Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Predicted future fate of COSMOS galaxy protoclusters over 11 Gyr with constrained simulations

Abstract

Cosmological simulations are crucial tools in studying the Universe, but they typically do not directly match real observed structures. Constrained cosmological simulations, on the other hand, are designed to match the observed distribution of galaxies. Here we present constrained simulations based on spectroscopic surveys at a redshift of z ≈ 2.3, corresponding to an epoch of nearly 11 Gyr ago. This allows us to ‘fast-forward’ the simulation to our present day and study the evolution of observed cosmic structures self-consistently. We confirm that several previously reported protoclusters will evolve into massive galaxy clusters by our present epoch, including the ‘Hyperion’ structure that we predict will collapse into a giant filamentary supercluster spanning 100 Mpc. We also discover previously unknown protoclusters with lower final masses than are typically detectable by other methods that nearly double the number of known protoclusters within this volume. Constrained simulations, applied to future high-redshift datasets, represent a unique opportunity for studying early structure formation and matching galaxy properties between high and low redshifts.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Matter density field of the COSMOS volume in the observed redshift range of 2.00 ≤ zobs ≤ 2.52 from 1 realization out of 50 constrained simulations.
Fig. 2: Two examples of massive Mvir ≥ 2 × 1014h−1M halos in our constrained simulations.
Fig. 3: 3D visualizations of the Hyperion supercluster filament for 4 realizations at z = 0.
Fig. 4: Protocluster density map from all 50 COSTCO realizations.

Data availability

The data products generated for this study are available at https://zenodo.org/record/6425013.

Code availability

Analysis codes used for this study are available at https://github.com/gmetin/COSTCO.

References

  1. Kravtsov, A. V. & Borgani, S. Formation of galaxy clusters. Annu. Rev. Astron. Astrophys. 50, 353–409 (2012).

    Article  ADS  Google Scholar 

  2. Muldrew, S. I., Hatch, N. A. & Cooke, E. A. What are protoclusters? Defining high-redshift galaxy clusters and protoclusters. Mon. Not. R. Astron. Soc. 452, 2528–2539 (2015).

    Article  ADS  Google Scholar 

  3. Miller, T. B. et al. A massive core for a cluster of galaxies at a redshift of 4.3. Nature 556, 469–472 (2018).

    Article  ADS  Google Scholar 

  4. Oteo, I. et al. An extreme protocluster of luminous dusty starbursts in the early Universe. Astrophys. J. 856, 72 (2018).

    Article  ADS  Google Scholar 

  5. Einasto, J. et al. Wavelet analysis of the cosmic web formation. Astron. Astrophys. 531, A75 (2011).

    Article  MATH  Google Scholar 

  6. Suhhonenko, I. et al. The cosmic web for density perturbations of various scales. Astron. Astrophys. 531, A149 (2011).

    Article  MATH  Google Scholar 

  7. Chiang, Y.-K., Overzier, R. & Gebhardt, K. Ancient light from young cosmic cities: physical and observational signatures of galaxy proto-clusters. Astrophys. J. 779, 127 (2013).

    Article  ADS  Google Scholar 

  8. Overzier, R. A. The realm of the galaxy protoclusters. A review. Astron. Astrophys. Rev. 24, 14 (2016).

    Article  ADS  Google Scholar 

  9. Chiang, Y.-K., Overzier, R. A., Gebhardt, K. & Henriques, B. Galaxy protoclusters as drivers of cosmic star formation history in the first 2 Gyr. Astrophys. J. Lett. 844, L23 (2017).

    Article  ADS  Google Scholar 

  10. Capak, P. et al. The first release COSMOS optical and near-IR data and catalog. Astrophys. J. Suppl. Ser. 172, 99–116 (2007).

    Article  ADS  Google Scholar 

  11. Lee, K.-G., Hennawi, J. F., White, M., Croft, R. A. C. & Ozbek, M. Observational requirements for Lyα forest tomographic mapping of large-scale structure at z ~ 2. Astrophys. J. 788, 49 (2014).

    Article  ADS  Google Scholar 

  12. Lee, K.-G. et al. First data release of the COSMOS Lyα mapping and tomography observations: 3D Lyα forest tomography at 2.05 < z < 2.55. Astrophys. J. Suppl. Ser. 237, 31 (2018).

    Article  ADS  Google Scholar 

  13. Newman, A. B. et al. LATIS: the Lyα tomography IMACS survey. Astrophys. J. 891, 147 (2020).

    Article  ADS  Google Scholar 

  14. Horowitz, B. et al. Second data release of the COSMOS Lyman-α mapping and tomographic observation: the first 3D maps of the large-scale cosmic web at 2.05 < z < 2.55. Preprint at https://arxiv.org/abs/2109.09660 (2021).

  15. Spitler, L. R. et al. First results from Z-FOURGE: discovery of a candidate cluster at z = 2.2 in COSMOS. Astrophys. J. Lett. 748, L21 (2012).

    Article  ADS  Google Scholar 

  16. Yuan, T. et al. Keck/MOSFIRE spectroscopic confirmation of a Virgo-like cluster ancestor at z = 2.095. Astrophys. J. Lett. 795, L20 (2014).

    Article  ADS  Google Scholar 

  17. Franck, J. R. & McGaugh, S. S. The Candidate Cluster and Protocluster Catalog (CCPC) II. Spectroscopically identified structures spanning 2 < z < 6.6. Astrophys. J. 833, 15 (2016).

    Article  ADS  Google Scholar 

  18. Diener, C. et al. A protocluster at z = 2.45. Astrophys. J. 802, 31 (2015).

    Article  ADS  Google Scholar 

  19. Lee, K.-G. et al. Shadow of a colossus: a z = 2.44 galaxy protocluster detected in 3D Lyα forest tomographic mapping of the COSMOS field. Astrophys. J. 817, 160 (2016).

    Article  ADS  Google Scholar 

  20. Chiang, Y.-K. et al. Surveying galaxy proto-clusters in emission: a large-scale structure at z = 2.44 and the outlook for HETDEX. Astrophys. J. 808, 37 (2015).

    Article  ADS  Google Scholar 

  21. Casey, C. M. et al. A massive, distant proto-cluster at z = 2.47 caught in a phase of rapid formation? Astrophys. J. Lett. 808, L33 (2015).

    Article  ADS  Google Scholar 

  22. Wang, T. et al. Discovery of a galaxy cluster with a violently starbursting core at z = 2.506. Astrophys. J. 828, 56 (2016).

    Article  ADS  Google Scholar 

  23. Cucciati, O. et al. The progeny of a cosmic titan: a massive multi-component proto-supercluster in formation at z = 2.45 in VUDS. Astron. Astrophys. 619, A49 (2018).

    Article  Google Scholar 

  24. Darvish, B. et al. Spectroscopic confirmation of a Coma cluster progenitor at z ~ 2.2. Astrophys. J. 892, 8 (2020).

    Article  ADS  Google Scholar 

  25. Polletta, M. et al. Spectroscopic observations of PHz G237.01+42.50: a galaxy protocluster at z = 2.16 in the COSMOS field. Astron. Astrophys. 654, A121 (2021).

    Article  Google Scholar 

  26. Champagne, J. B. et al. Comprehensive gas characterization of a z = 2.5 protocluster: a cluster core caught in the beginning of virialization? Astrophys. J. 913, 110 (2021).

    Article  ADS  Google Scholar 

  27. Cuesta, A. J., Prada, F., Klypin, A. & Moles, M. The virialized mass of dark matter haloes. Mon. Not. R. Astron. Soc. 389, 385–397 (2008).

    Article  ADS  Google Scholar 

  28. Gottlöber, S., Hoffman, Y. & Yepes, G. Constrained local Universe simulations (CLUES). Preprint at arXiv https://doi.org/10.48550/arXiv.1005.2687 (2010).

  29. Heß, S., Kitaura, F.-S. & Gottlöber, S. Simulating structure formation of the local Universe. Mon. Not. R. Astron. Soc. 435, 2065–2076 (2013).

    Article  ADS  Google Scholar 

  30. Wang, H., Mo, H. J., Yang, X., Jing, Y. P. & Lin, W. P. ELUCID—exploring the local universe with the reconstructed initial density field. I. Hamiltonian Markov chain Monte Carlo method with particle mesh dynamics. Astrophys. J. 794, 94 (2014).

    Article  ADS  Google Scholar 

  31. Jasche, J., Leclercq, F. & Wandelt, B. D. Past and present cosmic structure in the SDSS DR7 main sample. J. Cosmol. Astropart. Phys. 2015, 036 (2015).

    Article  MathSciNet  Google Scholar 

  32. Libeskind, N. I. et al. The HESTIA project: simulations of the Local Group. Mon. Not. R. Astron. Soc. 498, 2968–2983 (2020).

    Article  ADS  Google Scholar 

  33. Ata, M. et al. BIRTH of the COSMOS field: primordial and evolved density reconstructions during cosmic high noon. Mon. Not. R. Astron. Soc. 500, 3194–3212 (2021).

    Article  ADS  Google Scholar 

  34. Lilly, S. J. et al. zCOSMOS: a large VLT/VIMOS redshift survey covering 0 < z < 3 in the COSMOS field. Astrophys. J. Suppl. Ser. 172, 70–85 (2007).

    Article  ADS  Google Scholar 

  35. Le Fèvre, O. et al. The VIMOS Ultra-Deep Survey: ~10,000 galaxies with spectroscopic redshifts to study galaxy assembly at early epochs 2 < z = 6. Astron. Astrophys. 576, A79 (2015).

    Article  Google Scholar 

  36. Kriek, M. et al. The MOSFIRE Deep Evolution Field (MOSDEF) survey: rest-frame optical spectroscopy for ~1,500 H-selected galaxies at 1.37 < z < 3.8. Astrophys. J. Suppl. Ser. 218, 15 (2015).

    Article  ADS  Google Scholar 

  37. Nanayakkara, T. et al. ZFIRE: a KECK/MOSFIRE spectroscopic survey of galaxies in rich environments at z ~ 2. Astrophys. J. 828, 21 (2016).

    Article  ADS  Google Scholar 

  38. Ata, M., Kitaura, F.-S. & Müller, V. Bayesian inference of cosmic density fields from non-linear, scale-dependent, and stochastic biased tracers. Mon. Not. R. Astron. Soc. 446, 4250–4259 (2015).

    Article  ADS  Google Scholar 

  39. Kitaura, F.-S. et al. COSMIC BIRTH: efficient Bayesian inference of the evolving cosmic web from galaxy surveys. Mon. Not. R. Astron. Soc. 502, 3456–3475 (2021).

    Article  ADS  Google Scholar 

  40. Potter, D., Stadel, J. & Teyssier, R. PKDGRAV3: beyond trillion particle cosmological simulations for the next era of galaxy surveys. Comput. Astrophys. Cosmol. 4, 2 (2017).

    Article  ADS  Google Scholar 

  41. Aragon-Calvo, M. A. The MIP ensemble simulation: local ensemble statistics in the cosmic web. Mon. Not. R. Astron. Soc. 455, 438–448 (2016).

    Article  ADS  Google Scholar 

  42. Behroozi, P. S., Wechsler, R. H. & Wu, H.-Y. The ROCKSTAR phase-space temporal halo finder and the velocity offsets of cluster cores. Astrophys. J. 762, 109 (2013).

    Article  ADS  Google Scholar 

  43. Planck Collaboration et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article  Google Scholar 

  44. Fontanelli, P. The Coma/A1367 filament of galaxies. Astron. Astrophys. 138, 85–92 (1984).

    ADS  Google Scholar 

  45. Einasto, M. et al. Sloan Great Wall as a complex of superclusters with collapsing cores. Astron. Astrophys. 595, A70 (2016).

    Article  Google Scholar 

  46. Sugai, H. et al. Prime focus spectrograph for the Subaru telescope: massively multiplexed optical and near-infrared fiber spectrograph. J. Astron. Telesc. Instrum. Syst. 1, 035001 (2015).

    Article  ADS  Google Scholar 

  47. Cirasuolo, M. et al. MOONS: the multi-object optical and near-infrared spectrograph for the VLT. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 9147 (eds Ramsay, S. K. et al.) 91470N (2014).

  48. Laigle, C. et al. The COSMOS2015 catalog: exploring the 1 < z < 6 Universe with half a million galaxies. Astrophys. J. Suppl. Ser. 224, 24 (2016).

    Article  ADS  Google Scholar 

  49. Ilbert, O. et al. Mass assembly in quiescent and star-forming galaxies since z = 4 from UltraVISTA. Astron. Astrophys. 556, A55 (2013).

    Article  Google Scholar 

  50. Brammer, G. B. et al. 3D-HST: a wide-field grism spectroscopic survey with the Hubble Space Telescope. Astrophys. J. Suppl. Ser. 200, 13 (2012).

    Article  ADS  Google Scholar 

  51. Straatman, C. M. S. et al. The FourStar Galaxy Evolution Survey (ZFOURGE): ultraviolet to far-infrared catalogs, medium-bandwidth photometric redshifts with improved accuracy, stellar masses, and confirmation of quiescent galaxies to z ~ 3.5. Astrophys. J. 830, 51 (2016).

    Article  ADS  Google Scholar 

  52. Crocce, M., Pueblas, S. & Scoccimarro, R. Transients from initial conditions in cosmological simulations. Mon. Not. R. Astron. Soc. 373, 369–381 (2006).

    Article  ADS  Google Scholar 

  53. Hahn, O. & Abel, T. Multi-scale initial conditions for cosmological simulations. Mon. Not. R. Astron. Soc. 415, 2101–2121 (2011).

    Article  ADS  Google Scholar 

  54. Pilipenko, S. V., Sánchez-Conde, M. A., Prada, F. & Yepes, G. Pushing down the low-mass halo concentration frontier with the Lomonosov cosmological simulations. Mon. Not. R. Astron. Soc. 472, 4918–4927 (2017).

    Article  ADS  Google Scholar 

  55. Tatekawa, T. Transients from initial conditions based on Lagrangian perturbation theory in N-body simulations III: the case of Gadget-2 code. Int. J. Mod. Phys. D 29, 2050096 (2020).

    Article  ADS  Google Scholar 

  56. Dekel, A., Bertschinger, E. & Faber, S. M. Potential, velocity, and density fields from sparse and noisy redshift-distance samples: method. Astrophys. J. 364, 349 (1990).

    Article  ADS  Google Scholar 

  57. Hoffman, Y. & Ribak, E. Constrained realizations of Gaussian fields: a simple algorithm. Astrophys. J. Lett. 380, L5 (1991).

    Article  ADS  Google Scholar 

  58. Gramann, M. An improved reconstruction method for cosmological density fields. Astrophys. J. 405, 449 (1993).

    Article  ADS  Google Scholar 

  59. Kolatt, T. & Dekel, A. Large-scale power spectrum from peculiar velocities. Astrophys. J. 479, 592–605 (1997).

    Article  ADS  Google Scholar 

  60. Jasche, J. & Wandelt, B. D. Bayesian physical reconstruction of initial conditions from large-scale structure surveys. Mon. Not. R. Astron. Soc. 432, 894–913 (2013).

    Article  ADS  Google Scholar 

  61. Neal, R. M. in Handbook of Markov Chain Monte Carlo 113–162 (Chapman & Hall/CRC, 2011).

  62. Lewis, A., Challinor, A. & Lasenby, A. Efficient computation of cosmic microwave background anisotropies in closed Friedmann–Robertson–Walker models. Astrophys. J. 538, 473–476 (2000).

    Article  ADS  Google Scholar 

  63. Sawala, T. et al. The APOSTLE simulations: solutions to the Local Group’s cosmic puzzles. Mon. Not. R. Astron. Soc. 457, 1931–1943 (2016).

    Article  ADS  Google Scholar 

  64. Sorce, J. G. et al. Cosmicflows constrained local Universe simulations. Mon. Not. R. Astron. Soc. 455, 2078–2090 (2016).

    Article  ADS  Google Scholar 

  65. Horowitz, B., Lee, K.-G., White, M., Krolewski, A. & Ata, M. TARDIS. I. A constrained reconstruction approach to modeling the z ~ 2.5 cosmic web probed by Lyα forest tomography. Astrophys. J. 887, 61 (2019).

    Article  ADS  Google Scholar 

  66. Rennehan, D. et al. Rapid early coeval star formation and assembly of the most-massive galaxies in the Universe. Mon. Not. R. Astron. Soc. 493, 4607–4621 (2020).

    Article  ADS  Google Scholar 

  67. Behroozi, P. S. et al. Gravitationally consistent halo catalogs and merger trees for precision cosmology. Astrophys. J. 763, 18 (2013).

    Article  ADS  Google Scholar 

  68. Murray, S. G., Power, C. & Robotham, A. S. G. HMFcalc: an online tool for calculating dark matter halo mass functions. Astron. Comput. 3, 23–34 (2013).

    Article  ADS  Google Scholar 

  69. Lemaux, B. C. et al. The VIMOS Ultra-deep Survey: emerging from the dark, a massive proto-cluster at z 4.57. Astron. Astrophys. 615, A77 (2018).

    Article  Google Scholar 

  70. Steidel, C. C. et al. Spectroscopic identification of a protocluster at z = 2.300: environmental dependence of galaxy properties at high redshift. Astrophys. J. 626, 44–50 (2005).

    Article  ADS  Google Scholar 

  71. Diener, C. et al. Proto-groups at 1.8 < z < 3 in the zCOSMOS-deep sample. Astrophys. J. 765, 109 (2013).

    Article  ADS  Google Scholar 

  72. Toshikawa, J. et al. GOLDRUSH. III. A systematic search for protoclusters at z ~ 4 based on the >100 deg2 area. Publ. Astron. Soc. Jpn 70, S12 (2018).

    Article  ADS  Google Scholar 

  73. Capak, P. L. et al. A massive protocluster of galaxies at a redshift of z ~ 5.3. Nature 470, 233–235 (2011).

    Article  ADS  Google Scholar 

  74. Hu, W. et al. A Lyman-α protocluster at redshift 6.9. Nat. Astron. 5, 485–490 (2021).

    Article  ADS  Google Scholar 

  75. Turner, R. J., Blake, C. & Ruggeri, R. Improving estimates of the growth rate using galaxy–velocity correlations: a simulation study. Mon. Not. R. Astron. Soc. 502, 2087–2096 (2021).

    Article  ADS  Google Scholar 

  76. Takada, M. & Hu, W. Power spectrum super-sample covariance. Phys. Rev. D 87, 123504 (2013).

    Article  ADS  Google Scholar 

  77. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article  Google Scholar 

  78. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article  Google Scholar 

  79. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet  MATH  Google Scholar 

  80. Astropy Collaboration et al. The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).

    Article  ADS  Google Scholar 

  81. Astropy Collaboration et al. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

    Article  Google Scholar 

  82. Nishimichi, T. et al. Dark Quest. I. Fast and accurate emulation of halo clustering statistics and its application to galaxy clustering. Astrophys. J. 884, 29 (2019).

    Article  ADS  Google Scholar 

  83. Pontzen, A. et al. pynbody: astrophysics simulation analysis for Python ascl:1305.002 (Astrophysics Source Code Library, 2013).

  84. Smith, B. & Lang, M. ytree: a Python package for analyzing merger trees. J. Open Source Softw. 4, 1881 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank P. Behroozi and D. Potter for their support with Rockstar and PKDGRAV3, respectively. M.A. thanks T. Nishimichi, M. Takada and V. Vardanyan for useful discussions. M.A. was supported by JSPS Kakenhi Grant JP21K13911. K.-G.L. acknowledges support from JSPS Kakenhi Grants JP18H05868 and JP19K14755. C.D.V. acknowledges support from the Spanish Ministry of Science and Innovation (MICIU/FEDER) through research grants PGC2018-094975-C22 and RYC-2015-18078. This research is based on observations undertaken at the European Southern Observatory Very Large Telescope under Large Program 175.A-0839 and has been supported by the Swiss National Science Foundation. Some of the material presented in this paper is based upon work supported by the National Science Foundation under Grant No. 1908422. This work was made possible by the World Premier International Research Center Initiative (WPI), MEXT, Japan.

Author information

Authors and Affiliations

Authors

Contributions

M.A. calculated the selection functions, initial conditions, simulations and halo catalogues and conducted the full analysis. M.A. and K.-G.L. conceptualized the analysis and wrote the paper. C.D.V. helped perform the simulations. F.-S.K. provided expertise about density field reconstructions. O.C., B.C.L. and D.K. provided the (partly) proprietary data and relevant literature. T.M. provided the visualizations. All authors reviewed the manuscript.

Corresponding author

Correspondence to Metin Ata.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Jorge Zavala and Miguel Aragón-Calvo for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5.

Supplementary Video 1

Summarizing video of the simulations, including two zoom-ins. Music credit: REDproductions/Pixabay.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ata, M., Lee, KG., Vecchia, C.D. et al. Predicted future fate of COSMOS galaxy protoclusters over 11 Gyr with constrained simulations. Nat Astron 6, 857–865 (2022). https://doi.org/10.1038/s41550-022-01693-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01693-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing