astrophys. J. 816, L19 (2016).

    Article  ADS  Google Scholar 

  24. Bisbas, T. G. et al. 3D-PDR: a new three-dimensional astrochemistry code for treating photodissociation regions. Mon. Not. R. Astron. Soc. 427, 2100–2118 (2012).

    Article  ADS  Google Scholar 

  25. Dubois, Y., Devriendt, J., Slyz, A. & Teyssier, R. Self-regulated growth of supermassive black holes by a dual jet-heating active galactic nucleus feedback mechanism: methods, tests and implications for cosmological simulations. Mon. Not. R. Astron. Soc. 420, 2662–2683 (2012).

    Article  ADS  Google Scholar 

  26. Gaibler, V., Khochfar, S., Krause, M. & Silk, J. Jet-induced star formation in gas-rich galaxies. Mon. Not. R. Astron. Soc. 425, 438–449 (2012).

    Article  ADS  Google Scholar 

  27. Wagner, A. Y., Bicknell, G. V. & Umemura, M. Driving outflows with relativistic jets and the dependence of active galactic nucleus feedback efficiency on interstellar medium inhomogeneity. Astrophys. J. 757, 136 (2012).

    Article  ADS  Google Scholar 

  28. Draine, B. T. Photoelectric heating of interstellar gas. Astrophys. J. Suppl. Ser. 36, 595–619 (1978).

    Article  ADS  Google Scholar 

  29. Oosterloo, T. et al. Properties of the molecular gas in the fast outflow in the Seyfert galaxy IC 5063. Astron. Astrophys. 608, 38 (2017).

    Article  Google Scholar 

  30. Kennicutt, R. C. Star formation in galaxies along the Hubble sequence. Annu. Rev. Astron. Astrophys. 36, 189–231 (1998).

    Article  ADS  Google Scholar 

  31. Schuppan, F., Becker, J. K., Black, J. H. & Casanova, S. Cosmic-ray-induced ionization in molecular clouds adjacent to supernova remnants. Tracing the hadronic origin of GeV gamma radiation. Astron. Astrophys. 541, A126 (2012).

    Article  ADS  Google Scholar 

  32. Richings, A. J. & Faucher-Giguére, C.-A. The origin of fast molecular outflows in quasars: molecule formation in AGN-driven galactic winds. Mon. Not. R. Astron. Soc. 474, 3673–3699 (2018).

    Article  ADS  Google Scholar 

  33. Bisbas, T. G., Papadopoulos, P. P. & Viti, S. Effective destruction of CO by cosmic rays: implications for tracing H2 gas in the Universe. Astrophys. J. 803, 37 (2015).

    Article  ADS  Google Scholar 

  34. Meijerink, R. & Spaans, M. Diagnostics of irradiated gas in galaxy nuclei, I. A FUV and X-ray dominated region code. Astron. Astrophys. 436, 397–409 (2005).

    Article  ADS  Google Scholar 

  35. Travascio, A. et al. AGN–host interaction in IC 5063. I. Large-scale X-ray morphology and spectral analysis. Astrophys. J. 921, 129 (2021).

    Article  ADS  Google Scholar 

  36. Maloney, P. R., Hollenbach, D. J. & Tielens, A. G. G. M. X-ray irradiated molecular gas. I. Physical processes and general results. Astrophys. J. 466, 561–584 (1996).

    Article  ADS  Google Scholar 

  37. Dessauges-Zavadsky, M. et al. Molecular clouds in the Cosmic Snake normal star-forming galaxy 8 billion years ago. Nat. Astron. 3, 1115–1121 (2019).

    Article  ADS  Google Scholar 

  38. Luridiana, V., Morisset, C. & Shaw, R. PyNeb: a new tool for analyzing emission lines I. Code description and validation of results. Astron. Astrophys. 573, A42–56 (2015).

    Article  ADS  Google Scholar 

  39. Pradhan, A. K. & Zhang, H. L. New excitation rates and line ratios for [Fe ii]. Astrophys. J. 409, L77–79 (1993).

    Article  ADS  Google Scholar 

  40. van der Tak, F. F. S., Black, J. H., Schöier, F. L., Jansen, D. J. & van Dishoeck, E. F. A computer program for fast non-LTE analysis of interstellar line spectra. With diagnostic plots to interpret observed line intensity ratios. Astron. Astrophys. 468, 627–635 (2007).

    Article  ADS  Google Scholar 

  41. McElroy, D. et al. The UMIST Database For Astrochemistry 2012. Astron. Astrophys. 550, A36 (2013).

    Article  Google Scholar 

  42. Cardelli, J. A., Meyer, D. M., Jura, M. & Savage, B. D. The abundance of interstellar carbon. Astrophys. J. 467, 334–340 (1996).

    Article  ADS  Google Scholar 

  43. Cartledge, S. I. B. et al. The homogeneity of interstellar oxygen in the Galactic Disk. Astrophys. J. 613, 1037–1048 (2004).

    Article  ADS  Google Scholar 

  44. Schöier, F. L., van der Tak, F. F. S., van Dishoeck, E. F. & Black, J. H. An atomic and molecular database for analysis of submillimetre line observations. Astron. Astrophys. 432, 369–379 (2005).

    Article  ADS  Google Scholar 

  45. Marino, A. et al. Nearby early-type galaxies with ionized gas: the UV emission from GALEX observations. Mon. Not. R. Astron. Soc. 411, 311–331 (2011).

    Article  ADS  Google Scholar 

  46. Bisbas, T. G., Schruba, A. & van Dishoeck, E. F. Simulating the atomic and molecular content of molecular clouds using probability distributions of physical parameters. Mon. Not. R. Astron. Soc. 485, 3097–3111 (2019).

    ADS  Google Scholar 

  47. Cummings, A. C. et al. Galactic cosmic rays in the local interstellar medium: Voyager 1 observations and model results. Astrophys. J. 831, 18–39 (2016).

    Article  ADS  Google Scholar 

  48. González-Alfonso, E. et al. Outflowing OH+ in Markarian 231: the ionization rate of the molecular gas. Astrophys. J. 857, 66 (2018).

    Article  ADS  Google Scholar 

  49. van Dishoeck, E. F. & Black, J. H. Comprehensive models of diffuse interstellar clouds: physical conditions and molecular abundances. Astrophys. J. Suppl. Ser. 62, 109–145 (1986).

    Article  ADS  Google Scholar 

  50. McCall, B. J. et al. An enhanced cosmic-ray flux towards ζ Persei inferred from a laboratory study of the H3+–e recombination rate. Nature 422, 500–502 (2003).

    Article  ADS  Google Scholar 

  51. Dalgarno, A. The galactic cosmic ray ionization rate. Proc. Natl Acad. Sci. USA 103, 12269–12273 (2006).

    Article  ADS  Google Scholar 

  52. Neufeld, D. A. et al. Herschel/HIFI observations of interstellar OH+ and H2O+ towards W49N: a probe of diffuse clouds with a small molecular fraction. Astron. Astrophys. 521, L10 (2010).

    Article  ADS  Google Scholar 

  53. Indriolo, N. et al. Herschel survey of galactic OH+, H2O+, and H3O+: probing the molecular hydrogen fraction and cosmic-ray ionization rate. Astrophys. J. 800, 40 (2015).

    Article  ADS  Google Scholar 

  54. Oka, T. et al. Hot and diffuse clouds near the Galactic Center probed by metastable H3+. Astrophys. J. 632, 882–893 (2005).

    Article  ADS  Google Scholar 

  55. Goto, M. et al. Absorption line survey of H3+ toward the Galactic Center sources. II. Eight infrared sources within 30 pc of the Galactic Center. Astrophys. J. 688, 306–319 (2008).

    Article  ADS  Google Scholar 

  56. Loenen, A. F., Spaans, M., Baan, W. & Meijerink, R. Mechanical feedback in the molecular ISM of luminous IR galaxies. Astron. Astrophys. 488, L5–L8 (2008).

    Article  ADS  Google Scholar 

  57. Heckman, T. M., Armus, L. & Miley, G. K. On the nature and implications of starburst-driven galactic superwinds. Astrophys. J. 74, 833–868 (1990).

    Article  Google Scholar 

  58. Weingartner, J. C. & Draine, B. T. Dust grain-size distributions and extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud. Astrophys. J. 548, 296–309 (2001).

    Article  ADS  Google Scholar 

  59. Röllig, M. et al. A photon dominated region code comparison study. Astron. Astrophys. 467, 187–206 (2007).

    Article  ADS  Google Scholar 

  60. Glover, S. C. O. et al. Modelling CO formation in the turbulent interstellar medium. Mon. Not. R. Astron. Soc. 404, 2–29 (2010).

    ADS  Google Scholar 

  61. Van Loo, S., Butler, M. J. & Tan, J. C. Kiloparsec-scale simulations of star formation in disk galaxies. I. The unmagnetized and zero-feedback limit. Astrophys. J. 764, 36 (2013).

    Article  ADS  Google Scholar 

  62. Safranek-Shrader, C. et al. Chemistry and radiative shielding in star-forming galactic discs. Mon. Not. R. Astron. Soc. 465, 885–905 (2017).

    Article  ADS  Google Scholar 

  63. Seifried, D. et al. SILCC-zoom: the dynamic and chemical evolution of molecular clouds. Mon. Not. R. Astron. Soc. 472, 4797–4818 (2017).

    Article  ADS  Google Scholar 

  64. Smith, R. J., Glover, S. C. O., Clark, P. C., Klessen, R. S. & Springel, V. CO-dark gas and molecular filaments in Milky Way-type galaxies. Mon. Not. R. Astron. Soc. 441, 1628–1645 (2014).

    Article  ADS  Google Scholar 

  65. Viti, S. et al. Molecular line emission in NGC 1068 imaged with ALMA. II. The chemistry of the dense molecular gas. Astron. Astrophys. 570, A28 (2014).

    Article  Google Scholar 

  66. Venturi, G. et al. MAGNUM survey: compact jets causing large turmoil in galaxies. Astron. Astrophys. 648, 17 (2021).

    Article  Google Scholar 

  67. Osterbrock, D. E., Ferland, G.J. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (Univ. Science Books, 2006).

  68. Cardelli, J. A., Clayton, G. C. & Mathis, J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245–256 (1989).

    Article  ADS  Google Scholar 

  69. Kewley, L. J. et al. Theoretical ISM pressure and electron density diagnostics for local and high-redshift galaxies. Astrophys. J. 880, 16–40 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

K.M.D., G.F.P. and T.G.B. acknowledge financial support by the Hellenic Foundation for Research and Innovation (HFRI), under the first call for the creation of research groups by postdoctoral researchers that was launched by the General Secretariat For Research and Innovation (project number 1882, PI K.M.D.). G.F.P. also acknowledges support for this research by the International Max-Planck Research School for Astronomy and Astrophysics at the University of Bonn and Cologne. T.G.B. further acknowledges support from Deutsche Forschungsgemeinschaft (DFG grant No. 424563772, T.G.B.). Financial support by the Spanish Ministry of Science and Innovation and the European Union—NextGenerationEU through the Recovery and Resilience Facility project ICTS-MRR-2021-03-CEFCA is acknowledged for J.A.F.-O. This paper makes use of the ALMA data with identifiers 2012.1.00435.S, 2015.1.00420.S, 2015.1.00467.S and 2016.1.01279.S. ALMA is a partnership of the ESO (representing its member states), National Science Foundation (United States) and National Institute of Natural Sciences (NINS; Japan), together with the National Research Council (NRC; Canada), National Science Council (NSC) and Academia Sinica Institute of Astronomy and Astrophysics (ASIAA; Taiwan), and Korea Astronomy and Space Science Institute (KASI; Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, Associated Universities Inc. (AUI)/National Radio Astronomy Observatory (NRAO) and National Astronomical Observatory of Japan (NAOJ).

Author information

Authors and Affiliations

Authors

Contributions

K.M.D. led the project, prepared the HFRI grant proposal, reduced the ALMA and SINFONI data and led their interpretation and write-up. G.F.P. wrote and ran the codes for the spatially resolved CO and HCO+ SLED modelling and benchmarked 3D-PDR and RADEX. T.G.B., an author of 3D-PDR, provided the appropriate grids following astrochemical and radiative transfer calculations for the different gas-excitation sources. F.C. led the ALMA proposal providing one of the datasets and contributed to the data interpretation. J.A.F.-O. assisted with the fitting of the optical data.

Corresponding author

Correspondence to Kalliopi M. Dasyra.

Ethics declarations

Competing interests

The authors financed by HFRI grant 1882 (K.M.D., G.F.P., T.G.B.) for this project declare the existence of a financial/non-financial competing interest (radiative transfer modelling of some common datasets) with ERC grant 320745.

Peer review

Peer review information

Nature Astronomy thanks Roberto Maiolino and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 SLED models.

Top left: CO SLED results for characteristic regions. The SLEDs are shown as velocity-integrated line fluxes as a function of the rotational number J of the upper energy level. Mechanical plus CR heating models are shown in purple, mechanical heating models are shown in orange, and CR heating models are shown in blue. Top right panels: \({{{{\rm{T}}}}}_{{{{\rm{kin}}}}}-{n}_{{{{{\rm{H}}}}}_{2}}\) grid and results for each model. Bottom left: Corresponding Ntot and \({n}_{{{{{\rm{H}}}}}_{2}}\) solutions plotted over the input grid \({N}_{{{{\rm{tot}}}}}-{n}_{{{{{\rm{H}}}}}_{2}}\) projection. The cyan curve depicts a relation for stable clouds46 suggested by hydrodynamic simulations (see Methods for more information). Shaded areas indicate the areas occupied by virialized clouds (see equation (1)): the blue area is for Tkin=20 K and 0 < vturb < 1 km s−1, the purple area is for Tkin=100 K and 0 < vturb < 1 km s−1. Orange, blue, and purple points correspond to mechanical, CR, and combined heating model results, respectively. Other bottom panels: \({N}_{{{{\rm{CO}}}}}-{n}_{{{{{\rm{H}}}}}_{2}}\) grid projection for all models. The initial grids and the grids trimmed for dynamical considerations are shown in light and dark grey, respectively in all pertinent panels.

Extended Data Fig. 2 Spatially-resolved SLED fitting results for the mechanical heating model.

In this model, Γm is variable and ζCR=10−16 s−1. The quantities shown are the heating rate (total, mechanical, and FUV), the molecular gas kinetic temperature and volume density (top panels), and the cloud internal pressure, the CO column density along the line of sight, the CO beam filling factor, the CO(1-0) optical depth, and XCO (bottom panels).

Extended Data Fig. 3 Spatially-resolved SLED fitting results for the CR heating model.

In this model, ζCR is variable and Γm=0. The quantities shown are similar to those in Extended Data Fig. 2.

Extended Data Fig. 4 Predictions of the CO(7-6)/CI(2-1) flux ratio.

This ratio can be used as a diagnostic between mechanical and CR heating.

Extended Data Fig. 5 Optical line diagnostics of ionized gas conditions.

[Fe II] and [S II] flux ratios used as density diagnostics (left and center) and [N II] flux ratio used as temperature diagnostic (right) as obtained by PyNeb38.

Extended Data Fig. 6 Gas properties derived from NIR VLT SINFONI data.

Left: Temperature based on the H2 (1-0) S(1) and S(3) line fluxes. The highest Tkin values are close to regions of high turbulence perpendicular to the jet, associated with it9,66. Right: Density based on the [Fe II] 1.533 and 1.644 μm line fluxes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dasyra, K.M., Paraschos, G.F., Bisbas, T.G. et al. Insights into the collapse and expansion of molecular clouds in outflows from observable pressure gradients. Nat Astron 6, 1077–1084 (2022). https://doi.org/10.1038/s41550-022-01725-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01725-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing