Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Diverse metallicities of Fermi bubble clouds indicate dual origins in the disk and halo

Abstract

The Galactic Centre is surrounded by two giant plasma lobes known as the Fermi bubbles, extending ~10 kpc both above and below the Galactic plane. Spectroscopic observations of Fermi bubble directions at radio, ultraviolet and optical wavelengths have detected multi-phase gas clouds thought to be embedded within the bubbles, referred to as Fermi bubble high-velocity clouds (FB HVCs). Although these clouds have kinematics that can be modelled by a biconical nuclear wind launched from the Galactic Centre, their exact origin is unknown because there has so far been little information on their heavy metal abundances (metallicities). Here we show that FB HVCs have a wide range of metallicities from <20% of solar to ~320% of solar, based on a metallicity survey of twelve FB HVCs. These metallicities challenge the previously accepted tenet that all FB HVCs are launched from the Galactic Centre into the Fermi bubbles with solar or supersolar metallicities. Instead, we suggest that FB HVCs originate in both the Milky Way’s disk and halo. As such, some of these clouds may characterize the circumgalactic medium that the Fermi bubbles expand into, rather than material carried outwards by the nuclear wind, changing the canonical picture of FB HVCs. More broadly, these results reveal that nuclear outflows from spiral galaxies can operate by sweeping up gas in their haloes while simultaneously removing gas from their disks.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Map of metallicity measurements.
Fig. 2: UV absorption and H i emission profiles used for metallicity measurements.

Similar content being viewed by others

Data availability

The HST/COS datasets for all sources used in this paper are available in MAST at https://doi.org/10.17909/zxzh-4x54 (ref. 66), including HST Program IDs 1533, 7345, 8096, 9410, 11741, 12603, 13448 and 15339, and FUSE Program IDs A108, C149, D157 and P107. The GBT raw datasets are publicly available at the NRAO archive at https://data.nrao.edu; GBT Programs for all sources in this paper with GBT data are GBT14B-299, GBT15B-359, GBT16B-422, GBT17B-015, GBT18A-221, GBT20A-253 and GBT20B-444. Data from GBT20B-444 will be available via the NRAO archive after the proprietary period ends on 9 July 2022. Green Bank 140 ft data used to calculate the H i column density limit for PG 1522+101 can be requested at https://help.nrao.edu/. LAB data used to calculate the H i column density limit for J1509-0702 are publicly available at https://www.astro.uni-bonn.de/hisurvey/AllSky_profiles. Fully reduced data are available from the corresponding author on reasonable request.

Code availability

The GBTIDL, VPFIT, and CLOUDY software are publicly available. The GBTIDL package for GBT data reduction and analysis can be downloaded from https://gbtidl.nrao.edu/downloads.shtml. The VPFIT package for fitting Voigt profiles to absorption data can be found at https://people.ast.cam.ac.uk/~rfc/. The CLOUDY cloud-modelling code is available at https://gitlab.nublado.org/cloudy/cloudy/-/wikis/DownloadLinks.

References

  1. Guo, F. & Mathews, W. G. The Fermi bubbles. I. Possible evidence for recent AGN jet activity in the galaxy. Astrophys. J. 756, 181 (2012).

    Article  ADS  Google Scholar 

  2. Mou, G., Yuan, F., Bu, D., Sun, M. & Su, M. Fermi bubbles inflated by winds launched from the hot accretion flow in SGR A*. Astrophys. J. 790, 109 (2014).

    Article  ADS  Google Scholar 

  3. Miller, M. J. & Bregman, J. N. The interaction of the Fermi bubbles with the Milky Way’s hot gas halo. Astrophys. J. 829, 9 (2016).

    Article  ADS  Google Scholar 

  4. Predehl, P., Sunyaev, R. & Becker, W. Detection of large-scale X-ray bubbles in the Milky Way halo. Nature 588, 227–231 (2020).

    Article  ADS  Google Scholar 

  5. Bland-Hawthorn, J., Maloney, P. R., Sutherland, R. S. & Madsen, G. J. Fossil imprint of a powerful flare at the galactic center along the Magellanic Stream. Astrophys. J. 778, 58 (2013).

    Article  ADS  Google Scholar 

  6. Bland-Hawthorn, J. et al. The large-scale ionization cones in the galaxy. Astrophys. J. 886, 45 (2019).

    Article  ADS  Google Scholar 

  7. Fox, A. J. et al. Kinematics of the Magellanic Stream and implications for its ionization. Astrophys. J. 897, 23 (2020).

    Article  ADS  Google Scholar 

  8. Crocker, R. M., Bicknell, G. V., Taylor, A. M. & Carretti, E. A unified model of the Fermi bubbles, microwave haze, and polarized radio lobes: reverse shocks in the galactic center’s giant outflows. Astrophys. J. 808, 107 (2015).

    Article  ADS  Google Scholar 

  9. Sarkar, K. C., Nath, B. B. & Sharma, P. Multiwavelength features of Fermi bubbles as signatures of a galactic wind. Mon. Not. R. Astron. Soc. 453, 3827–3838 (2015).

    Article  ADS  Google Scholar 

  10. Su, M., Slatyer, T. R. & Finkbeiner, D. P. Giant gamma-ray bubbles from FERMI-LAT: active galactic nucleus activity or bipolar galactic wind? Astrophys. J. 724, 1044–1082 (2010).

    Article  ADS  Google Scholar 

  11. Dobler, G., Finkbeiner, D. P., Cholis, I., Slatyer, T. & Weiner, N. The Fermi haze: a gamma-ray counterpart to the microwave haze. Astrophys. J. 717, 825–842 (2010).

    Article  ADS  Google Scholar 

  12. Ackermann, M. et al. The spectrum and morphology of the Fermi bubbbles. Astrophys. J. 793, 64 (2014).

    Article  ADS  Google Scholar 

  13. Bland-Hawthorn, J. & Cohen, M. The large-scale bipolar wind in the galactic center. Astrophys. J. 582, 246–256 (2003).

    Article  ADS  Google Scholar 

  14. Dobler, G. & Finkbeiner, D. P. Extended anomalous foreground emission in the WMAP three-year data. Astrophys. J. 680, 1222–1234 (2008).

    Article  ADS  Google Scholar 

  15. Carretti, E. et al. Giant magnetized outflows from the centre of the Milky Way. Nature 493, 66–69 (2013).

    Article  ADS  Google Scholar 

  16. Fox, A. J. et al. Probing the Fermi bubbles in ultraviolet absorption: a spectroscopic signature of the Milky Way’s biconical nuclear outflow. Astrophys. J. 799, L7 (2015).

    Article  ADS  Google Scholar 

  17. Bordoloi, R. et al. Mapping the nuclear outflow of the Milky Way: studying the kinematics and spatial extent of the northern Fermi Bubble. Astrophys. J. 834, 191 (2017).

    Article  ADS  Google Scholar 

  18. Savage, B. D. et al. Probing the outflowing multiphase gas ~ 1 kpc below the galactic center. Astrophys. J. Suppl. Ser. 232, 25 (2017).

    Article  ADS  Google Scholar 

  19. Karim, M. T. et al. Probing the southern Fermi bubble in ultraviolet absorption using distant AGNs. Astrophys. J. 860, 98 (2018).

    Article  ADS  Google Scholar 

  20. Ashley, T. et al. Mapping outflowing gas in the Fermi bubbles: a UV absorption survey of the galactic nuclear wind. Astrophys. J. 898, 128 (2020).

    Article  ADS  Google Scholar 

  21. McClure-Griffiths, N. M. et al. Atomic hydrogen in a galactic center outflow. Astrophys. J. 770, L4 (2013).

    Article  ADS  Google Scholar 

  22. Di Teodoro, E. M. et al. Blowing in the Milky Way wind: neutral hydrogen clouds tracing the galactic nuclear outflow. Astrophys. J. 855, 33 (2018).

    Article  ADS  Google Scholar 

  23. Lockman, F. J., Di Teodoro, E. M. & McClure-Griffiths, N. M. Observation of acceleration of H i clouds within the Fermi bubbles. Astrophys. J. 888, 51 (2020).

    Article  ADS  Google Scholar 

  24. Di Teodoro, E. M., McClure-Griffiths, N. M., Lockman, F. J. & Armillotta, L. Cold gas in the Milky Way’s nuclear wind. Nature 584, 364–367 (2020).

    Article  ADS  Google Scholar 

  25. Lockman, F. J. & McClure-Griffiths, N. M. Tracing the Milky Way nuclear wind with 21 cm atomic hydrogen emission. Astrophys. J. 826, 215 (2016).

    Article  ADS  Google Scholar 

  26. McCourt, M., O’Leary, R. M., Madigan, A.-M. & Quataert, E. Magnetized gas clouds can survive acceleration by a hot wind. Mon. Not. R. Astron. Soc. 449, 2–7 (2015).

    Article  ADS  Google Scholar 

  27. Scannapieco, E. & Brüggen, M. The launching of cold clouds by galaxy outflows. I. Hydrodynamic interactions with radiative cooling. Astrophys. J. 805, 158 (2015).

    Article  ADS  Google Scholar 

  28. Schneider, E. E. & Robertson, B. E. Hydrodynamical coupling of mass and momentum in multiphase galactic winds. Astrophys. J. 834, 144 (2017).

    Article  ADS  Google Scholar 

  29. Zhang, D., Thompson, T. A., Quataert, E. & Murray, N. Entrainment in trouble: cool cloud acceleration and destruction in hot supernova-driven galactic winds. Mon. Not. R. Astron. Soc. 468, 4801–4814 (2017).

    Article  ADS  Google Scholar 

  30. Wakker, B. P. et al. Accretion of low-metallicity gas by the Milky Way. Nature 402, 388–390 (1999).

    Article  ADS  Google Scholar 

  31. Richter, P. et al. The diversity of high- and intermediate-velocity clouds: Complex C versus IV Arch. Astrophys. J. 559, 318–325 (2001).

    Article  ADS  Google Scholar 

  32. Fox, A. J. et al. Highly ionized gas surrounding high-velocity cloud Complex C. Astrophys. J. 602, 738–759 (2004).

    Article  ADS  Google Scholar 

  33. Keeney, B. A. et al. Does the Milky Way produce a nuclear galactic wind? Astrophys. J. 646, 951–964 (2006).

    Article  ADS  Google Scholar 

  34. Zech, W. F., Lehner, N., Howk, J. C., Dixon, W. V. D. & Brown, T. M. The high-velocity gas toward Messier 5: tracing feedback flows in the inner galaxy. Astrophys. J. 679, 460–480 (2008).

    Article  ADS  Google Scholar 

  35. Jenkins, E. B. A unified representation of gas-phase element depletions in the interstellar medium. Astrophys. J. 700, 1299–1348 (2009).

    Article  ADS  Google Scholar 

  36. Savage, B. D. & Sembach, K. R. Interstellar abundances from absorption-line observations with the Hubble Space Telescope. Annu. Rev. Astron. Astrophys. 34, 279–329 (1996).

    Article  ADS  Google Scholar 

  37. Kataoka, J. et al. SUZAKU observations of the diffuse X-ray emission across the Fermi bubbles’ edges. Astrophys. J. 779, 57 (2013).

    Article  ADS  Google Scholar 

  38. Afflerbach, A., Churchwell, E. & Werner, M. W. Galactic abundance gradients from infrared fine-structure lines in compact H ii regions. Astrophys. J. 478, 190–205 (1997).

    Article  ADS  Google Scholar 

  39. Rolleston, W. R. J., Smartt, S. J., Dufton, P. L. & Ryans, R. S. I. The galactic metallicity gradient. Astron. Astrophys. 363, 537–554 (2000).

    ADS  Google Scholar 

  40. Gritton, J. A., Shelton, R. L. & Kwak, K. Mixing between high velocity clouds and the galactic halo. Astrophys. J. 795, 99 (2014).

    Article  ADS  Google Scholar 

  41. Gronke, M. & Oh, S. P. The growth and entrainment of cold gas in a hot wind. Mon. Not. R. Astron. Soc. Lett. 480, L111–L115 (2018).

    Article  ADS  Google Scholar 

  42. Miller, M. J., Hodges-Kluck, E. J. & Bregman, J. N. The Milky Way’s hot gas kinematics: signatures in current and future O vii absorption line observations. Astrophys. J. 818, 112 (2016).

    Article  ADS  Google Scholar 

  43. Henley, D. B., Gritton, J. A. & Shelton, R. L. The effect of mixing on the observed metallicity of the Smith Cloud. Astrophys. J. 837, 82 (2017).

    Article  ADS  Google Scholar 

  44. Armillotta, L., Fraternali, F. & Marinacci, F. Efficiency of gas cooling and accretion at the disc–corona interface. Mon. Not. R. Astron. Soc. 462, 4157–4170 (2016).

    Article  ADS  Google Scholar 

  45. Marasco, A., Fraternali, F. & Binney, J. J. Supernova-driven gas accretion in the Milky Way. Mon. Not. R. Astron. Soc. 419, 1107–1120 (2011).

    Article  ADS  Google Scholar 

  46. Schneider, E. E., Ostriker, E. C., Robertson, B. E. & Thompson, T. A. The physical nature of starburst-driven galactic outflows. Astrophys. J. 895, 43 (2020).

    Article  ADS  Google Scholar 

  47. Birnboim, Y. & Dekel, A. Virial shocks in galactic haloes? Mon. Not. R. Astron. Soc. 345, 349–364 (2003).

    Article  ADS  Google Scholar 

  48. Cattaneo, A. & Teyssier, R. AGN self-regulation in cooling flow clusters. Mon. Not. R. Astron. Soc. 376, 1547–1556 (2007).

    Article  ADS  Google Scholar 

  49. Beckmann, R. S. et al. Cosmic evolution of stellar quenching by AGN feedback: clues from the horizon-AGN simulation. Mon. Not. R. Astron. Soc. 472, 949–965 (2017).

    Article  ADS  Google Scholar 

  50. Monroe, T. R. et al. The UV-bright quasar survey (UVQS): DR1. Astron. J. 152, 25 (2016).

    Article  ADS  Google Scholar 

  51. Boothroyd, A. I. et al. Accurate galactic 21-cm H i measurements with the NRAO Green Bank Telescope. Astron. Astrophys. 536, A81 (2011).

    Article  Google Scholar 

  52. Fox, A. J. et al. Chemical abundances in the leading arm of the Magellanic Stream. Astrophys. J. 854, 142 (2018).

    Article  ADS  Google Scholar 

  53. Kalberla, P. M. W. et al. The Leiden/Argentine/Bonn (LAB) survey of galactic HI: final data release of the combined LDS and IAR surveys with improved stray-radiation corrections. Astron. Astrophys. 440, 775–782 (2005).

    Article  ADS  Google Scholar 

  54. Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

    Article  ADS  Google Scholar 

  55. Ferland, G. J. et al. The 2017 release cloudy. Rev. Mex. Astron. Astr. 53, 385–438 (2017).

    ADS  Google Scholar 

  56. Bland-Hawthorn, J. & Maloney, P. R. The escape of ionizing photons from the galaxy. Astrophys. J. Lett. 510, L33–L36 (1999).

    Article  ADS  Google Scholar 

  57. Fox, A. J. et al. Multiphase high-velocity clouds toward HE 0226-4110 and PG 0953+414. Astrophys. J. 630, 332–354 (2005).

    Article  ADS  Google Scholar 

  58. Fox, A. J. et al. The COS/UVES absorption survey of the Magellanic Stream. III. Ionization, total mass, and inflow rate onto the Milky Way. Astrophys. J. 787, 147 (2014).

    Article  ADS  Google Scholar 

  59. Indriolo, N., Geballe, T. R., Oka, T. & McCall, B. J. H3+ in diffuse interstellar clouds: a tracer for the cosmic-ray ionization rate. Astrophys. J. 671, 1736–1747 (2007).

    Article  ADS  Google Scholar 

  60. Chatzikos, M. et al. Implications of coronal line emission in NGC 4696*. Mon. Not. R. Astron. Soc. 446, 1234–1244 (2015).

    Article  ADS  Google Scholar 

  61. Collins, J. A., Shull, J. M. & Giroux, M. L. Highly ionized high-velocity clouds: hot intergalactic medium or galactic halo? Astrophys. J. 623, 196–212 (2005).

    Article  ADS  Google Scholar 

  62. Richter, P., Charlton, J. C., Fangano, A. P. M., Bekhti, N. B. & Masiero, J. R. A population of weak metal-line absorbers surrounding the Milky Way. Astrophys. J. 695, 1631–1647 (2009).

    Article  ADS  Google Scholar 

  63. Tripp, T. M. et al. The hidden mass and large spatial extent of a post-starburst galaxy outflow. Science 334, 952–955 (2011).

    Article  ADS  Google Scholar 

  64. Fox, A. J. et al. On the metallicity and origin of the Smith high-velocity cloud. Astrophys. J. 816, L11 (2016).

    Article  ADS  Google Scholar 

  65. Collins, J. A., Shull, J. M. & Giroux, M. L. Highly ionized high-velocity clouds toward PKS 2155-304 and Markarian 509. Astrophys. J. 605, 216–229 (2004).

    Article  ADS  Google Scholar 

  66. Ashley, T. Data for diverse metallicities of Fermi Bubble Clouds.... MAST https://doi.org/10.17909/zxzh-4x54 (2022).

  67. Wakker, B. P. Distribution and origin of high-velocity clouds. II. Statistical analysis of the whole-sky survey. Astron. Astrophys. 250, 499 (1991).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Bland-Hawthorn for valuable discussions on ionization from the Seyfert flare event. Support for T.A. through HST programme 15339 was provided by NASA through grants from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract number NAS 5-26555. The Green Bank Observatory is a facility of the National Science Foundation, operated under a cooperative agreement by Associated Universities, Inc. The GBT data presented in this paper were obtained under Program numbers GBT14B-299, GBT15B-359, GBT16B-422, GBT17B-015, GBT18A-221, GBT20A-253 and GBT20B-444.

Author information

Authors and Affiliations

Authors

Contributions

T.A. led the investigation, including the sample curation, UV and radio measurements, analysis and writing. A.J.F. led the project conceptualization and management, is the PI of the HST programme that funded the research and contributed directly to the writing of the paper. F.H.C. performed the CLOUDY modelling, contributed directly to the writing of the paper and prepared Extended Data Fig. 7. F.J.L. reduced and analysed the GBT data and contributed directly to the writing of the paper. R.B. provided the 1H1613-097 GBT data and its data reduction. B.P.W. provided the data reduction for the UV data. E.B.J. provided an interpretation of the cloud destruction and survival. T.K. prepared Fig. 2 and Supplementary Fig. 2. All authors reviewed the manuscript and contributed to the editing of the manuscript and discussion of the results’ interpretation and implications.

Corresponding author

Correspondence to Trisha Ashley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Full Metallicity Measurements.

Xi represents the UV-detected ion used for metallicity calculations and v0 UV is the FB HVCs’ LSR velocity centroid for that ion. The ion absorption and H i emission, log \({N}_{{{{{\rm{X}}}}}^{i}}\). and NHI, respectively, are listed with the H i column errors including beam smearing added in quadrature when available. We also list the ion abundances, [Xi/H]. The ionization correction, IC, calculations are discussed throughout the Methods section. [X/H] is the corrected gas-phase elemental abundance and does not account for dust depletion. We include an O i solar abundance for M5-ZNG1’s elemental abundance measurement that is updated from that in the literature33,54. For a discussion of the multiple H i measurements for J1919-2958, see the Methods Section. For a discussion of dust depletion and the multiple H i measurements for J1938-4326, see Supplementary Information Section 1.

Extended Data Fig. 2 UV and H i Fit Parameters for New Sight Lines.

The second column represents the allowed velocity range of gas co-rotating with the Milky Way disk in each quasar’s direction67. Xi represents the ion used for metallicity calculations. The UV Voigt fit parameters of Xi for each cloud are the LSR velocity centroid, v0 UV, the Doppler broadening parameter (b-value), and the log column density, log \({N}_{{{{{\rm{X}}}}}^{i}}\). The UV velocity centroid errors include the 7.5 km s−1 COS zero-point uncertainty. The H i Gaussian fit parameters are the LSR velocity centroid, v0 HI, and full-width-half-max, FWHM. For a Gaussian profile, the relation between FWHM and b-value is FWHM=1.665b. The H i log column density, log NHI, is given in the last column. J1853-4158’s H i column was obtained using the spectrum’s rms, as described in the Methods Section. J1919-2958’s H i column was obtained by through the “flip-and-subtract” method (described in the Methods Section) using two velocity ranges for integration, which encompass all potential emission associated with the FB HVC (upper column limit) and emission least affected by stray radiation (lower column limit). J1938-4326’s H i column was obtained using a Gaussian fit to emission. Second and third measurements of the H i column were made by integrating over the C ii absorber’s FWHM and then using Equation (2); see Supplementary Information Section 1 for more details.

Extended Data Fig. 3 Flipped-and-subtracted GBT H i spectrum for J1919-2958 and 1938-4326.

The blue shaded spectrum represents the original H i spectrum at a resolution of 1 km s−1. The maximum velocity range used to calculate the H i column densities is shaded in grey. The black line is the flipped-and-subtracted spectra smoothed to 2 km s−1 in the integrated velocity ranges including an additional 7 channels on each side of those velocity ranges. 1938-4326’s flipped-and-subtracted spectrum is used as a check on the Gaussian H i column listed in Extended Data Fig. 2 and is discussed in Supplementary Information Section 2.

Extended Data Fig. 4 UV and H i Fit Parameters for Literature Sight Lines.

This table lists UV and H i fit parameters for the literature FB HVCs, similar to that done for the new sight lines in Extended Data Fig. 2. M5-ZNG1 has a literature H i measurement based on a combination of FUSE profile fitting and curve-of-growth measurements34. J1509-0702 and PG 1522+10 have H i measurements based on their average rms of emission-free channels (rms of 0.055 and 0.032 K, respectively). PKS 2005-489’s log NH i is from Lyman series measurements in the literature33.

Extended Data Fig. 5 Deconvolution of LS 4825’s H i spectrum.

Left: LS 4825’s and HD 167402’s H i spectra plotted against HD 167402’s low-velocity Milky Way component and LS 4825’s residual H i spectrum after subtracting HD 167402’s low-velocity Milky Way component. We also plot LS4825’s O i λ1302 and C i λ1560 spectrum for comparison. Right: The individual and combined Gaussian fits to LS 4825’s residual negative-velocity components.

Extended Data Fig. 6 CLOUDY Model Results.

Xi represents the ion used for the metallicity calculations and v0 UV is the UV velocity centroid of each component. The logarithmic Si iii to Si ii ion ratio, [Si iii/Si ii], is calculated using the column densities measured in previous Fermi Bubble UV Surveys17,20; for J1938-4326 we use the [Si iii/C ii] ratio. U is the ionization parameter, equal to the ratio of the ionizing photon density to the gas density. The log hydrogen number density and column density of the clouds are given as log nH and log NH, respectively. The depth is the calculated size of the cloud along the line-of-sight. The present-day ionization corrections are given as IC(Xi) Eq. for the equilibrium models, and IC(Xi) Φ(H)8 and IC(Xi) Φ(H)10 for the time-dependent models at two ionizing photon fluxes, log Φ(H)=8 and 10, respectively.

Extended Data Fig. 7 Time-dependent ionization corrections versus time calculated from CLOUDY models.

The results are given for two ionizing fluxes: log Φ(H)= 8 (solid line) and 10 (dashed line), where Φ(H) has units of photons cm−2 s−1 and where colored shading shows intermediate ionizing fluxes. Each panel shows the ionization correction across the full time interval modeled (0-3.6 Myr), with an inset plot magnifying the flatter part of the curves after the initial flash to emphasize the late-time behavior. The equilibrium results are marked with an ‘x’ at 3.6 Myr in each panel.

Supplementary information

Supplementary Information

Supplementary Discussion Sections 1–5, Tables 1 and 2 and Figs. 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashley, T., Fox, A.J., Cashman, F.H. et al. Diverse metallicities of Fermi bubble clouds indicate dual origins in the disk and halo. Nat Astron 6, 968–975 (2022). https://doi.org/10.1038/s41550-022-01720-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01720-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing