Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Resolving the solar prominence/filament paradox using the magnetic Rayleigh–Taylor instability

Abstract

Prominences and filaments are manifestations of magnetized, levitated plasma within the solar coronal atmosphere. Their structure is assumed to be driven by the ambient magnetic field, but various open questions pertaining to their formation and evolution persist. In particular, the discrepancy between their appearance if projected against the solar disk or at the limb remain unexplained. State-of-the-art magnetohydrodynamic simulations yield a fully three-dimensional model that successfully unites the extreme ultraviolet and hydrogen Hα views of quiescent prominences that contain radial striations with the equivalent on-disk filaments comprised of finite width threads. We analyse all hydromagnetic sources of the vorticity evolution and find it consistent with the nonlinear development of the magnetic Rayleigh–Taylor instability. We show that this universal gravitational interchange process can explain the apparent dichotomy of the quiescent prominence/filament appearances. Our simulation could also be used to predict what the instruments associated with the Solar Orbiter and the Inouye Solar Telescope (DKIST) will observe.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: The formation of the coronal flux rope.
Fig. 2: Synthetic EUV and optical filament synthesis.
Fig. 3: Synthetic EUV and optical prominence synthesis.
Fig. 4: Vertically oriented fine structure within the rotated prominence projection.
Fig. 5: Comparison between simulation and observation.
Fig. 6: Decomposed baroclinitic contributions to the evolution of the ‘falling finger’.

Data availability

All data processed within this manuscript are available online via Zenodo77.

Code availability

The open-source code for MPI-AMRVAC is available in the user files via Zenodo77 and also on the ERC Prominent website (https://erc-prominent.github.io). Visualizations were carried out within the yt-project framework (https://yt-project.org), using a modified form of the standard amrvac front-end available from the corresponding author upon request.

References

  1. Vial, J.-C. & Engvold, O. Solar Prominences (Springer, 2015).

  2. Zhou, Y. H., Chen, P. F., Hong, J. & Fang, C. Simulations of solar filament fine structures and their counterstreaming flows. Nat. Astron. 4, 994–1000 (2020).

    Article  ADS  Google Scholar 

  3. Adrover-González, A. & Terradas, J. 3D numerical simulations of oscillations in solar prominences. Astron. Astrophys. 633, A113 (2020).

    Article  ADS  Google Scholar 

  4. Wyper, P. F. et al. A model for the coupled eruption of a pseudostreamer and helmet streamer. Astrophys. J. 909, 54 (2021).

    Article  ADS  Google Scholar 

  5. Gibson, S. E. Solar prominences: theory and models. Fleshing out the magnetic skeleton. Liv. Rev. Sol. Phys. 15, 7 (2018).

    Article  Google Scholar 

  6. Wang, S. et al. Magnetic structure of an erupting filament. Astrophys. J. 892, 75 (2020).

    Article  ADS  Google Scholar 

  7. Mackay, D. H., Schmieder, B., López Ariste, A. & Su, Y. Modelling and observations: comparison of the magnetic field properties in a prominence. Astron. Astrophys. 637, A3 (2020).

    Article  ADS  Google Scholar 

  8. Hillier, A., Berger, T., Isobe, H. & Shibata, K. Numerical simulations of the magnetic Rayleigh-Taylor instability in the Kippenhahn-Schlüter prominence model. I. Formation of upflows. Astrophys. J. 746, 120 (2012).

    Article  ADS  Google Scholar 

  9. Terradas, J., Soler, R., Luna, M., Oliver, R. & Ballester, J. L. Morphology and dynamics of solar prominences from 3D MHD simulations. Astrophys. J. 799, 94 (2015).

    Article  ADS  Google Scholar 

  10. Alfvén, H. Existence of electromagnetic-hydrodynamic waves. Nature 150, 405–406 (1942).

    Article  ADS  Google Scholar 

  11. Gary, G. A. Plasma beta above a solar active region: rethinking the paradigm. Sol. Phys. 203, 71–86 (2001).

    Article  ADS  Google Scholar 

  12. Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability (Dover Publications, 1961).

  13. Berger, T. E. et al. Hinode SOT observations of solar quiescent prominence dynamics. Astrophys. J. Lett. 676, L89 (2008).

    Article  ADS  Google Scholar 

  14. Berger, T. E. et al. Quiescent prominence dynamics observed with the Hinode solar optical telescope. I. Turbulent upflow plumes. Astrophys. J. 716, 1288–1307 (2010).

    Article  ADS  Google Scholar 

  15. Hillier, A., Isobe, H., Shibata, K. & Berger, T. Numerical simulations of the magnetic Rayleigh-Taylor instability in the Kippenhahn-Schlüter prominence model. II. Reconnection-triggered downflows. Astrophys. J. 756, 110 (2012).

    Article  ADS  Google Scholar 

  16. Hillier, A. The magnetic Rayleigh-Taylor instability in solar prominences. Rev. Mod. Plasma Phys. 2, 1 (2018).

    Article  ADS  Google Scholar 

  17. Kaneko, T. & Yokoyama, T. Impact of dynamic state on the mass condensation rate of solar prominences. Astrophys. J. 869, 136 (2018).

    Article  ADS  Google Scholar 

  18. Berger, T. et al. Magneto-thermal convection in solar prominences. Nature 472, 197–200 (2011).

    Article  ADS  Google Scholar 

  19. Hillier, A., Hillier, R. & Tripathi, D. Determination of prominence plasma β from the dynamics of rising plumes. Astrophys. J. 761, 106 (2012).

    Article  ADS  Google Scholar 

  20. Jenkins, J. M. et al. Modeling the effect of mass-draining on prominence eruptions. Astrophys. J. 873, 49 (2019).

    Article  ADS  Google Scholar 

  21. Mackay, D. H., Karpen, J. T., Ballester, J. L., Schmieder, B. & Aulanier, G. Physics of solar prominences: II—magnetic structure and dynamics. Space Sci. Rev. 151, 333–399 (2010).

    Article  ADS  Google Scholar 

  22. Saito, K. & Tandberg-Hanssen, E. The arch systems, cavities, and prominences in the helmet streamer observed at the solar eclipse, november 12, 1966. Solar Phys. 31, 105–121 (1973).

    Article  ADS  Google Scholar 

  23. Jenkins, J. M. & Keppens, R. Prominence formation by levitation-condensation at extreme resolutions. Astron. Astrophys. 646, A134 (2021).

    Article  ADS  Google Scholar 

  24. Hillier, A. S. On the nature of the magnetic Rayleigh-Taylor instability in astrophysical plasma: the case of uniform magnetic field strength. Mon. Not. R. Astron. Soc. 462, 2256–2265 (2016).

    Article  ADS  Google Scholar 

  25. Field, G. B. Thermal instability. Astrophys. J. 142, 531–567 (1965).

    Article  ADS  Google Scholar 

  26. Claes, N. & Keppens, R. Thermal stability of magnetohydrodynamic modes in homogeneous plasmas. Astron. Astrophys. 624, A96 (2019).

    Article  ADS  Google Scholar 

  27. Claes, N., Keppens, R. & Xia, C. Thermal instabilities: fragmentation and field misalignment of filament fine structure. Astron. Astrophys. 636, A112 (2020).

    Article  ADS  Google Scholar 

  28. Hermans, J. & Keppens, R. The effect of optically thin cooling curves on condensation formation: a case study using thermal instability. Preprint at https://arxiv.org/abs/2107.07569 (2021).

  29. Berger, T. E., Liu, W. & Low, B. C. SDO/AIA detection of solar prominence formation within a coronal cavity. Astrophys. J. Lett. 758, L37 (2012).

    Article  ADS  Google Scholar 

  30. Mikić, Z. et al. Predicting the corona for the 21 August 2017 total solar eclipse. Nat. Astron. 2, 913–921 (2018).

  31. Lemen, J. R. et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17–40 (2012).

    Article  ADS  Google Scholar 

  32. Pesnell, W. D., Thompson, B. J. & Chamberlin, P. C. The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3–15 (2012).

    Article  ADS  Google Scholar 

  33. Rochus, P. et al. The Solar Orbiter EUI instrument: the Extreme Ultraviolet Imager. Astron. Astrophys. 642, A8 (2020).

    Article  Google Scholar 

  34. García Marirrodriga, C. et al. Solar Orbiter: mission and spacecraft design. Astron. Astrophys. 646, A121 (2021).

    Article  Google Scholar 

  35. Zouganelis, I. et al. The Solar Orbiter science activity plan. Translating solar and heliospheric physics questions into action. Astron. Astrophys. 642, A3 (2020).

    Article  Google Scholar 

  36. Schmieder, B. et al. Reconstruction of a helical prominence in 3D from IRIS spectra and images. Astron. Astrophys. 606, A30 (2017).

    Article  Google Scholar 

  37. Ba̧k-Stȩślicka, U. et al. The magnetic structure of solar prominence cavities: new observational signature revealed by coronal magnetometry. Astrophys. J. Lett. 770, L28 (2013).

    Article  ADS  Google Scholar 

  38. Harvey, J. W. et al. Full-disk solar H-alpha images from GONG. In AAS/Solar Physics Division Abstracts No. 42 17.45 (2011).

  39. Keppens, R., Xia, C. & Porth, O. Solar prominences: ‘double, double… boil and bubble’. Astrophys. J. Lett. 806, L13 (2015).

    Article  ADS  Google Scholar 

  40. Zhou, Y. et al. Rayleigh–Taylor and Richtmyer–Meshkov instabilities: a journey through scales. Physica D 423, 132838 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  41. Moschou, S. P., Keppens, R., Xia, C. & Fang, X. Simulating coronal condensation dynamics in 3D. Adv. Space Res. 56, 2738–2759 (2015).

    Article  ADS  Google Scholar 

  42. Daly, B. J. Numerical study of two fluid Rayleigh-Taylor instability. Phys. Fluids 10, 297–307 (1967).

    Article  ADS  MATH  Google Scholar 

  43. Carlyle, J. & Hillier, A. The non-linear growth of the magnetic Rayleigh-Taylor instability. Astron. Astrophys. 605, A101 (2017).

    Article  ADS  Google Scholar 

  44. Shelyag, S., Keys, P., Mathioudakis, M. & Keenan, F. P. Vorticity in the solar photosphere. Astron. Astrophys. 526, A5 (2011).

    Article  ADS  Google Scholar 

  45. Canivete Cuissa, J. R. & Steiner, O. Vortices evolution in the solar atmosphere. A dynamical equation for the swirling strength. Astron. Astrophys. 639, A118 (2020).

    Article  ADS  Google Scholar 

  46. Porth, O., Komissarov, S. S. & Keppens, R. Rayleigh-Taylor instability in magnetohydrodynamic simulations of the Crab nebula. Mon. Not. R. Astron. Soc. 443, 547–558 (2014).

    Article  ADS  Google Scholar 

  47. Blondin, J. M. & Chevalier, R. A. Pulsar wind bubble blowout from a supernova. Astrophys. J. 845, 139 (2017).

    Article  ADS  Google Scholar 

  48. Martin, T., Milisavljevic, D. & Drissen, L. 3D mapping of the Crab Nebula with SITELLE - I. Deconvolution and kinematic reconstruction. Mon. Not. R. Astron. Soc. 502, 1864–1881 (2021).

    Article  ADS  Google Scholar 

  49. Sudnik, N. P. & Henrichs, H. F. Multiple short-lived stellar prominences on O stars: the O6.5I(n)fp star λ Cephei. Astron. Astrophys. 594, A56 (2016).

    Article  ADS  Google Scholar 

  50. Peng, C.-H. & Matsumoto, R. Formation of galactic prominence in the galactic central region. Astrophys. J. 836, 149 (2017).

    Article  ADS  Google Scholar 

  51. Zhang, Y., Wongwaitayakornkul, P. & Bellan, P. M. Magnetic Rayleigh-Taylor Instability in an experiment simulating a solar loop. Astrophys. J. Lett. 889, L32 (2020).

    Article  ADS  Google Scholar 

  52. Keppens, R., Teunissen, J., Xia, C. & Porth, O. MPI-AMRVAC: a parallel, grid-adaptive PDE toolkit. Comput. Math. Appl. 81, 316–333 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  53. Xia, C. & Keppens, R. Formation and plasma circulation of solar prominences. Astrophys. J. 823, 22 (2016).

    Article  ADS  Google Scholar 

  54. Spitzer, L. Physics of Fully Ionized Gases (Courier Corporation, 2006).

  55. Zhao, X., Xia, C., Keppens, R. & Gan, W. Formation and initiation of erupting flux rope and embedded filament driven by photospheric converging motion. Astrophys. J. 841, 106 (2017).

    Article  ADS  Google Scholar 

  56. Koren, B. & van der Maarel, H. T. M. in Numerical Methods in Fluid Dynamics Vol. 414 (eds Napolitano, M. & Sabetta, F.) 110–114 (Springer, 1993).

  57. Tanaka, T. Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulation of inhomogeneous systems including strong background potential fields. J. Comput. Phys. 111, 381–389 (1994).

    Article  ADS  MATH  Google Scholar 

  58. Xia, C., Teunissen, J., El Mellah, I., Chané, E. & Keppens, R. MPI-AMRVAC 2.0 for solar and astrophysical applications. Astrophys. J. Suppl. Ser. 234, 30 (2018).

    Article  ADS  Google Scholar 

  59. Keppens, R., Nool, M., Tóth, G. & Goedbloed, J. P. Adaptive mesh refinement for conservative systems: multi-dimensional efficiency evaluation. Comput. Phys. Commun. 153, 317–339 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Rybicki, G. B. & Lightman, A. P. Radiative Processes in Astrophysics (Wiley-VCH, 1986).

  61. Heinzel, P., Gunár, S. & Anzer, U. Fast approximate radiative transfer method for visualizing the fine structure of prominences in the hydrogen Hα line. Astron. Astrophys. 579, A16 (2015).

    Article  ADS  Google Scholar 

  62. David, K. H. Die mitte-rand variation der Balmerlinien Hα-Hδ auf der sonnenscheibe. Mit 9 textabbildungen. Z. Astrophys. 53, 37 (1961).

    ADS  Google Scholar 

  63. Heinzel, P. & Schmieder, B. Chromospheric fine structure: black & white mottles. Astron. Astrophys. 282, 939–954 (1994).

    ADS  Google Scholar 

  64. Schwartz, P. et al. 2D non-LTE modelling of a filament observed in the Hα line with the DST/IBIS spectropolarimeter. Astron. Astrophys. 631, A146 (2019).

    Article  Google Scholar 

  65. Kucera, T. A. in Solar Prominences Vol. 415 (eds Vial, J. C. & Engvold, O.) 79–101 (Springer Press, 2015).

  66. Labrosse, N. et al. Physics of solar prominences: I—spectral diagnostics and non-LTE modelling. Space Sci. Rev. 151, 243–332 (2010).

    Article  ADS  Google Scholar 

  67. Van Doorsselaere, T., Antolin, P., Yuan, D., Reznikova, V. & Magyar, N. Forward modelling of optically thin coronal plasma with the FoMo tool. Front. Astron. Space Sci. 3, 4 (2016).

    ADS  Google Scholar 

  68. Gibson, S. et al. FORWARD: a toolset for multiwavelength coronal magnetometry. Front. Astron. Space Sci. 3, 8 (2016).

    Article  ADS  Google Scholar 

  69. Zhao, X., Xia, C., Van Doorsselaere, T., Keppens, R. & Gan, W. Forward modeling of SDO/AIA and X-ray emission from a simulated flux rope ejection. Astrophys. J. 872, 190 (2019).

    Article  ADS  Google Scholar 

  70. Dere, K. P. et al. EIT and LASCO observations of the initiation of a coronal mass ejection. Solar Phys. 175, 601–612 (1997).

    Article  ADS  Google Scholar 

  71. Landi, E. & Reale, F. Prominence plasma diagnostics through extreme-ultraviolet absorption. Astrophys. J. 772, 71 (2013).

    Article  ADS  Google Scholar 

  72. Verner, D. A., Ferland, G. J., Korista, K. T. & Yakovlev, D. G. Atomic data for astrophysics. II. New analytic FITS for photoionization cross sections of atoms and ions. Astrophys. J. 465, 487 (1996).

    Article  ADS  Google Scholar 

  73. Keady, J. J. & Kilcrease, D. P. in Allen’s Astrophysical Quantities (ed. Cox, A. N.) 94–97 (Athlone Press, 2000).

  74. Boerner, P. et al. Initial calibration of the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 41–66 (2012).

    Article  ADS  Google Scholar 

  75. Low, B. C. & Egan, A. K. Steady fall of isothermal, resistive-viscous, compressible fluid across magnetic field. Phys. Plasmas 21, 062105 (2014).

    Article  ADS  Google Scholar 

  76. Kaneko, T. & Yokoyama, T. Numerical study on in-situ prominence formation by radiative condensation in the solar corona. Astrophys. J. 806, 115 (2015).

    Article  ADS  Google Scholar 

  77. Jenkins, J. & Keppens, R. Files and dataset for Jenkins & Keppens 2022: 3D prominence formation and evolution. Zenodo https://doi.org/10.5281/zenodo.6373339 (2022).

Download references

Acknowledgements

We acknowledge the open-source software that made possible the data visualizations presented within this work: Python (https://www.python.org); the yt-project (https://yt-project.org) and matplotlib (https://matplotlib.org). We thank B. Popescu Braileanu, J.-B. Durrive and N. Claes for discussions that were instrumental to the scientific rigour of the study. R.K. and J.M.J. are supported by the ERC Advanced Grant PROMINENT and joint FWO-NSFC grant number G0E9619N. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 833251 PROMINENT ERC-ADG 2018). This research is further supported by Internal funds KU Leuven, project number C14/19/089 TRACESpace. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation Flanders (FWO) and the Flemish Government EWI department.

Author information

Authors and Affiliations

Authors

Contributions

J.M.J. completed the simulation and analysis. R.K. contributed to the model development and simulation evolution. J.M.J. and R.K. both contributed to the writing of the manuscript.

Corresponding author

Correspondence to Jack M. Jenkins.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Andrew Hillier and the other, anonymous, reviewer(s) for their contribution to the peer review of this work

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and Discussion.

Supplementary Video 1

Filament, prominence, and field-aligned views of the formation and evolution of the simulation synthesized to appear equivalent to AIA 171 and hydrogen Hα observations.

Supplementary Video 2

A rotation around the simulation domain represented as a collection of semi-transparent, and correspondingly coloured, density isocontours.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jenkins, J.M., Keppens, R. Resolving the solar prominence/filament paradox using the magnetic Rayleigh–Taylor instability. Nat Astron 6, 942–950 (2022). https://doi.org/10.1038/s41550-022-01705-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01705-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing