Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Joint evolution of equatorial oscillation and interhemispheric circulation in Saturn’s stratosphere

Abstract

Planetary stratospheres are characterized by a subtle interplay between dynamics, radiation and chemistry. Observations of Saturn’s stratosphere have revealed a semi-annual equatorial oscillation of temperature and hinted at an interhemispheric circulation of hydrocarbon species. Both the forcing mechanisms of the former and the existence of the latter have remained debated. Here we use a new troposphere-to-stratosphere Saturn global climate model to argue that those two open questions are intimately connected. Our Saturn climate model reproduces a stratospheric oscillation exhibiting the observed semi-annual period, amplitude and downward propagation. In the same Saturn simulation, a prominent stratospheric summer-to-winter hemispheric circulation develops at the solstices, controlled by both the seasonal radiative gradients and Rossby-wave pumping in the winter-subsiding branch, analogous to Earth’s Brewer–Dobson circulation. Furthermore, we show that Saturn’s equatorial oscillation is driven by the seasonal variability of both the resolved planetary-scale wave activity and the interhemispheric circulation, akin to Earth’s Semi-Annual oscillation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Eddy-to-mean flow interactions at the origin of the time evolution of Saturn’s equatorial oscillation.
Fig. 2: Circulation during different seasons and the main acceleration terms driving it.
Fig. 3: Schematic of the inter-connection between Saturn’s equatorial oscillation and its seasonal interhemispheric circulation.

Similar content being viewed by others

Data availability

Simulation outputs are too data-heavy to be shared in a public repository. A minimal dataset derived from simulation outputs (zonally averaged eddy-to-mean flow interaction diagnostics) is available via IPSL-ESPRI at https://doi.org/10.14768/6494348c-3304-4838-a379-a7ccfefac872.

Code availability

The Python codes developed to produce the transformed Eulerian-mean formalism diagnostics are available via GitHub at https://github.com/aymeric-spiga/dynanalysis.

References

  1. Fouchet, T. et al. An equatorial oscillation in Saturn’s middle atmosphere. Nature 453, 200–202 (2008).

    Article  ADS  Google Scholar 

  2. Orton, G. S. et al. Semi-annual oscillations in Saturn’s low-latitude stratospheric temperatures. Nature 453, 196–199 (2008).

    Article  ADS  Google Scholar 

  3. Guerlet, S. et al. Equatorial oscillation and planetary wave activity in Saturn’s stratosphere through the Cassini epoch. J. Geophys. Res. Planets 123, 246–261 (2018).

    Article  ADS  Google Scholar 

  4. Guerlet, S., Fouchet, T., Bézard, B., Flasar, F. M. & Simon-Miller, A. A. Evolution of the equatorial oscillation in Saturn’s stratosphere between 2005 and 2010 from Cassini/CIRS limb data analysis. Geophys. Res. Lett. 38, L09201 (2011).

    Article  ADS  Google Scholar 

  5. Schinder, P. J. et al. Saturn’s equatorial oscillation: evidence of descending thermal structure from Cassini radio occultations. Geophys. Res. Lett. 38, L08205 (2011).

    Article  ADS  Google Scholar 

  6. Sánchez-Lavega, A. et al. An enduring rapidly moving storm as a guide to Saturn’s equatorial jet’s complex structure. Nat. Commun. 7, 13262 (2016).

    Article  ADS  Google Scholar 

  7. Hueso, R. et al. Saturn atmospheric dynamics one year after Cassini: long-lived features and time variations in the drift of the hexagon. Icarus 336, 113429 (2020).

    Article  Google Scholar 

  8. Simon, A. A., Hueso, R., Sánchez-Lavega, A. & Wong, M. H. Midsummer atmospheric changes in Saturn’s northern hemisphere from the Hubble OPAL program. Planet. Sci. J. 2, 47 (2021).

    Article  Google Scholar 

  9. Lindzen, R. S. & Holton, J. R. A theory of the quasi-biennial oscillation. J. Atmos. Sci. 25, 1095–1107 (1968).

    Article  ADS  Google Scholar 

  10. Andrews, D. G., Mahlman, J. D. & Sinclair, R. W. Eliassen–Palm diagnostics of wave-mean flow interaction in the GFDL ‘SKYHI’ general circulation model. J. Atmos. Sci. 40, 2768–2784 (1983).

    Article  ADS  Google Scholar 

  11. Baldwin, M. P. et al. The quasi-biennial oscillation. Rev. Geophys. 39, 179–229 (2001).

    Article  ADS  Google Scholar 

  12. Leovy, C. B., Friedson, A. J. & Orton, G. S. The quasiquadrennial oscillation of Jupiter’s equatorial stratosphere. Nature 354, 380–382 (1991).

    Article  ADS  Google Scholar 

  13. Orton, G. S. et al. Thermal maps of Jupiter—spatial organization and time dependence of stratospheric temperatures, 1980 to 1990. Science 252, 537–542 (1991).

    Article  ADS  Google Scholar 

  14. Orton, G. S. et al. Spatial organization and time dependence of Jupiter’s tropospheric temperatures, 1980–1993. Science 265, 625–631 (1994).

    Article  ADS  Google Scholar 

  15. Antuñano, A. et al. Fluctuations in Jupiter’s equatorial stratospheric oscillation. Nat. Astron. 5, 71–77 (2021).

    Article  ADS  Google Scholar 

  16. Reed, R. J., Campbell, W. J., Rasmussen, L. A. & Rogers, D. G. Evidence of downward propagating annual wind reversal in the equatorial stratosphere. J. Geophys. Res. 66, 813–818 (1961).

    Article  ADS  Google Scholar 

  17. Burrage, M. D. et al. Long-term variability in the equatorial middle atmosphere zonal wind. J. Geophys. Res. Atmos. 101, 12847–12854 (1996).

    ADS  Google Scholar 

  18. Garcia, R. R., Dunkerton, T. J., Lieberman, R. S. & Vincent, R. A. Climatology of the semiannual oscillation of the tropical middle atmosphere. J. Geophys. Res. Atmos. 102, 26019–26032 (1997).

    Google Scholar 

  19. Showman, A. P., Tan, X. & Zhang, X. Atmospheric circulation of brown dwarfs and Jupiter and Saturn-like planets: zonal jets, long-term variability, and QBO-type oscillations. Astrophys. J. 883, 4 (2019).

    Article  ADS  Google Scholar 

  20. Fletcher, L. N. et al. Disruption of Saturn’s quasi-periodic equatorial oscillation by the great northern storm. Nat. Astron. 1, 765–770 (2017).

    Article  ADS  Google Scholar 

  21. Li, L. et al. Strong jet and a new thermal wave in Saturn’s equatorial stratosphere. Geophys. Res. Lett. 35, L23208 (2008).

    Article  ADS  Google Scholar 

  22. Fletcher, L. N., Irwin, P. G. J., Achterberg, R. K., Orton, G. S. & Flasar, F. M. Seasonal variability of Saturn’s tropospheric temperatures, winds and para-H2 from Cassini far-IR spectroscopy. Icarus 264, 137–159 (2016).

    Article  ADS  Google Scholar 

  23. Guerlet, S., Fouchet, T., Bézard, B., Simon-Miller, A. A. & Michael Flasar, F. Vertical and meridional distribution of ethane, acetylene and propane in Saturn’s stratosphere from CIRS/Cassini limb observations. Icarus 203, 214–232 (2009).

    Article  ADS  Google Scholar 

  24. Guerlet, S. et al. Meridional distribution of CH3C2H and C4H2 in Saturn’s stratosphere from CIRS/Cassini limb and nadir observations. Icarus 209, 682–695 (2010).

    Article  ADS  Google Scholar 

  25. Sinclair, J. A. et al. Seasonal variations of temperature, acetylene and ethane in Saturn’s atmosphere from 2005 to 2010, as observed by Cassini-CIRS. Icarus 225, 257–271 (2013).

    Article  ADS  Google Scholar 

  26. Fletcher, L. N. et al. Seasonal evolution of Saturn’s polar temperatures and composition. Icarus 250, 131–153 (2015).

    Article  ADS  Google Scholar 

  27. Sylvestre, M. et al. Seasonal changes in Saturn’s stratosphere inferred from Cassini/CIRS limb observations. Icarus 258, 224–238 (2015).

    Article  ADS  Google Scholar 

  28. Sinclair, J. A. et al. From Voyager-IRIS to Cassini-CIRS: interannual variability in Saturn’s stratosphere? Icarus 233, 281–292 (2014).

    Article  ADS  Google Scholar 

  29. Friedson, A. J. & Moses, J. I. General circulation and transport in Saturn’s upper troposphere and stratosphere. Icarus 218, 861–875 (2012).

    Article  ADS  Google Scholar 

  30. Bardet, D. et al. Global climate modeling of Saturn’s atmosphere. Part IV: stratospheric equatorial oscillation. Icarus 354, 114042 (2021).

    Article  Google Scholar 

  31. Spiga, A. et al. Global climate modeling of Saturn’s atmosphere. Part II: multi-annual high-resolution dynamical simulations. Icarus 335, 113377 (2020).

    Article  Google Scholar 

  32. Wheeler, M. & Kiladis, G. N. Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci. 56, 374–399 (1999).

    Article  ADS  Google Scholar 

  33. Haynes, P. H., McIntyre, M. E., Shepherd, T. G., Marks, C. J. & Shine, K. P. On the ‘downward control’ of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci. 48, 651–680 (1991).

    Article  ADS  Google Scholar 

  34. Plumb, R. A. Stratospheric transport. J. Meteorol. Soc. Jpn 80, 793–809 (2002).

    Article  Google Scholar 

  35. Seviour, W. J. M., Butchart, N. & Hardiman, S. C. The Brewer–Dobson circulation inferred from ERA-Interim. Q. J. R. Meteorol. Soc. 138, 878–888 (2012).

    Article  ADS  Google Scholar 

  36. Butchart, N. The Brewer–Dobson circulation. Rev. Geophys. 52, 157–184 (2014).

    Article  ADS  Google Scholar 

  37. Kinnersley, J. S. & Pawson, S. The descent rates of the shear zones of the equatorial QBO. J. Atmos. Sci. 53, 1937–1949 (1996).

    Article  ADS  Google Scholar 

  38. Dunkerton, T. On the role of the Kelvin wave in the westerly phase of the semiannual zonal wind oscillation. J. Atmos. Sci. 36, 32–41 (1979).

    Article  ADS  Google Scholar 

  39. Dunkerton, T. J. Nonlinear propagation of zonal winds in an atmosphere with Newtonian cooling and equatorial wavedriving. J. Atmos. Sci. 48, 236–263 (1991).

    Article  ADS  Google Scholar 

  40. Dunkerton, T. J. The role of gravity waves in the quasi-biennial oscillation. J. Geophys. Res. Atmos. 102, 26053–26076 (1997).

    Article  ADS  Google Scholar 

  41. Friedson, A. J. New observations and modelling of a QBO-like oscillation in Jupiter’s stratosphere. Icarus 137, 34–55 (1999).

    Article  ADS  Google Scholar 

  42. Li, X. & Read, P. L. A mechanistic model of the quasi-quadrennial oscillation in Jupiter’s stratosphere. Planet. Space Sci. 48, 637–669 (2000).

    Article  ADS  Google Scholar 

  43. Cosentino, R. G. et al. New observations and modeling of Jupiter’s quasi-quadrennial oscillation. J. Geophys. Res. Planets 122, 2719–2744 (2017).

    Article  ADS  Google Scholar 

  44. Fletcher, L. N. et al. Thermal structure and dynamics of Saturn’s northern springtime disturbance. Science 332, 1413–1417 (2011).

    Article  ADS  Google Scholar 

  45. Sánchez-Lavega, A. et al. Deep winds beneath Saturn’s upper clouds from a seasonal long-lived planetary-scale storm. Nature 475, 71–74 (2011).

    Article  ADS  Google Scholar 

  46. Sànchez-Lavega, A. et al. in Saturn in the 21st Century (eds Baines, K. H. et al.) 377–416 (Cambridge Univ. Press, 2018); https://doi.org/10.1017/9781316227220.013

  47. Cavalié, T. et al. First direct measurement of auroral and equatorial jets in the stratosphere of Jupiter. Astron. Astrophys. 647, L8 (2021).

    Article  ADS  Google Scholar 

  48. Benmahi, B. et al. Mapping the zonal winds of Jupiter’s stratospheric equatorial oscillation. Astron. Astrophys. 652, A125 (2021).

    Article  Google Scholar 

  49. Dubos, T. et al. DYNAMICO-1.0, an icosahedral hydrostatic dynamical core designed for consistency and versatility. Geosci. Model Dev. 8, 3131–3150 (2015).

    Article  ADS  Google Scholar 

  50. Meurdesoif, Y. XIOS. In Workshop on Scalable IO in Climate Models (2012); http://forge.ipsl.jussieu.fr/ioserver/raw-attachment/wiki/WikiStart/XIOS_IO_Workshop_Hamburg.pdf

  51. Meurdesoif, Y. XIOS. In Second Workshop on Coupling Technologies for Earth System Models (2013); http://forge.ipsl.jussieu.fr/ioserver/raw-attachment/wiki/WikiStart/XIOS-BOULDER.pdf

  52. Guerlet, S. et al. Global climate modeling of Saturn’s atmosphere. Part I: evaluation of the radiative transfer model. Icarus 238, 110–124 (2014).

    Article  ADS  Google Scholar 

  53. Wordsworth, R. D. et al. Is Gliese 581d habitable? Some constraints from radiative-convective climate modeling. Astron. Astrophys. 522, A22 (2010).

    Article  Google Scholar 

  54. Charnay, B. et al. Exploring the faint young Sun problem and the possible climates of the Archean Earth with a 3-D GCM. J. Geophys. Res. Atmos. 118, 10414–10431 (2013).

    Article  Google Scholar 

  55. Leconte, J. et al. 3D climate modeling of close-in land planets: circulation patterns, climate moist bistability, and habitability. Astron. Astrophys. 554, A69 (2013).

    Article  Google Scholar 

  56. Rothman, L. S. et al. The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013).

    Article  ADS  Google Scholar 

  57. Wordsworth, R. Transient conditions for biogenesis on low-mass exoplanets with escaping hydrogen atmospheres. Icarus 219, 267–273 (2012).

    Article  ADS  Google Scholar 

  58. Mellor, G. L. & Yamada, T. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys. 20, 851 (1982).

    Article  ADS  Google Scholar 

  59. Hourdin, F., Le van, P., Forget, F. & Talagrand, O. Meteorological variability and the annual surface pressure cycle on Mars. J. Atmos. Sci. 50, 3625–3640 (1993).

    Article  ADS  Google Scholar 

  60. Cabanes, S., Spiga, A. & Young, R. M. B. Global climate modelling of Saturn’s atmosphere. Part III: global statistical picture of zonostrophic turbulence in high-resolution 3D-turbulent simulations. Icarus 345, 113705 (2020).

    Article  Google Scholar 

  61. Kiladis, G. N., Wheeler, M. C., Haertel, P. T., Straub, K. H. & Roundy, P. E. Convectively coupled equatorial waves. Rev. Geophys. 47, RG2003 (2009).

    Article  ADS  Google Scholar 

  62. Maury, P. & Lott, F. On the presence of equatorial waves in the lower stratosphere of a general circulation model. Atmos. Chem. Phys. 14, 1869–1880 (2014).

    Article  ADS  Google Scholar 

  63. Andrews, D. G., Holton, J. R. & Leovy, C. B. Middle Atmosphere Dynamics (Academic Press, 1987).

  64. Vallis, G. K. Atmospheric and Oceanic Fluid Dynamics (Cambridge University Press, 2006).

Download references

Acknowledgements

The authors acknowledge the exceptional computing support from the Grand Equipement National de Calcul Intensif and the Centre Informatique National de l’Enseignement Supérieur (CINES). All the simulations presented here were carried out on the Occigen cluster hosted at CINES. This work was granted access to the high-performance computing resources of CINES under the allocation A0080110391. D.B., A.S. and S.G. acknowledge funding from the Agence Nationale de la Recherche, project EMERGIANT ANR-17-CE31-0007. The authors acknowledge T. Dubos, Y. Meurdesoif and E. Millour for key contributions in developing the DYNAMICO-Saturn model, F. Lott for insightful comments on terrestrial stratospheric dynamics and T. Fouchet for long-standing support of modelling studies of Saturn’s stratosphere.

Author information

Authors and Affiliations

Authors

Contributions

D.B. performed the simulations, carried out the analysis (including figures), interpreted the results and led the manuscript writing. A.S. and D.B. developed the post-processing calculations. A.S. and S.G. contributed to discussion and interpretation of the results. All authors designed the methodology and contributed to the manuscript.

Corresponding author

Correspondence to Deborah Bardet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Ricardo Hueso, Glenn Orton and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Temperature phase of modelled Saturn’s equatorial oscillation.

Zonal-mean temperature profiles for two different times to highlight temperature oscillation phases change. These profiles are averaged between ± 2° of latitude.

Extended Data Fig. 2 Descent over time of equatorial temperature anomalies.

Altitude/latitude sections of zonal-mean temperature departures from mean temperature, which varies with seasons in Saturn’s stratosphere at six dates for the ninth simulated Saturn year. To see the variations of the descent of the temperature anomalies over 10 Saturn years, we refer the reader to the video in DOI data center repository here: https://doi.org/10.14768/6494348c-3304-4838-a379-a7ccfefac872.

Extended Data Fig. 3 Vertical structure of temperature anomalies at and surrounding the equator.

Altitude-time cross section of the zonal-mean temperature anomalies at (a) 11°N, at (b) the equator and at (c) 11°S for the tenth simulated Saturn years.

Extended Data Fig. 4 Differences of zonal-mean temperature at two different planetocentric latitudes over time to highlight the equatorial oscillation periodicity.

These figures were produced so as to be comparable to ground-based observations and can be compared to ref. 2. the temperature was averaged between 100 and 200 Pa to account for the coarse vertical resolution of nadir observations, and were also averaged from 0 to ± 3° and from ± 10 and ± 12° of latitude to emulate the 3° spatial resolution of these observations. Then, we compute temperature differences between the average 0 − 3°N and the average 10 − 12°N (denoted by blue line) and between the average 0 − 3°S and the average 10 − 12°S (denoted by red line).

Extended Data Fig. 5 Seasonal activity of planetary-scale waves around ± 30° of latitude to highlight Rossby waves surf zones driving the main downward branch of the seasonal inter-hemispheric circulation.

Two-dimensional Fourier transforms32of the symmetric component of u - (a) and (b) northern winter from Ls=250° to Ls=340°, (c) and (d) northern spring from Ls=340° to Ls=70°, (e) and (f) northern summer from Ls=70° to Ls=160° and (g) and (h) northern autumn from Ls=160° to Ls=250°- at 100 Pa. Gray shaded areas depict the waves identified by the spectral analysis. Colour curves represent relation dispersion from the linear theory. Seven equivalent depths are used for theoretical curves: 5 km (cyan), 10 km (blue),20 km (purple), 50 km (magenta), 100 km (red), 200 km (light green), 500 km (dark green).

Extended Data Fig. 6 Equatorial eddy- and RMC-forcing during the northern winter season.

Northern winter seasonal mean (Ls=250°to Ls=340°) of RMC (a) and of the eddy-kinetic energy (b), defined by EKE =1/2(u’2+v’2), superimposed to the residual mean circulation (v*, ω* in streamlines) for a typical simulated year from DYNAMICO-Saturn. The associated spectra are shown in A.6c to identify waves involved in the interplay between Saturn’s equatorial oscillation and Saturn’s inter-hemispheric circulation.

Extended Data Fig. 7 Equatorial eddy- and RMC- forcing during the northern spring season.

Same as Extended Data Fig. 6 for northern spring seasonal mean (Ls=340° to Ls=70°).

Extended Data Fig. 8 Equatorial eddy- and RMC-forcing during the northern summer season.

Same as Extended Data Fig. 6 for northern summer seasonal mean (Ls=70° to Ls=160°).

Extended Data Fig. 9 Equatorial eddy- and RMC-forcing during the northern autumn season.

Same as Extended Data Fig. 6 for northern autumn seasonal mean (Ls=190° to Ls=280°). The seasonal mean for the autumn equinox is shift by 30° of Ls to clearly brought out the fall overturn, that occurs later is the season compared to the spring overturn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bardet, D., Spiga, A. & Guerlet, S. Joint evolution of equatorial oscillation and interhemispheric circulation in Saturn’s stratosphere. Nat Astron 6, 804–811 (2022). https://doi.org/10.1038/s41550-022-01670-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01670-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing