Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Discovery of a radio-emitting neutron star with an ultra-long spin period of 76 s

Abstract

The radio-emitting neutron star population encompasses objects with spin periods ranging from milliseconds to tens of seconds. As they age and spin more slowly, their radio emission is expected to cease. We present the discovery of an ultra-long-period radio-emitting neutron star, PSR J0901-4046, with spin properties distinct from the known spin- and magnetic-decay-powered neutron stars. With a spin period of 75.88 s, a characteristic age of 5.3 Myr and a narrow pulse duty cycle, it is uncertain how its radio emission is generated and challenges our current understanding of how these systems evolve. The radio emission has unique spectro-temporal properties, such as quasi-periodicity and partial nulling, that provide important clues to the emission mechanism. Detecting similar sources is observationally challenging, which implies a larger undetected population. Our discovery establishes the existence of ultra-long-period neutron stars, suggesting a possible connection to the evolution of highly magnetized neutron stars, ultra-long-period magnetars and fast radio bursts.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: P\(\dot{P}\) diagram based on the Australia Telescope National Facility (ATNF) pulsar catalogue.
Fig. 2: Gallery of the pulse morphology types of PSR J0901-4046.

Data availability

The data that support the findings of this study are available at https://github.com/manishacaleb/MKT-J0901-4046.

Code availability

All code necessary for analyses of the data are available on GitHub (https://github.com/IanHeywood/oxkat) and Zenodo (https://doi.org/10.5281/zenodo.1212487).

References

  1. Baring, M. G. & Harding, A. K. Radio-quiet pulsars with ultrastrong magnetic fields. Astrophys. J. Lett. 507, L55–L58 (1998).

    ADS  Article  Google Scholar 

  2. Yao, J. M., Manchester, R. N. & Wang, N. A new electron-density model for estimation of pulsar and FRB distances. Astrophys. J. 835, 29 (2017).

    ADS  Article  Google Scholar 

  3. Cordes, J. M. & Lazio, T. J. W. NE2001.I. A new model for the galactic distribution of free electrons and its fluctuations. Preprint at https://arxiv.org/abs/astro-ph/0207156 (2002).

  4. The CHIME/FRB Collaboration et al. Sub-second periodicity in a fast radio burst. Preprint at https://arxiv.org/abs/2107.08463 (2021).

  5. Levin, L. et al. Spin frequency evolution and pulse profile variations of the recently re-activated radio magnetar XTE J1810-197. Mon. Not. R. Astron. Soc. 488, 5251–5258 (2019).

    ADS  Article  Google Scholar 

  6. Cordes, J. M. Pulsar microstructure: periodicities, polarization and probes of pulsar magnetospheres. Aust. J. Phys. 32, 9–24 (1979).

    ADS  Article  Google Scholar 

  7. Kramer, M., Johnston, S. & van Straten, W. High-resolution single-pulse studies of the Vela pulsar. Mon. Not. R. Astron. Soc. 334, 523–532 (2002).

    ADS  Article  Google Scholar 

  8. Wadiasingh, Z. & Chirenti, C. Fast radio burst trains from magnetar oscillations. Astrophys. J. Lett. 903, L38 (2020).

    ADS  Article  Google Scholar 

  9. Lu, W., Kumar, P. & Zhang, B. A unified picture of Galactic and cosmological fast radio bursts. Mon. Not. R. Astron. Soc. 498, 1397–1405 (2020).

    ADS  Article  Google Scholar 

  10. Beniamini, P., Wadiasingh, Z. & Metzger, B. D. Periodicity in recurrent fast radio bursts and the origin of ultralong period magnetars. Mon. Not. R. Astron. Soc. 496, 3390–3401 (2020).

    ADS  Article  Google Scholar 

  11. Hurley-Walker, N. et al. A radio transient with unusually slow periodic emission. Nature 601, 526–530 (2022).

    ADS  Article  Google Scholar 

  12. Yoneyama, T., Hayashida, K., Nakajima, H. & Matsumoto, H. Universal detection of high-temperature emission in X-ray isolated neutron stars. Publ. Astron. Soc. Jpn 71, 17 (2019).

    ADS  Article  Google Scholar 

  13. Viganò, D. et al. Unifying the observational diversity of isolated neutron stars via magneto-thermal evolution models. Mon. Not. R. Astron. Soc. 434, 123–141 (2013).

    ADS  Article  Google Scholar 

  14. Kramer, M., Stappers, B. W., Jessner, A., Lyne, A. G. & Jordan, C. A. Polarized radio emission from a magnetar. Mon. Not. R. Astron. Soc. 377, 107–119 (2007).

    ADS  Article  Google Scholar 

  15. Dai, S. et al. Wideband polarized radio emission from the newly revived magnetar XTE J1810-197. Astrophys. J. Lett. 874, L14 (2019).

    ADS  Article  Google Scholar 

  16. Becker, W. & Trümper, J. The X-ray luminosity of rotation-powered neutron stars. Astron. Astrophys. 326, 682–691 (1997).

    ADS  Google Scholar 

  17. Oppermann, N. et al. Estimating extragalactic Faraday rotation. Astron. Astrophys. 575, A118 (2015).

    Article  Google Scholar 

  18. Johnston, S. & Karastergiou, A. The period–width relationship for radio pulsars revisited. Mon. Not. R. Astron. Soc. 485, 640–647 (2019).

    ADS  Article  Google Scholar 

  19. Tan, C. M. et al. LOFAR discovery of a 23.5 s radio pulsar. Astrophys. J. 866, 54 (2018).

    ADS  Article  Google Scholar 

  20. Morello, V. et al. The survey for pulsars and extragalactic radio bursts—IV. Discovery and polarimetry of a 12.1-s radio pulsar. Mon. Not. R. Astron. Soc. 493, 1165–1177 (2020).

    ADS  Article  Google Scholar 

  21. Ruderman, M. A. & Sutherland, P. G. Theory of pulsars: polar gaps, sparks, and coherent microwave radiation. Astrophys. J. 196, 51–72 (1975).

    ADS  Article  Google Scholar 

  22. Chen, K. & Ruderman, M. Pulsar death lines and death valley. Astrophys. J. 402, 264–270 (1993).

    ADS  Article  Google Scholar 

  23. Tiengo, A. et al. A variable absorption feature in the X-ray spectrum of a magnetar. Nature 500, 312–314 (2013).

    ADS  Article  Google Scholar 

  24. Riley, T. E. et al. A NICER view of PSR J0030+0451: millisecond pulsar parameter estimation. Astrophys. J. Lett. 887, L21 (2019).

    ADS  Article  Google Scholar 

  25. Raaijmakers, G. et al. A NICER view of PSR J0030+0451: implications for the dense matter equation of state. Astrophys. J. Lett. 887, L22 (2019).

    ADS  Article  Google Scholar 

  26. Kaspi, V. M. & Beloborodov, A. M. Magnetars. Annu. Rev. Astron. Astrophys. 55, 261–301 (2017).

    ADS  Article  Google Scholar 

  27. Camilo, F. et al. Transient pulsed radio emission from a magnetar. Nature 442, 892–895 (2006).

    ADS  Article  Google Scholar 

  28. Intema, H. T., Jagannathan, P., Mooley, K. P. & Frail, D. A. The GMRT 150 MHz all-sky radio survey. First alternative data release TGSS ADR1. Astron. Astrophys 598, A78 (2017).

    ADS  Article  Google Scholar 

  29. Mauch, T. et al. SUMSS: a wide-field radio imaging survey of the southern sky—II. The source catalogue. Mon. Not. R. Astron. Soc. 342, 1117–1130 (2003).

    ADS  Article  Google Scholar 

  30. McConnell, D. et al. The Rapid ASKAP Continuum Survey I: design and first results. Astron. Soc. Aust. 37, e048 (2020).

    ADS  Article  Google Scholar 

  31. Manchester, R. N. et al. The Parkes multi-beam pulsar survey—I. observing and data analysis systems, discovery and timing of 100 pulsars. Mon. Not. R. Astron. Soc. 328, 17–35 (2001).

    ADS  Article  Google Scholar 

  32. Marsh, T. R. et al. A radio-pulsing white dwarf binary star. Nature 537, 374–377 (2016).

    ADS  Article  Google Scholar 

  33. Buckley, D. A. H., Meintjes, P. J., Potter, S. B., Marsh, T. R. & Gänsicke, B. T. Polarimetric evidence of a white dwarf pulsar in the binary system AR Scorpii. Nat. Astron. 1, 0029 (2017).

    ADS  Article  Google Scholar 

  34. Gaibor, Y., Garnavich, P. M., Littlefield, C., Potter, S. B. & Buckley, D. A. H. An improved spin-down rate for the proposed white dwarf pulsar AR Scorpii. Mon. Not. R. Astron. Soc. 496, 4849–4856 (2020).

    ADS  Article  Google Scholar 

  35. Keane, E. F. & Kramer, M. On the birthrates of Galactic neutron stars. Mon. Not. R. Astron. Soc. 391, 2009–2016 (2008).

    ADS  Article  Google Scholar 

  36. McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. Shaw, R. A., Hill, F. & Bell, D. J. CASA architecture and applications. In Astronomical Data Analysis Software and Systems XVI (eds Shaw, R. A. et al.) 127–130 (Astronomical Society of the Pacific, 2007).

  37. Offringa, A. R. et al. WSCLEAN: an implementation of a fast, generic wide-field imager for radio astronomy. Mon. Not. R. Astron. Soc. 444, 606–619 (2014).

    ADS  Article  Google Scholar 

  38. Kenyon, J. S., Smirnov, O. M., Grobler, T. L. & Perkins, S. J. CUBICAL—fast radio interferometric calibration suite exploiting complex optimization. Mon. Not. R. Astron. Soc. 478, 2399–2415 (2018).

    ADS  Article  Google Scholar 

  39. Heywood, I. oxkat: semi-automated imaging of MeerKAT observations. 2009.003 (Astrophysics Source Code Library, 2020).

  40. Seymour, A., Michilli, D. & Pleunis, Z. DM_phase: algorithm for correcting dispersion of radio signals. 1910.004 (Astrophysics Source Code Library, 2019).

  41. van Straten, W. & Bailes, M. DSPSR: digital signal processing software for pulsar astronomy. Astron. Soc. Aust. 28, 1–14 (2011).

    ADS  Article  Google Scholar 

  42. Hotan, A. W., van Straten, W. & Manchester, R. N. PSRCHIVE and PSRFITS: an open approach to radio pulsar data storage and analysis. Astron. Soc. Aust. 21, 302–309 (2004).

    ADS  Article  Google Scholar 

  43. Morello, V. et al. The high time resolution universe survey—XIV. Discovery of 23 pulsars through GPU-accelerated reprocessing. Mon. Not. R. Astron. Soc. 483, 3673–3685 (2019).

    ADS  Article  Google Scholar 

  44. Hobbs, G. B., Edwards, R. T. & Manchester, R. N. TEMPO2, a new pulsar-timing package—I. An overview. Mon. Not. R. Astron. Soc. 369, 655–672 (2006).

    ADS  Article  Google Scholar 

  45. Boriakoff, V. Pulsar AP 2016+28: high-frequency periodicity in the pulse microstructure. Astrophys. J. Lett. 208, L43–L46 (1976).

    ADS  Article  Google Scholar 

  46. Lyne, A. & Graham-Smith, F. Pulsar Astronomy (Cambridge University Press, 2012).

  47. Lange, C., Kramer, M., Wielebinski, R. & Jessner, A. Radio pulsar microstructure at 1.41 and 4.85 GHz. Astron. Astrophys 332, 111–120 (1998).

    ADS  Google Scholar 

  48. Cordes, J. M., Weisberg, J. M. & Hankins, T. H. Quasiperiodic microstructure in radio pulsar emission. Astron. J. 100, 1882–1891 (1990).

  49. Mitra, D., Basu, R., Melikidze, G. I. & Arjunwadkar, M. A single spark model for PSR J2144-3933. Mon. Not. R. Astron. Soc. 492, 2468–2480 (2020).

    ADS  Article  Google Scholar 

  50. Watts, A. L. et al. Colloquium: measuring the neutron star equation of state using X-ray timing. Rev. Mod. Phys. 88, 021001 (2016).

    ADS  Article  Google Scholar 

  51. Evans, P. A. et al. GRB sample statistics from a uniform, automatic analysis of XRT data. In American Institute of Physics Conference Series Vol. 1133 (eds Meegan, C. et al.) 46–48 (American Institute of Physics, 2009).

Download references

Acknowledgements

This manuscript makes use of MeerKAT (Project ID: DDT-20210125-MC-01) and Parkes (Project ID: PX071) data. M.C. thanks South African Radio Astronomy Observatory (SARAO) for the approval of the MeerKAT DDT request and the science operations, Control and Monitoring/Central BeamFormer (CAM/CBF) and operator teams for their time and effort invested in the observations. The MeerKAT telescope is operated by the South African Radio Astronomy Observatory, which is a facility of the National Research Foundation, an agency of the Department of Science and Innovation. The Parkes Radio Telescope (Murriyang) is managed by CSIRO. We acknowledge the Wiradjuri people as the traditional owners of the Parkes observatory site. M.C. thanks the Australia Telescope National Facility (ATNF) for scheduling observations with the Parkes radio telescope. The SALT observations were obtained under the SALT Large Science Programme on transients (2018-2-LSP-001; PI: D.B.), which is also supported by Poland under grant no. MNiSW DIR/WK/2016/07. M.C., B.W.S., K.R., M.M., V.M., S.S., F.J., M.S., L.N.D and M.C.B. acknowledge funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 694745). M.C. acknowledges support of an Australian Research Council Discovery Early Career Research Award (project number DE220100819) funded by the Australian Government and the Australian Research Council Centre of Excellence for All Sky Astrophysics in 3 Dimensions, through project number CE170100013. K.R. acknowledges support from the Vici research programme ‘ARGO’ with project number 639.043.815, financed by the Dutch Research Council. J.v.d.E. is supported by a Lee Hysan Junior Research Fellowship awarded by St. Hilda’s College, Oxford. D.B. and P. Woudt acknowledge research support from the National Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

M.C. and B.W.S. drafted the manuscript with suggestions from co-authors. M.C. is the PI of the MeerKAT DDT and Parkes data. B.W.S. is the PI of the MeerTRAP data and R.F. and P.Woudt are the PIs of the ThunderKAT data. M.C. reduced and analysed the radio time domain data for quasi-periodicity and M.C. and M.K. interpreted it. I.H. calibrated, imaged and performed astrometry on the data to localize the source. B.W.S., V.M. and F.J. undertook the timing analyses. E.B. and K.R. designed and built the complex channelized data capture system. K.R. and P. Weltevrede performed the polarization analyses. M.M. carried out the pulse-width analyses using the wavelet transform method. E.B. and W.C. built and designed the beamformer used by MeerTRAP. J.v.d.E. and S.E.M. performed the Swift analysis. D.B., J.B. and P.Woudt obtained and analysed data from the SALT and South African Astronomical Observatory 1-m telescopes. F.J. and M.S. undertook analysis of the extant data. S.B. assisted in planning and scheduling the MeerKAT observations. S.S., F.J., M.S., R.F., L.N.D. and M.C.B contributed to discussions about the nature of the source.

Corresponding authors

Correspondence to Manisha Caleb or Ian Heywood.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Timing residuals of PSR J0901 − 4046.

The residuals from the best fit timing model given in Table 1. The orange data points are determined from the original MeerTRAP detection images, the first red diamond corresponds to a single pulse and the remaining red diamonds are determined from each of the half hour long follow-up observations with MeerKAT. The error bars are 1-σ. We used the L-band MeerKAT data for the timing analysis. The light coloured data points are from the Parkes UWL observations.

Extended Data Fig. 2 Examples of quasi-periodic pulses.

The top two rows show pulse profiles and their corresponding ACFs at 306.24μs resolution, respectively. The value the of quasi-period is indicated by the black vertical lines. The bottom two rows show the off-pulse regions and their corresponding ACFs.

Extended Data Fig. 3 Example of a pulse exhibiting more than one quasi-period.

Some quasi-periodic pulses as shown here, exhibit multiple quasi-periods within a single rotation.

Extended Data Fig. 4 Estimates of the quasi-period across all epochs.

The (orange) circles are the measured quasi-periods for each single pulse. The most commonly observed average quasi-period is 75.82 ms with the minimum period being 9.57 ms. The lags are arranged in lag length and not in time order.

Extended Data Fig. 5 Radio light-curves of PSR J0901 − 4046.

A regular series of pulsed emission detected in the L-band snapshot imaging for six observing epochs. Please refer to the Snapshot Imaging section of the Methods for details.

Extended Data Fig. 6 Polarization profiles of PSR J0901 − 4046 at 1.3 GHz and 700 MHz.

Top Panel: Time series of two single pulses of PSR J0901 − 4046 at 1284 MHz. Bottom Panel: Two different single pulse time series at 737 MHz. For both panels, the total intensity is represented by the black solid line, the red solid line denotes the linear polarization while the blue solid line denotes circular polarization. The polarization position angle is not absolutely calibrated at 737 MHz.

Extended Data Fig. 7 MeerKAT image of the PSR J0901 − 4046 region at 1.28 GHz.

The left hand panel shows the image with the pulsed emission included, and the right hand panel shows the same field following the removal of the integration times containing pulses. No persistent radio source is associated with PSR J0901 − 4046 to a 3σ limit of 18 μJy beam−1. The diffuse shell-like structure that surrounds PSR J0901 − 4046 is partially visible, possibly the supernova remnant from the event that formed the neutron star.

Supplementary information

Supplementary Information

Supplementary discussion and Figs. 1–9.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Caleb, M., Heywood, I., Rajwade, K. et al. Discovery of a radio-emitting neutron star with an ultra-long spin period of 76 s. Nat Astron (2022). https://doi.org/10.1038/s41550-022-01688-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-022-01688-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing