Abstract
The Sun serves as a natural reference for the modelling of the various physical processes at work in stellar interiors. Helioseismology results, which inform us on the characterization of the interior of the Sun (such as, for example, the helium abundance in its envelope), are, however, at odds with heavy element abundances. Moreover, the solar internal rotation and surface abundance of lithium have always been challenging to explain. We present results of solar models that account for transport of angular momentum and chemicals by both hydrodynamic and magnetic instabilities. We show that these transport processes reconcile the internal rotation of the Sun, its surface lithium abundance, and the helioseismic determination of the envelope helium abundance. We also show that the efficiency of the transport of chemicals required to account for the solar surface lithium abundance also predicts the correct value of helium, independently from a specific transport process.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout







Data availability
The solar lithium abundances used in this paper are publicly available in the papers by Asplund et al.5 and Wang et al.42. The beryllium abundance is publicly available in the paper by Asplund et al.5. The solar inverted rotation profile shown in Fig. 1 is available in the paper by Couvidat et al.58. The Global Oscillations at Low Frequencies (GOLF) dataset used for the frequency ratios is publicly available from Salabert et al.59. The dataset used for the sound speed inversions is publicly available from the Birmingham Solar Oscillation Network (BiSON) network website (http://bison.ph.bham.ac.uk/portal/frequencies) and the Joint Science Operations Center portal (http://jsoc.stanford.edu/MDI/MDI_Global.html). All data obtained within this paper are available from the corresponding author upon reasonable request.
Code availability
The Geneva stellar evolution code is a proprietary software, but all solar evolution models will be made available upon request. The software used to compute the sound speed inversions is publicly available on the following SpaceInn webpage: http://www.spaceinn.eu/data-access/analysis-tools-for-solar-like-oscillators/inversionkit/.
References
Buldgen, G., Salmon, S. & Noels, A. Progress in global helioseismology: a new light on the solar modelling problem and its implications for solar-like stars. Front. Astron. Space Sci. 6, 42 (2019).
Christensen-Dalsgaard, J. Solar structure and evolution. Living Rev. Sol. Phys. 18, 2 (2021).
Grevesse, N. & Noels, A. Cosmic abundances of the elements. In International Symposium on Origin and Evolution of the Elements (eds Prantzos, N. et al.) 15-25 (Cambridge Univ. Press, 1993).
Christensen-Dalsgaard, J. et al. The current state of solar modeling. Science 272, 1286-1292 (1996).
Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Ann. Rev. Astron. Astrophys. 47, 481 (2009).
Basu, S. & Antia, H. M. Helioseismology and solar abundances. Phys. Rep. 457, 217-283 (2008).
Serenelli, A. M., Basu, S., Ferguson, J. W. & Asplund, M. New solar composition: the problem with solar models revisited. Astrophys. J. 705, L123 (2009).
Proffitt, C. R. & Michaud, G. Gravitational settling in solar models. Astrophys. J. 380, 238-250 (1991).
Pinsonneault, M. H., Kawaler, S. D., Sofia, S. & Demarque, P. Evolutionary models of the rotating sun. Astrophys. J. 338, 424-452 (1989).
Charbonnel, C. & Talon, S. Influence of gravity waves on the internal rotation and Li abundance of solar-type stars. Science 309, 2189-2191 (2005).
Eggenberger, P., Maeder, A. & Meynet, G. Stellar evolution with rotation and magnetic fields. IV. The solar rotation profile. Astron. Astrophys. 440, L9 (2005).
Dumont, T. et al. Lithium depletion and angular momentum transport in solar-type stars. Astron. Astrophys. 646, A48 (2021).
Mestel, L. Rotation and stellar evolution. Mon. Not. R. Astron. Soc. 113, 716-745 (1953).
Mestel, L. & Weiss, N. O. Magnetic fields and non-uniform rotation in stellar radiative zones. Mon. Not. R. Astron. Soc. 226, 123-135 (1987).
Charbonneau, P. & MacGregor, K. B. Angular momentum transport in magnetized stellar radiative zones. II. The solar spin-down. Astrophys. J. 417, 762-780 (1993).
Rüdiger, G. & Kitchatinov, L. L. The internal solar rotation in its spin-down history. Astrophys. J. 466, 1078-1086 (1996).
Gough, D. O. & McIntyre, M. E. Inevitability of a magnetic field in the Sun's radiative interior. Nature 394, 755-757 (1998).
Spada, F., Lanzafame, A. C. & Lanza, A. F. A semi-analytic approach to angular momentum transport in stellar radiative interiors. Mon. Not. R. Astron. Soc. 404, 641-660 (2010).
Brun, A. S. & Zahn, J.-P. Magnetic confinement of the solar tachocline. Astron. Astrophys. 457, 665-674 (2006).
Braithwaite, J. & Spruit, H. C. Magnetic fields in non-convective regions of stars. R. Soc. Open Sci. 4, 160271 (2017).
Tayler, R. J. The adiabatic stability of stars containing magnetic fields. I. Toroidal fields. Mon. Not. R. Astron. Soc. 161, 365-380 (1973).
Spruit, H. C. Differential rotation and magnetic fields in stellar interiors. Astron. Astrophys. 349, 189-202 (1999).
Spruit, H. C. Dynamo action by differential rotation in a stably stratified stellar interior. Astron. Astrophys. 381, 923-932 (2002).
Fuller, J., Piro, A. L. & Jermyn, A. S. Slowing the spins of stellar cores. Mon. Not. R. Astron. Soc. 485, 3661-3680 (2019).
Braithwaite, J. A differential rotation driven dynamo in a stably stratified star. Astron. Astrophys. 449, 451-460 (2006).
Zahn, J., Brun, A. S. & Mathis, S. On magnetic instabilities and dynamo action in stellar radiation zones. Astron. Astrophys. 474, 145-154 (2007).
Eggenberger, P., Buldgen, G. & Salmon, S. J. A. J. Rotation rate of the solar core as a key constraint to magnetic angular momentum transport in stellar interiors. Astron. Astrophys. 626, L1 (2019).
Eggenberger, P. et al. The Geneva stellar evolution code. Astrophys. Space Sci. 316, 43-54 (2008).
Paquette, C., Pelletier, C., Fontaine, G. & Michaud, G. Diffusion coefficients for stellar plasmas. Astrophys. J. Suppl. 61, 177-195 (1986).
Zahn, J.-P. Circulation and turbulence in rotating stars. Astron. Astrophys. 265, 115-132 (1992).
Mathis, S. & Zahn, J. P. Transport and mixing in the radiation zones of rotating stars. I. Hydrodynamical processes. Astron. Astrophys. 425, 229-242 (2004).
Maeder, A. & Zahn, J.-P. Stellar evolution with rotation. III. Meridional circulation with μ-gradients and non-stationarity. Astron. Astrophys. 334, 1000-1006 (1998).
Talon, S. & Zahn, J. P. Anisotropic diffusion and shear instabilities. Astron. Astrophys. 317, 749-751 (1997).
Maeder, A. Stellar rotation: evidence for a large horizontal turbulence and its effects on evolution. Astron. Astrophys. 399, 263-269 (2003).
Matt, S. P., Brun, A. S., Baraffe, I., Bouvier, J. & Chabrier, G. The mass-dependence of angular momentum evolution in Sun-like stars. Astrophys. J. 799, L23 (2015).
Chaboyer, B. & Zahn, J.-P. Effect of horizontal turbulent diffusion on transport by meridional circulation. Astron. Astrophys. 253, 173-177 (1992).
Asplund, M., Amarsi, A. M. & Grevesse, N. The chemical make-up of the Sun: a 2020 vision. Astron. Astrophys. 653, A141 (2021).
Montalban, J., Miglio, A., Theado, S., Noels, A. & Grevesse, N. The new solar abundances—Part II: the crisis and possible solutions. Commun. Asteroseismol. 147, 80-84 (2006).
Basu, S. & Antia, H. M. Helium abundance in the solar envelope. Mon. Not. R. Astron. Soc. 276, 1402-1408 (1995).
Pijpers, F. P. & Thompson, M. J. The SOLA method for helioseismic inversion. Astron. Astrophys. 281, 231-240 (1994).
Buldgen, G. et al. Combining multiple structural inversions to constrain the solar modelling problem. Astron. Astrophys. 621, A33 (2019).
Wang, E. X. et al. 3D NLTE spectral line formation of lithium in late-type stars. Mon. Not. R. Astron. Soc. 500, 2159-2176 (2021).
Basu, S. & Antia, H. M. Seismic measurement of the depth of the solar convection zone. Mon. Not. R. Astron. Soc. 287, 189-198 (1997).
Richard, O., Vauclair, S., Charbonnel, C. & Dziembowski, W. A. New solar models including helioseismological constraints and light-element depletion. Astron. Astrophys. 312, 1000-1011 (1996).
Benomar, O., Takata, M., Shibahashi, H., Ceillier, T. & García, R. A. Nearly uniform internal rotation of solar-like main-sequence stars revealed by space-based asteroseismology and spectroscopic measurements. Mon. Not. R. Astron. Soc. 452, 2654-2674 (2015).
Nielsen, M. B., Schunker, H., Gizon, L. & Ball, W. H. Constraining differential rotation of Sun-like stars from asteroseismic and starspot rotation periods. Astron. Astrophys. 582, A10 (2015).
Cantiello, M., Mankovich, C., Bildsten, L., Christensen-Dalsgaard, J. & Paxton, B. Angular momentum transport within evolved low-mass stars. Astrophys. J. 788, 93 (2014).
Eggenberger, P. et al. Asteroseismology of evolved stars to constrain the internal transport of angular momentum. II. Test of a revised prescription for transport by the Tayler instability. Astron. Astrophys. 631, L6 (2019).
den Hartogh, J. W., Eggenberger, P. & Deheuvels, S. Asteroseismology of evolved stars to constrain the internal transport of angular momentum. III. Using the rotation rates of intermediate-mass stars to test the Fuller-formalism. Astron. Astrophys. 634, L16 (2020).
Feiden, G. A. & Chaboyer, B. Magnetic inhibition of convection and the fundamental properties of low-mass stars. I. Stars with a radiative core. Astrophys. J. 779, 183 (2013).
Pinçon, C., Belkacem, K., Goupil, M. J. & Marques, J. P. Can plume-induced internal gravity waves regulate the core rotation of subgiant stars? Astron. Astrophys. 605, A31 (2017).
Christensen-Dalsgaard, J. & Houdek, G. Prospects for asteroseismology. Astrophys. Space Sci. 328, 51-66 (2010).
Ayukov, S. V. & Baturin, V. A. Low-Z solar model: sound speed profile under the convection zone. J. Phys. Conf. Ser. 271, 012033 (2011).
Mathis, S., Palacios, A. & Zahn, J.-P. On shear-induced turbulence in rotating stars. Astron. Astrophys. 425, 243-247 (2004).
Richard, D. & Zahn, J.-P. Turbulence in differentially rotating flows. What can be learned from the Couette–Taylor experiment. Astron. Astrophys. 347, 734-738 (1999).
Mathis, S. et al. Anisotropic turbulent transport in stably stratified rotating stellar radiation zones. Astron. Astrophys. 620, A22 (2018).
Blancard, C., Cossé, P. & Faussurier, G. Solar mixture opacity calculations using detailed configuration and level accounting treatments. Astrophys. J. 745, 10 (2012).
Couvidat, S. et al. The rotation of the deep solar layers. Astrophys. J. 597, L77 (2003).
Salabert, D., García, R. A. & Turck-Chièze, S. Seismic sensitivity to sub-surface solar activity from 18 yr of GOLF/SoHO observations. Astron. Astrophys. 578, A137 (2015).
Carlos, M. et al. The Li-age correlation: the Sun is unusually Li deficient for its age. Mon. Not. R. Astron. Soc. 485, 4052-4059 (2019).
Acknowledgements
We thank T. Dumont and C. Charbonnel for providing us with their compilation of observations of lithium and beryllium abundances available for solar-type stars. P.E. and S.J.A.J.S. have received funding from the European Research Council under the European Union's Horizon 2020 research and innovation programme (grant agreement No 833925, project STAREX). G.B. acknowledges fundings from the SNF AMBIZIONE grant No 185805 (Seismic inversions and modelling of transport processes in stars).
Author information
Authors and Affiliations
Contributions
P.E. led the project with the help from G.B. P.E. computed the models with the Geneva code and G.B. computed the inversions. P.E., G.B., S.J.A.J.S. and A.N. interpreted the data regarding helioseismic constraints and input physics of solar models. N.G. and M.A. interpreted the results in the context of solar spectroscopic abundance determinations. All authors have contributed to the discussion of the results and to the writing of the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks Ana Palacios, Alessandro Lanzafame and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Table 1 and Figs. 1–5.
Rights and permissions
About this article
Cite this article
Eggenberger, P., Buldgen, G., Salmon, S. et al. The internal rotation of the Sun and its link to the solar Li and He surface abundances. Nat Astron 6, 788–795 (2022). https://doi.org/10.1038/s41550-022-01677-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41550-022-01677-0