Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The internal rotation of the Sun and its link to the solar Li and He surface abundances

Abstract

The Sun serves as a natural reference for the modelling of the various physical processes at work in stellar interiors. Helioseismology results, which inform us on the characterization of the interior of the Sun (such as, for example, the helium abundance in its envelope), are, however, at odds with heavy element abundances. Moreover, the solar internal rotation and surface abundance of lithium have always been challenging to explain. We present results of solar models that account for transport of angular momentum and chemicals by both hydrodynamic and magnetic instabilities. We show that these transport processes reconcile the internal rotation of the Sun, its surface lithium abundance, and the helioseismic determination of the envelope helium abundance. We also show that the efficiency of the transport of chemicals required to account for the solar surface lithium abundance also predicts the correct value of helium, independently from a specific transport process.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Rotation profiles in the solar radiative interior for models computed with the AGSS09 photospheric abundances.
Fig. 2: Lithium surface abundance as a function of age for different solar models.
Fig. 3: Beryllium surface abundance as a function of age for different solar models.
Fig. 4: Evolution of the surface helium mass fraction as a function of age for different solar models.
Fig. 5: Relative differences in the squared adiabatic sound speed c2 between the Sun and solar models obtained by inversion.
Fig. 6: Lithium surface abundance as a function of age for the different non-rotating solar models.
Fig. 7: Evolution of the surface helium mass fraction as a function of age for non-rotating solar models.

Similar content being viewed by others

Data availability

The solar lithium abundances used in this paper are publicly available in the papers by Asplund et al.5 and Wang et al.42. The beryllium abundance is publicly available in the paper by Asplund et al.5. The solar inverted rotation profile shown in Fig. 1 is available in the paper by Couvidat et al.58. The Global Oscillations at Low Frequencies (GOLF) dataset used for the frequency ratios is publicly available from Salabert et al.59. The dataset used for the sound speed inversions is publicly available from the Birmingham Solar Oscillation Network (BiSON) network website (http://bison.ph.bham.ac.uk/portal/frequencies) and the Joint Science Operations Center portal (http://jsoc.stanford.edu/MDI/MDI_Global.html). All data obtained within this paper are available from the corresponding author upon reasonable request.

Code availability

The Geneva stellar evolution code is a proprietary software, but all solar evolution models will be made available upon request. The software used to compute the sound speed inversions is publicly available on the following SpaceInn webpage: http://www.spaceinn.eu/data-access/analysis-tools-for-solar-like-oscillators/inversionkit/.

References

  1. Buldgen, G., Salmon, S. & Noels, A. Progress in global helioseismology: a new light on the solar modelling problem and its implications for solar-like stars. Front. Astron. Space Sci. 6, 42 (2019).

    Article  ADS  Google Scholar 

  2. Christensen-Dalsgaard, J. Solar structure and evolution. Living Rev. Sol. Phys. 18, 2 (2021).

    Article  ADS  Google Scholar 

  3. Grevesse, N. & Noels, A. Cosmic abundances of the elements. In International Symposium on Origin and Evolution of the Elements (eds Prantzos, N. et al.) 15-25 (Cambridge Univ. Press, 1993).

  4. Christensen-Dalsgaard, J. et al. The current state of solar modeling. Science 272, 1286-1292 (1996).

  5. Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Ann. Rev. Astron. Astrophys. 47, 481 (2009).

    Article  ADS  Google Scholar 

  6. Basu, S. & Antia, H. M. Helioseismology and solar abundances. Phys. Rep. 457, 217-283 (2008).

  7. Serenelli, A. M., Basu, S., Ferguson, J. W. & Asplund, M. New solar composition: the problem with solar models revisited. Astrophys. J. 705, L123 (2009).

    Article  ADS  Google Scholar 

  8. Proffitt, C. R. & Michaud, G. Gravitational settling in solar models. Astrophys. J. 380, 238-250 (1991).

  9. Pinsonneault, M. H., Kawaler, S. D., Sofia, S. & Demarque, P. Evolutionary models of the rotating sun. Astrophys. J. 338, 424-452 (1989).

  10. Charbonnel, C. & Talon, S. Influence of gravity waves on the internal rotation and Li abundance of solar-type stars. Science 309, 2189-2191 (2005).

  11. Eggenberger, P., Maeder, A. & Meynet, G. Stellar evolution with rotation and magnetic fields. IV. The solar rotation profile. Astron. Astrophys. 440, L9 (2005).

    Article  ADS  Google Scholar 

  12. Dumont, T. et al. Lithium depletion and angular momentum transport in solar-type stars. Astron. Astrophys. 646, A48 (2021).

    Article  Google Scholar 

  13. Mestel, L. Rotation and stellar evolution. Mon. Not. R. Astron. Soc. 113, 716-745 (1953).

  14. Mestel, L. & Weiss, N. O. Magnetic fields and non-uniform rotation in stellar radiative zones. Mon. Not. R. Astron. Soc. 226, 123-135 (1987).

  15. Charbonneau, P. & MacGregor, K. B. Angular momentum transport in magnetized stellar radiative zones. II. The solar spin-down. Astrophys. J. 417, 762-780 (1993).

  16. Rüdiger, G. & Kitchatinov, L. L. The internal solar rotation in its spin-down history. Astrophys. J. 466, 1078-1086 (1996).

  17. Gough, D. O. & McIntyre, M. E. Inevitability of a magnetic field in the Sun's radiative interior. Nature 394, 755-757 (1998).

  18. Spada, F., Lanzafame, A. C. & Lanza, A. F. A semi-analytic approach to angular momentum transport in stellar radiative interiors. Mon. Not. R. Astron. Soc. 404, 641-660 (2010).

  19. Brun, A. S. & Zahn, J.-P. Magnetic confinement of the solar tachocline. Astron. Astrophys. 457, 665-674 (2006).

  20. Braithwaite, J. & Spruit, H. C. Magnetic fields in non-convective regions of stars. R. Soc. Open Sci. 4, 160271 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  21. Tayler, R. J. The adiabatic stability of stars containing magnetic fields. I. Toroidal fields. Mon. Not. R. Astron. Soc. 161, 365-380 (1973).

  22. Spruit, H. C. Differential rotation and magnetic fields in stellar interiors. Astron. Astrophys. 349, 189-202 (1999).

  23. Spruit, H. C. Dynamo action by differential rotation in a stably stratified stellar interior. Astron. Astrophys. 381, 923-932 (2002).

  24. Fuller, J., Piro, A. L. & Jermyn, A. S. Slowing the spins of stellar cores. Mon. Not. R. Astron. Soc. 485, 3661-3680 (2019).

  25. Braithwaite, J. A differential rotation driven dynamo in a stably stratified star. Astron. Astrophys. 449, 451-460 (2006).

  26. Zahn, J., Brun, A. S. & Mathis, S. On magnetic instabilities and dynamo action in stellar radiation zones. Astron. Astrophys. 474, 145-154 (2007).

  27. Eggenberger, P., Buldgen, G. & Salmon, S. J. A. J. Rotation rate of the solar core as a key constraint to magnetic angular momentum transport in stellar interiors. Astron. Astrophys. 626, L1 (2019).

    Article  ADS  Google Scholar 

  28. Eggenberger, P. et al. The Geneva stellar evolution code. Astrophys. Space Sci. 316, 43-54 (2008).

  29. Paquette, C., Pelletier, C., Fontaine, G. & Michaud, G. Diffusion coefficients for stellar plasmas. Astrophys. J. Suppl. 61, 177-195 (1986).

  30. Zahn, J.-P. Circulation and turbulence in rotating stars. Astron. Astrophys. 265, 115-132 (1992).

  31. Mathis, S. & Zahn, J. P. Transport and mixing in the radiation zones of rotating stars. I. Hydrodynamical processes. Astron. Astrophys. 425, 229-242 (2004).

  32. Maeder, A. & Zahn, J.-P. Stellar evolution with rotation. III. Meridional circulation with μ-gradients and non-stationarity. Astron. Astrophys. 334, 1000-1006 (1998).

  33. Talon, S. & Zahn, J. P. Anisotropic diffusion and shear instabilities. Astron. Astrophys. 317, 749-751 (1997).

  34. Maeder, A. Stellar rotation: evidence for a large horizontal turbulence and its effects on evolution. Astron. Astrophys. 399, 263-269 (2003).

  35. Matt, S. P., Brun, A. S., Baraffe, I., Bouvier, J. & Chabrier, G. The mass-dependence of angular momentum evolution in Sun-like stars. Astrophys. J. 799, L23 (2015).

    Article  ADS  Google Scholar 

  36. Chaboyer, B. & Zahn, J.-P. Effect of horizontal turbulent diffusion on transport by meridional circulation. Astron. Astrophys. 253, 173-177 (1992).

  37. Asplund, M., Amarsi, A. M. & Grevesse, N. The chemical make-up of the Sun: a 2020 vision. Astron. Astrophys. 653, A141 (2021).

    Article  ADS  Google Scholar 

  38. Montalban, J., Miglio, A., Theado, S., Noels, A. & Grevesse, N. The new solar abundances—Part II: the crisis and possible solutions. Commun. Asteroseismol. 147, 80-84 (2006).

  39. Basu, S. & Antia, H. M. Helium abundance in the solar envelope. Mon. Not. R. Astron. Soc. 276, 1402-1408 (1995).

  40. Pijpers, F. P. & Thompson, M. J. The SOLA method for helioseismic inversion. Astron. Astrophys. 281, 231-240 (1994).

  41. Buldgen, G. et al. Combining multiple structural inversions to constrain the solar modelling problem. Astron. Astrophys. 621, A33 (2019).

    Article  Google Scholar 

  42. Wang, E. X. et al. 3D NLTE spectral line formation of lithium in late-type stars. Mon. Not. R. Astron. Soc. 500, 2159-2176 (2021).

  43. Basu, S. & Antia, H. M. Seismic measurement of the depth of the solar convection zone. Mon. Not. R. Astron. Soc. 287, 189-198 (1997).

  44. Richard, O., Vauclair, S., Charbonnel, C. & Dziembowski, W. A. New solar models including helioseismological constraints and light-element depletion. Astron. Astrophys. 312, 1000-1011 (1996).

  45. Benomar, O., Takata, M., Shibahashi, H., Ceillier, T. & García, R. A. Nearly uniform internal rotation of solar-like main-sequence stars revealed by space-based asteroseismology and spectroscopic measurements. Mon. Not. R. Astron. Soc. 452, 2654-2674 (2015).

  46. Nielsen, M. B., Schunker, H., Gizon, L. & Ball, W. H. Constraining differential rotation of Sun-like stars from asteroseismic and starspot rotation periods. Astron. Astrophys. 582, A10 (2015).

    Article  ADS  Google Scholar 

  47. Cantiello, M., Mankovich, C., Bildsten, L., Christensen-Dalsgaard, J. & Paxton, B. Angular momentum transport within evolved low-mass stars. Astrophys. J. 788, 93 (2014).

    Article  ADS  Google Scholar 

  48. Eggenberger, P. et al. Asteroseismology of evolved stars to constrain the internal transport of angular momentum. II. Test of a revised prescription for transport by the Tayler instability. Astron. Astrophys. 631, L6 (2019).

    Article  ADS  Google Scholar 

  49. den Hartogh, J. W., Eggenberger, P. & Deheuvels, S. Asteroseismology of evolved stars to constrain the internal transport of angular momentum. III. Using the rotation rates of intermediate-mass stars to test the Fuller-formalism. Astron. Astrophys. 634, L16 (2020).

    Article  ADS  Google Scholar 

  50. Feiden, G. A. & Chaboyer, B. Magnetic inhibition of convection and the fundamental properties of low-mass stars. I. Stars with a radiative core. Astrophys. J. 779, 183 (2013).

    Article  ADS  Google Scholar 

  51. Pinçon, C., Belkacem, K., Goupil, M. J. & Marques, J. P. Can plume-induced internal gravity waves regulate the core rotation of subgiant stars? Astron. Astrophys. 605, A31 (2017).

    Article  ADS  Google Scholar 

  52. Christensen-Dalsgaard, J. & Houdek, G. Prospects for asteroseismology. Astrophys. Space Sci. 328, 51-66 (2010).

  53. Ayukov, S. V. & Baturin, V. A. Low-Z solar model: sound speed profile under the convection zone. J. Phys. Conf. Ser. 271, 012033 (2011).

    Article  Google Scholar 

  54. Mathis, S., Palacios, A. & Zahn, J.-P. On shear-induced turbulence in rotating stars. Astron. Astrophys. 425, 243-247 (2004).

  55. Richard, D. & Zahn, J.-P. Turbulence in differentially rotating flows. What can be learned from the Couette–Taylor experiment. Astron. Astrophys. 347, 734-738 (1999).

  56. Mathis, S. et al. Anisotropic turbulent transport in stably stratified rotating stellar radiation zones. Astron. Astrophys. 620, A22 (2018).

    Article  Google Scholar 

  57. Blancard, C., Cossé, P. & Faussurier, G. Solar mixture opacity calculations using detailed configuration and level accounting treatments. Astrophys. J. 745, 10 (2012).

    Article  ADS  Google Scholar 

  58. Couvidat, S. et al. The rotation of the deep solar layers. Astrophys. J. 597, L77 (2003).

    Article  ADS  Google Scholar 

  59. Salabert, D., García, R. A. & Turck-Chièze, S. Seismic sensitivity to sub-surface solar activity from 18 yr of GOLF/SoHO observations. Astron. Astrophys. 578, A137 (2015).

    Article  ADS  Google Scholar 

  60. Carlos, M. et al. The Li-age correlation: the Sun is unusually Li deficient for its age. Mon. Not. R. Astron. Soc. 485, 4052-4059 (2019).

Download references

Acknowledgements

We thank T. Dumont and C. Charbonnel for providing us with their compilation of observations of lithium and beryllium abundances available for solar-type stars. P.E. and S.J.A.J.S. have received funding from the European Research Council under the European Union's Horizon 2020 research and innovation programme (grant agreement No 833925, project STAREX). G.B. acknowledges fundings from the SNF AMBIZIONE grant No 185805 (Seismic inversions and modelling of transport processes in stars).

Author information

Authors and Affiliations

Authors

Contributions

P.E. led the project with the help from G.B. P.E. computed the models with the Geneva code and G.B. computed the inversions. P.E., G.B., S.J.A.J.S. and A.N. interpreted the data regarding helioseismic constraints and input physics of solar models. N.G. and M.A. interpreted the results in the context of solar spectroscopic abundance determinations. All authors have contributed to the discussion of the results and to the writing of the paper.

Corresponding author

Correspondence to P. Eggenberger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Ana Palacios, Alessandro Lanzafame and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and Figs. 1–5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eggenberger, P., Buldgen, G., Salmon, S. et al. The internal rotation of the Sun and its link to the solar Li and He surface abundances. Nat Astron 6, 788–795 (2022). https://doi.org/10.1038/s41550-022-01677-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01677-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing