Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Observational constraints on stellar feedback in dwarf galaxies

Abstract

Feedback to the interstellar medium from ionizing radiation, stellar winds and supernovae is central to regulating star formation in galaxies. Owing to their low mass (<109 solar masses), dwarf galaxies are particularly susceptible to such processes, making them ideal sites for studying the detailed physics of feedback. In this Perspective, we summarize the latest observational evidence for feedback from star-forming regions and how this feedback drives the formation of ‘superbubbles’ and galaxy-wide winds. We discuss the important role of external ionizing radiation—reionization—for the smallest galaxies, and the observational evidence that this feedback directly impacts galaxy properties such as their star formation histories, metal contents, colours, sizes, morphologies and even their inner dark matter densities. We conclude with a look to the future, summarizing the key questions that remain to be answered and listing some of the outstanding challenges for galaxy formation theories.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Images of Messier 82 and the 30 Doradus star-forming region in the LMC.
Fig. 2: H i image and rotation curves of the nearby dwarf irregular galaxy IC1613.
Fig. 3: Latest observational constraints on bursty star formation in dwarf galaxies.
Fig. 4: Mass-loading rates as a function of stellar mass from several recent studies of outflows in dwarf galaxies.
Fig. 5: The observed stellar [Fe/H]–MV relation for dwarf galaxies.

Similar content being viewed by others

Data availability

All the data that support the findings of this study are taken from published works (referenced in the text) and are collated into a GitHub repository at https://github.com/justinread/feedback_perspective.

Code availability

The code needed to reproduce all figures in this Perspective is available via GitHub at https://github.com/justinread/feedback_perspective.

References

  1. Tacconi, L. J., Genzel, R. & Sternberg, A. The evolution of the star-forming interstellar medium across cosmic time. Annu. Rev. Astron. Astrophys. 58, 157–203 (2020).

    Article  ADS  Google Scholar 

  2. Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).

    Article  ADS  Google Scholar 

  3. Efstathiou, G. Suppressing the formation of dwarf galaxies via photoionization. Mon. Not. R. Astron. Soc. 256, 43P–47P (1992).

    Article  ADS  Google Scholar 

  4. Wise, J. H. An introductory review on cosmic reionization. Preprint at https://arxiv.org/abs/1907.06653 (2019).

  5. Agertz, O., Kravtsov, A. V., Leitner, S. N. & Gnedin, N. Y. Toward a complete accounting of energy and momentum from stellar feedback in galaxy formation simulations. Astrophys. J. 770, 25 (2013).

    Article  ADS  Google Scholar 

  6. Sijacki, D., Springel, V., Di Matteo, T. & Hernquist, L. A unified model for AGN feedback in cosmological simulations of structure formation. Mon. Not. R. Astron. Soc. 380, 877–900 (2007).

    Article  ADS  Google Scholar 

  7. Luisi, M. et al. Stellar feedback and triggered star formation in the prototypical bubble RCW 120. Science Advances 7, eabe9511 (2021).

    Article  ADS  Google Scholar 

  8. Fraternali, F., Marasco, A., Marinacci, F. & Binney, J. Ionized absorbers as evidence for supernova-driven cooling of the lower galactic corona. Astrophys. J. Lett. 764, L21 (2013).

    Article  ADS  Google Scholar 

  9. Hobbs, A., Read, J. & Nicola, A. Growing galaxies via superbubble-driven accretion flows. Mon. Not. R. Astron. Soc. 452, 3593–3609 (2015).

    Article  ADS  Google Scholar 

  10. Fraternali, F. in Gas Accretion Onto Galaxies Astrophysics and Space Science Library Vol. 430 (eds Fox, A. & Davé, R.) 323–353 (2017).

  11. Vulcani, B. et al. GASP. VII. Signs of gas inflow onto a lopsided galaxy. Astrophys. J. 852, 94 (2018).

    Article  ADS  Google Scholar 

  12. Read, J. I. & Trentham, N. The baryonic mass function of galaxies. Phil. Trans. R. Soc. Lond. A 363, 2693 (2005).

    ADS  Google Scholar 

  13. Mathews, W. G. & Baker, J. C. Galactic winds. Astrophys. J. 170, 241 (1971).

    Article  ADS  Google Scholar 

  14. Larson, R. B. Effects of supernovae on the early evolution of galaxies. Mon. Not. R. Astron. Soc. 169, 229–246 (1974).

    Article  ADS  Google Scholar 

  15. Dekel, A. & Silk, J. The origin of dwarf galaxies, cold dark matter, and biased galaxy formation. Astrophys. J. 303, 39 (1986).

    Article  ADS  Google Scholar 

  16. Navarro, J. F., Eke, V. R. & Frenk, C. S. The cores of dwarf galaxy haloes. Mon. Not. R. Astron. Soc. 283, L72–L78 (1996).

    Article  ADS  Google Scholar 

  17. Read, J. I. & Gilmore, G. Mass loss from dwarf spheroidal galaxies: the origins of shallow dark matter cores and exponential surface brightness profiles. Mon. Not. R. Astron. Soc. 356, 107–124 (2005).

    Article  ADS  Google Scholar 

  18. Governato, F. et al. Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows. Nature 463, 203–206 (2010).

    Article  ADS  Google Scholar 

  19. Pontzen, A. & Governato, F. How supernova feedback turns dark matter cusps into cores. Mon. Not. R. Astron. Soc. 421, 3464–3471 (2012).

    Article  ADS  Google Scholar 

  20. Read, J. I., Agertz, O. & Collins, M. L. M. Dark matter cores all the way down. Mon. Not. R. Astron. Soc. 459, 2573–2590 (2016).

    Article  ADS  Google Scholar 

  21. Read, J. I., Walker, M. G. & Steger, P. Dark matter heats up in dwarf galaxies. Mon. Not. R. Astron. Soc. 484, 1401–1420 (2019).

    Article  ADS  Google Scholar 

  22. Bouché, N. F. et al. The MUSE Extremely Deep Field: evidence for SFR-induced cores in dark-matter dominated galaxies at z = 11. Astron. Astrophys. 658, A76 (2022).

    Article  Google Scholar 

  23. Sharma, G., Salucci, P. & van de Ven, G. Observational evidence of evolving dark matter profiles at z≤1. Preprint at https://arxiv.org/abs/2109.14224 (2021).

  24. Brown, T. M. et al. The quenching of the ultra-faint dwarf galaxies in the reionization era. Astrophys. J. 796, 91 (2014).

    Article  ADS  Google Scholar 

  25. Reines, A. E. Hunting for massive black holes in dwarf galaxies. Nat. Astron. 6, 26–34 (2022).

  26. Krumholz, M. R., McKee, C. F. & Bland-Hawthorn, J. Star clusters across cosmic time. Annu. Rev. Astron. Astrophys. 57, 227–303 (2019).

    Article  ADS  Google Scholar 

  27. Lopez, L. A., Krumholz, M. R., Bolatto, A. D., Prochaska, J. X. & Ramirez-Ruiz, E. What drives the expansion of giant H II regions? A study of stellar feedback in 30 Doradus. Astrophys. J. 731, 91 (2011).

    Article  ADS  Google Scholar 

  28. Lopez, L. A. et al. The role of stellar feedback in the dynamics of H II regions. Astrophys. J. 795, 121 (2014).

    Article  ADS  Google Scholar 

  29. Stevens, I. R., Read, A. M. & Bravo-Guerrero, J. First-look XMM-Newton EPIC observations of the prototypical starburst galaxy M82. Mon. Not. R. Astron. Soc. 343, L47–L52 (2003).

    Article  ADS  Google Scholar 

  30. Smith, N. Mass loss: its effect on the evolution and fate of high-mass stars. Annu. Rev. Astron. Astrophys. 52, 487–528 (2014).

    Article  ADS  Google Scholar 

  31. Kavanagh, P. J. Thermal and non-thermal X-ray emission from stellar clusters and superbubbles. Astrophys. Space Sci. 365, 6 (2020).

    Article  ADS  Google Scholar 

  32. Hopkins, P. F., Quataert, E. & Murray, N. Stellar feedback in galaxies and the origin of galaxy-scale winds. Mon. Not. R. Astron. Soc. 421, 3522–3537 (2012).

    Article  ADS  Google Scholar 

  33. Keller, B. W., Wadsley, J., Benincasa, S. M. & Couchman, H. M. P. A superbubble feedback model for galaxy simulations. Mon. Not. R. Astron. Soc. 442, 3013–3025 (2014).

    Article  ADS  Google Scholar 

  34. Oey, M. S., Groves, B., Staveley-Smith, L. & Smith, R. C. The H I environment of three superbubbles in the Large Magellanic Cloud. Astron. J. 123, 255–268 (2002).

    Article  ADS  Google Scholar 

  35. Martin, C. L. The impact of star formation on the interstellar medium in dwarf galaxies. II. The formation of galactic winds. Astrophys. J. 506, 222–252 (1998).

    Article  ADS  Google Scholar 

  36. De Horta, A. Y. et al. Multi-frequency observations of a superbubble in the LMC: the case of LHA 120-N 70. Astron. J. 147, 162 (2014).

    Article  ADS  Google Scholar 

  37. Pokhrel, N. R., Simpson, C. E. & Bagetakos, I. A catalog of holes and shells in the interstellar medium of the LITTLE THINGS dwarf galaxies. Astron. J. 160, 66 (2020).

    Article  ADS  Google Scholar 

  38. Dib, S. & Burkert, A. On the origin of the H I holes in the interstellar medium of dwarf irregular galaxies. Astrophys. J. 630, 238–249 (2005).

    Article  ADS  Google Scholar 

  39. Rhode, K. L., Salzer, J. J., Westpfahl, D. J. & Radice, L. A. A test of the standard hypothesis for the origin of the H I holes in Holmberg II. Astron. J. 118, 323–336 (1999).

    Article  ADS  Google Scholar 

  40. Silich, S. et al. On the neutral gas distribution and kinematics in the dwarf irregular galaxy IC 1613. Astron. Astrophys. 448, 123–131 (2006).

    Article  ADS  Google Scholar 

  41. Borissova, J., Kurtev, R., Georgiev, L. & Rosado, M. A catalogue of OB associations in IC 1613. Astron. Astrophys. 413, 889–893 (2004).

    Article  ADS  Google Scholar 

  42. Zheng, Y. et al. Tentative detection of the circumgalactic medium of the isolated low-mass dwarf galaxy WLM. Mon. Not. R. Astron. Soc. 490, 467–477 (2019).

    Article  ADS  Google Scholar 

  43. Westmoquette, M. S., Smith, L. J. & Gallagher, J. S. Studying the galactic outflow in NGC 1569. Mon. Not. R. Astron. Soc. 383, 864–878 (2008).

    Article  ADS  Google Scholar 

  44. McQuinn, K. B. W., Skillman, E. D., Heilman, T. N., Mitchell, N. P. & Kelley, T. Galactic outflows, star formation histories, and time-scales in starburst dwarf galaxies from STARBIRDS. Mon. Not. R. Astron. Soc. 477, 3164–3177 (2018).

    Article  ADS  Google Scholar 

  45. Lynds, C. R. & Sandage, A. R. Evidence for an explosion in the center of the galaxy M82. Astrophys. J. 137, 1005 (1963).

    Article  ADS  Google Scholar 

  46. Schwartz, C. M. & Martin, C. L. A Keck/HIRES study of kinematics of the cold interstellar medium in dwarf starburst galaxies. Astrophys. J. 610, 201–212 (2004).

    Article  ADS  Google Scholar 

  47. McQuinn, K. B. W., van Zee, L. & Skillman, E. D. Galactic winds in low-mass galaxies. Astrophys. J. 886, 74 (2019).

    Article  ADS  Google Scholar 

  48. Veilleux, S., Cecil, G. & Bland-Hawthorn, J. Galactic winds. Annu. Rev. Astron. Astrophys. 43, 769–826 (2005).

    Article  ADS  Google Scholar 

  49. Martin, C. L.The Role of Galactic Winds in Galaxy Formation 337–362 (Springer, 2006).

  50. Martin, C. L., Kobulnicky, H. A. & Heckman, T. M. The metal content of dwarf starburst winds: results from Chandra observations of NGC 1569. Astrophys. J. 574, 663–692 (2002).

    Article  ADS  Google Scholar 

  51. Strickland, D. K. & Heckman, T. M. Supernova feedback efficiency and mass loading in the starburst and galactic superwind exemplar M82. Astrophys. J. 697, 2030–2056 (2009).

    Article  ADS  Google Scholar 

  52. Summers, L. K., Stevens, I. R., Strickland, D. K. & Heckman, T. M. Chandra observation of NGC 4449: analysis of the X-ray emission from a dwarf starburst galaxy. Mon. Not. R. Astron. Soc. 342, 690–708 (2003).

    Article  ADS  Google Scholar 

  53. Heckman, T. M., Alexandroff, R. M., Borthakur, S., Overzier, R. & Leitherer, C. The systematic properties of the warm phase of starburst-driven galactic winds. Astrophys. J. 809, 147 (2015).

    Article  ADS  Google Scholar 

  54. Chisholm, J., Tremonti, C. A., Leitherer, C. & Chen, Y. The mass and momentum outflow rates of photoionized galactic outflows. Mon. Not. R. Astron. Soc. 469, 4831–4849 (2017).

    Article  ADS  Google Scholar 

  55. Meurer, G. R., Freeman, K. C., Dopita, M. A. & Cacciari, C. NGC 1705. I. Stellar populations and mass loss via a galactic wind. Astron. J. 103, 60 (1992).

    Article  ADS  Google Scholar 

  56. Chisholm, J. et al. Do galaxies that leak ionizing photons have extreme outflows? Astron. Astrophys. 605, A67 (2017).

    Article  Google Scholar 

  57. Krieger, N. et al. The molecular outflow in NGC 253 at a resolution of two parsecs. Astrophys. J. 881, 43 (2019).

    Article  ADS  Google Scholar 

  58. Lelli, F., Verheijen, M. & Fraternali, F. Dynamics of starbursting dwarf galaxies. III. A H I study of 18 nearby objects. AAP 566, A71 (2014).

    Article  ADS  Google Scholar 

  59. Leroy, A. K. et al. The multi-phase cold fountain in M82 revealed by a wide, sensitive map of the molecular interstellar medium. Astrophys. J. 814, 83 (2015).

    Article  ADS  Google Scholar 

  60. Krieger, N. et al. NOEMA high-fidelity imaging of the molecular gas in and around M82. Astrophys. J. Lett. 915, L3 (2021).

    Article  ADS  Google Scholar 

  61. Pandya, V. et al. Characterizing mass, momentum, energy, and metal outflow rates of multiphase galactic winds in the FIRE-2 cosmological simulations. Mon. Not. R. Astron. Soc. 508, 2979–3008 (2021).

    Article  ADS  Google Scholar 

  62. Booth, C. M., Agertz, O., Kravtsov, A. V. & Gnedin, N. Y. Simulations of disk galaxies with cosmic ray driven galactic winds. Astrophys. J. Lett. 777, L16 (2013).

    Article  ADS  Google Scholar 

  63. Tolstoy, E., Hill, V. & Tosi, M. Star-formation histories, abundances, and kinematics of dwarf galaxies in the Local Group. Annu. Rev. Astron. Astrophys. 47, 371–425 (2009).

    Article  ADS  Google Scholar 

  64. Weisz, D. R. et al. The ACS Nearby Galaxy Survey Treasury. VIII. The global star formation histories of 60 dwarf galaxies in the Local Volume. Astrophys. J. 739, 5 (2011).

    Article  ADS  Google Scholar 

  65. Weisz, D. R. et al. The star formation history of Leo T from Hubble Space Telescope imaging. Astrophys. J. 748, 88 (2012).

    Article  ADS  Google Scholar 

  66. Weisz, D. R. et al. The star formation histories of Local Group dwarf galaxies. III. Characterizing quenching in low-mass galaxies. Astrophys. J. 804, 136 (2015).

    Article  ADS  Google Scholar 

  67. Weisz, D. R. et al. The star formation histories of Local Group dwarf galaxies. II. Searching for signatures of reionization. Astrophys. J. 789, 148 (2014).

    Article  ADS  Google Scholar 

  68. Weisz, D. R. et al. Comparing M31 and Milky Way satellites: the extended star formation histories of Andromeda II and Andromeda XVI. Astrophys. J. 789, 24 (2014).

    Article  ADS  Google Scholar 

  69. de Boer, T. J. L. et al. The episodic star formation history of the Carina dwarf spheroidal galaxy. aap 572, A10 (2014).

    Google Scholar 

  70. McQuinn, K. B. W. et al. The nature of starbursts. I. The star formation histories of eighteen nearby starburst dwarf galaxies. Astrophys. J. 721, 297–317 (2010).

    Article  ADS  Google Scholar 

  71. Gallart, C. et al. The star formation history of Eridanus II: on the role of supernova feedback in the quenching of ultrafaint dwarf galaxies. Astrophys. J. 909, 192 (2021).

    Article  ADS  Google Scholar 

  72. Rusakov, V. et al. The bursty star formation history of the Fornax dwarf spheroidal galaxy revealed with the HST. Mon. Not. R. Astron. Soc. 502, 642–661 (2021).

    Article  ADS  Google Scholar 

  73. McQuinn, K. B. W. et al. The nature of starbursts. II. The duration of starbursts in dwarf galaxies. Astrophys. J. 724, 49–58 (2010).

    Article  ADS  Google Scholar 

  74. Ciampa, D. A. et al. Mapping the supernovae driven winds of the Large Magellanic Cloud in Hα emission I. Astrophys. J. 908, 62 (2021).

    Article  ADS  Google Scholar 

  75. McQuinn, K. B. W., Skillman, E. D., Dolphin, A. E. & Mitchell, N. P. Calibrating UV star formation rates for dwarf galaxies from STARBIRDS. Astrophys. J. 808, 109 (2015).

    Article  ADS  Google Scholar 

  76. Muratov, A. L. et al. Gusty, gaseous flows of FIRE: galactic winds in cosmological simulations with explicit stellar feedback. Mon. Not. R. Astron. Soc. 454, 2691–2713 (2015).

    Article  ADS  Google Scholar 

  77. Hu, C.-Y., Naab, T., Glover, S. C. O., Walch, S. & Clark, P. C. Variable interstellar radiation fields in simulated dwarf galaxies: supernovae versus photoelectric heating. Mon. Not. R. Astron. Soc. 471, 2151–2173 (2017).

    Article  ADS  Google Scholar 

  78. Hu, C.-Y. Supernova-driven winds in simulated dwarf galaxies. Mon. Not. R. Astron. Soc. 483, 3363–3381 (2019).

    Article  ADS  Google Scholar 

  79. Smith, M. C. et al. Efficient early stellar feedback can suppress galactic outflows by reducing supernova clustering. Mon. Not. R. Astron. Soc. 506, 3882–3915 (2021).

    Article  ADS  Google Scholar 

  80. Read, J. I. & Erkal, D. Abundance matching with the mean star formation rate: there is no missing satellites problem in the Milky Way above M200 ~ 109 M. Mon. Not. R. Astron. Soc. 487, 5799–5812 (2019).

    Article  ADS  Google Scholar 

  81. Mashchenko, S., Wadsley, J. & Couchman, H. M. P. Stellar feedback in dwarf galaxy formation. Science 319, 174 (2008).

    Article  ADS  Google Scholar 

  82. Teyssier, R., Pontzen, A., Dubois, Y. & Read, J. I. Cusp-core transformations in dwarf galaxies: observational predictions. Mon. Not. R. Astron. Soc. 429, 3068–3078 (2013).

    Article  ADS  Google Scholar 

  83. Wise, J. H. et al. The birth of a galaxy - III. Propelling reionization with the faintest galaxies. Mon. Not. R. Astron. Soc. 442, 2560–2579 (2014).

    Article  ADS  Google Scholar 

  84. Oñorbe, J. et al. Forged in FIRE: cusps, cores and baryons in low-mass dwarf galaxies. Mon. Not. R. Astron. Soc. 454, 2092–2106 (2015).

    Article  ADS  Google Scholar 

  85. Agertz, O. et al. EDGE: the mass-metallicity relation as a critical test of galaxy formation physics. Mon. Not. R. Astron. Soc. 491, 1656–1672 (2020).

    Article  ADS  Google Scholar 

  86. Jahn, E. D. et al. Real and counterfeit cores: how feedback expands halos and disrupts tracers of inner gravitational potential in dwarf galaxies. Preprint at https://arxiv.org/abs/2110.00142 (2021).

  87. Gutcke, T. A., Pakmor, R., Naab, T. & Springel, V. LYRA - I. Simulating the multiphase ISM of a dwarf galaxy with variable energy supernovae from individual stars. Mon. Not. R. Astron. Soc. 501, 5597–5615 (2021).

    ADS  Google Scholar 

  88. Sales, L. V., Wetzel, A. & Fattahi. A. Baryonic solutions and challenges for cosmological models of dwarf galaxies. Nat. Astron. (in the press).

  89. Noël, N. E. D. et al. Old main-sequence turnoff photometry in the Small Magellanic Cloud. II. Star formation history and its spatial gradients. Astrophys. J. 705, 1260–1274 (2009).

    Article  ADS  Google Scholar 

  90. Adamo, A., Östlin, G., Zackrisson, E. & Hayes, M. The massive star clusters in the dwarf merger ESO 185-IG13: is the red excess ubiquitous in starbursts? Mon. Not. R. Astron. Soc. 414, 1793–1812 (2011).

    Article  ADS  Google Scholar 

  91. Kimbro, E., Reines, A. E., Molina, M., Deller, A. T. & Stern, D. Clumpy star formation and AGN activity in the dwarf-dwarf galaxy merger Mrk 709. Astrophys. J. 912, 89 (2021).

    Article  ADS  Google Scholar 

  92. Glazebrook, K., Blake, C., Economou, F., Lilly, S. & Colless, M. Measurement of the star formation rate from Hα in field galaxies at z = 1. Mon. Not. R. Astron. Soc. 306, 843–856 (1999).

    Article  ADS  Google Scholar 

  93. Kauffmann, G. Quantitative constraints on starburst cycles in galaxies with stellar masses in the range 108-1010 M. Mon. Not. R. Astron. Soc. 441, 2717–2724 (2014).

    Article  ADS  Google Scholar 

  94. Emami, N. et al. A closer look at bursty star formation with LHα and LUV distributions. Astrophys. J. 881, 71 (2019).

    Article  ADS  Google Scholar 

  95. Kennicutt, J. et al. An Hα imaging survey of galaxies in the local 11 Mpc volume. Astrophys. J. Suppl. Ser. 178, 247–279 (2008).

    Article  ADS  Google Scholar 

  96. Lee, J. C., Kennicutt, J., Robert, C., Funes, S. J. J. G., Sakai, S. & Akiyama, S. Dwarf galaxy starburst statistics in the Local Volume. Astrophys. J. 692, 1305–1320 (2009).

    Article  ADS  Google Scholar 

  97. Read, J. I., Iorio, G., Agertz, O. & Fraternali, F. The stellar mass-halo mass relation of isolated field dwarfs: a critical test of ΛCDM at the edge of galaxy formation. Mon. Not. R. Astron. Soc. 467, 2019–2038 (2017).

    ADS  Google Scholar 

  98. Dutton, A. A. & Macciò, A. V. Cold dark matter haloes in the Planck era: evolution of structural parameters for Einasto and NFW profiles. Mon. Not. R. Astron. Soc. 441, 3359–3374 (2014).

    Article  ADS  Google Scholar 

  99. Kravtsov, A. V. The size-virial radius relation of galaxies. Astrophys. J. Lett. 764, L31 (2013).

    Article  ADS  Google Scholar 

  100. Navarro, J. F., Eke, V. R. & Frenk, C. S. The cores of dwarf galaxy haloes. Mon. Not. R. Astron. Soc. 283, L72–L78 (1996).

    Article  ADS  Google Scholar 

  101. Domínguez, A. et al. Consequences of bursty star formation on galaxy observables at high redshifts. Mon. Not. R. Astron. Soc. 451, 839–848 (2015).

    Article  ADS  Google Scholar 

  102. Sparre, M. et al. (Star)bursts of FIRE: observational signatures of bursty star formation in galaxies. Mon. Not. R. Astron. Soc. 466, 88–104 (2017).

    Article  ADS  Google Scholar 

  103. Applebaum, E., Brooks, A. M., Quinn, T. R. & Christensen, C. R. A stochastically sampled IMF alters the stellar content of simulated dwarf galaxies. Mon. Not. R. Astron. Soc. 492, 8–21 (2020).

    Article  ADS  Google Scholar 

  104. Prgomet, M. et al. EDGE: The sensitivity of ultra-faint dwarfs to a metallicity-dependent initial mass function. Preprint at https://arxiv.org/abs/2107.00663 (2021).

  105. McConnachie, A. W. The observed properties of dwarf galaxies in and around the Local Group. Astron. J. 144, 4 (2012).

    Article  ADS  Google Scholar 

  106. Simon, J. D. The faintest dwarf galaxies. Annu. Rev. Astron. Astrophys. 57, 375–415 (2019).

    Article  ADS  Google Scholar 

  107. Blitz, L. & Robishaw, T. Gas-rich dwarf spheroidals. Astrophys. J. 541, 675–687 (2000).

    Article  ADS  Google Scholar 

  108. Grebel, E. K., Gallagher, I., John, S. & Harbeck, D. The progenitors of dwarf spheroidal galaxies. Astron. J. 125, 1926–1939 (2003).

    Article  ADS  Google Scholar 

  109. Geha, M., Blanton, M. R., Yan, R. & Tinker, J. L. A stellar mass threshold for quenching of field galaxies. Astrophys. J. 757, 85 (2012).

    Article  ADS  Google Scholar 

  110. Gatto, A. et al. Unveiling the corona of the Milky Way via ram-pressure stripping of dwarf satellites. Mon. Not. R. Astron. Soc. 433, 2749–2763 (2013).

    Article  ADS  Google Scholar 

  111. Bouwens, R. J. et al. Reionization after Planck: the derived growth of the cosmic ionizing emissivity now matches the growth of the galaxy UV luminosity density. Astrophys. J. 811, 140 (2015).

    Article  ADS  Google Scholar 

  112. Jeon, M., Besla, G. & Bromm, V. Connecting the first galaxies with ultrafaint dwarfs in the Local Group: chemical signatures of Population III stars. Astrophys. J. 848, 85 (2017).

    Article  ADS  Google Scholar 

  113. Katz, H. et al. How to quench a dwarf galaxy: the impact of inhomogeneous reionization on dwarf galaxies and cosmic filaments. Mon. Not. R. Astron. Soc. 494, 2200–2220 (2020).

    Article  ADS  Google Scholar 

  114. Rey, M. P. et al. EDGE: from quiescent to gas-rich to star-forming low-mass dwarf galaxies. Mon. Not. R. Astron. Soc. 497, 1508–1520 (2020).

    Article  ADS  Google Scholar 

  115. Mina, M. et al. The baryon cycle of seven dwarfs with superbubble feedback. Astron. Astrophys. 655, A22 (2021).

    Article  Google Scholar 

  116. Gutcke, T. A., Pakmor, R., Naab, T. & Springel, V. LYRA II: cosmological dwarf galaxy formation with inhomogeneous Population III enrichment. Preprint at https://arxiv.org/abs/2110.06233 (2021).

  117. Moore, B. et al. Dark matter substructure within galactic halos. Astrophys. J. Lett. 524, L19–L22 (1999).

    Article  ADS  Google Scholar 

  118. Klypin, A., Kravtsov, A. V., Valenzuela, O. & Prada, F. Where are the missing galactic satellites? Astrophys. J. 522, 82–92 (1999).

    Article  ADS  Google Scholar 

  119. Bullock, J. S. & Boylan-Kolchin, M. Small-scale challenges to the ΛCDM paradigm. Annu. Rev. Astron. Astrophys. 55, 343–387 (2017).

    Article  ADS  Google Scholar 

  120. Simon, J. D. & Geha, M. The kinematics of the ultra-faint Milky Way satellites: solving the missing satellite problem. Astrophys. J. 670, 313–331 (2007).

    Article  ADS  Google Scholar 

  121. Katz, H. et al. Testing feedback-modified dark matter haloes with galaxy rotation curves: estimation of halo parameters and consistency with ΛCDM scaling relations. Mon. Not. R. Astron. Soc. 466, 1648–1668 (2017).

    Article  ADS  Google Scholar 

  122. Posti, L., Marasco, A., Fraternali, F. & Famaey, B. Galaxy disc scaling relations: a tight linear galaxy-halo connection challenges abundance matching. Astron. Astrophys. 629, A59 (2019).

    Article  ADS  Google Scholar 

  123. Aubert, D. et al. The inhomogeneous reionization times of present-day galaxies. Astrophys. J. Lett. 856, L22 (2018).

    Article  ADS  Google Scholar 

  124. Jethwa, P., Erkal, D. & Belokurov, V. The upper bound on the lowest mass halo. Mon. Not. R. Astron. Soc. 473, 2060–2083 (2018).

    Article  ADS  Google Scholar 

  125. Kim, S. Y., Peter, A. H. G. & Hargis, J. R. Missing satellites problem: completeness corrections to the number of satellite galaxies in the Milky Way are consistent with cold dark matter predictions. Phys. Rev. Lett. 121, 211302 (2018).

    Article  ADS  Google Scholar 

  126. Nadler, E. O. et al. Milky Way satellite census. II. Galaxy-halo connection constraints including the impact of the Large Magellanic Cloud. Astrophys. J. 893, 48 (2020).

    Article  ADS  Google Scholar 

  127. Zhang, H.-X., Hunter, D. A., Elmegreen, B. G., Gao, Y. & Schruba, A. Outside-in shrinking of the star-forming disk of dwarf irregular galaxies. Astron. J. 143, 47 (2012).

    Article  ADS  Google Scholar 

  128. El-Badry, K. et al. Breathing FIRE: how stellar feedback drives radial migration, rapid size fluctuations, and population gradients in low-mass galaxies. Astrophys. J. 820, 131 (2016).

    Article  ADS  Google Scholar 

  129. Emami, N. et al. Testing the relationship between bursty star formation and size fluctuations of local dwarf galaxies. Preprint at https://arxiv.org/abs/2108.08857 (2021).

  130. van Dokkum, P. G. et al. Forty-seven Milky Way-sized, extremely diffuse galaxies in the Coma cluster. Astrophys. J. Lett. 798, L45 (2015).

    Article  ADS  Google Scholar 

  131. Di Cintio, A. et al. NIHAO - XI. Formation of ultra-diffuse galaxies by outflows. Mon. Not. R. Astron. Soc. 466, L1–L6 (2017).

    Article  ADS  Google Scholar 

  132. Chan, T. K. et al. The origin of ultra diffuse galaxies: stellar feedback and quenching. Mon. Not. R. Astron. Soc. 478, 906–925 (2018).

    Article  ADS  Google Scholar 

  133. Jiang, F. et al. Formation of ultra-diffuse galaxies in the field and in galaxy groups. Mon. Not. R. Astron. Soc. 487, 5272–5290 (2019).

    Article  ADS  Google Scholar 

  134. Kado-Fong, E. et al. The intrinsic shapes of low surface brightness galaxies (LSBGs): a discriminant of LSBG galaxy formation mechanisms. Astrophys. J. 920, 72 (2021).

    Article  ADS  Google Scholar 

  135. Liao, S. et al. Ultra-diffuse galaxies in the Auriga simulations. Mon. Not. R. Astron. Soc. 490, 5182–5195 (2019).

    Article  ADS  Google Scholar 

  136. Tremmel, M. et al. The formation of ultradiffuse galaxies in the RomulusC galaxy cluster simulation. Mon. Not. R. Astron. Soc. 497, 2786–2810 (2020).

    Article  ADS  Google Scholar 

  137. Leaman, R. et al. The resolved structure and dynamics of an isolated dwarf galaxy: a VLT and Keck spectroscopic survey of WLM. Astrophys. J. 750, 33 (2012).

    Article  ADS  Google Scholar 

  138. Wheeler, C. et al. The no-spin zone: rotation versus dispersion support in observed and simulated dwarf galaxies. Mon. Not. R. Astron. Soc. 465, 2420–2431 (2017).

    Article  ADS  Google Scholar 

  139. Read, J. I., Iorio, G., Agertz, O. & Fraternali, F. Understanding the shape and diversity of dwarf galaxy rotation curves in ΛCDM. Mon. Not. R. Astron. Soc. 462, 3628–3645 (2016).

    Article  ADS  Google Scholar 

  140. Oh, S.-H. et al. Dark and luminous matter in THINGS dwarf galaxies. Astron. J. 141, 193 (2011).

    Article  ADS  Google Scholar 

  141. Kirby, E. N., Bullock, J. S., Boylan-Kolchin, M., Kaplinghat, M. & Cohen, J. G. The dynamics of isolated Local Group galaxies. Mon. Not. R. Astron. Soc. 439, 1015–1027 (2014).

    Article  ADS  Google Scholar 

  142. Iorio, G. et al. LITTLE THINGS in 3D: robust determination of the circular velocity of dwarf irregular galaxies. Mon. Not. R. Astron. Soc. 466, 4159–4192 (2017).

    ADS  Google Scholar 

  143. Oman, K. A. et al. Missing dark matter in dwarf galaxies? Mon. Not. R. Astron. Soc. 460, 3610–3623 (2016).

    Article  ADS  Google Scholar 

  144. Lelli, F., McGaugh, S. S. & Schombert, J. M. The small scatter of the baryonic Tully-Fisher relation. Astrophys. J. Lett. 816, L14 (2016).

    Article  ADS  Google Scholar 

  145. Ponomareva, A. A. et al. MIGHTEE-H I: the baryonic Tully-Fisher relation over the last billion years. Mon. Not. R. Astron. Soc. 508, 1195–1205 (2021).

    Article  ADS  Google Scholar 

  146. Oman, K. A. The ALFALFA H I velocity width function. Mon. Not. R. Astron. Soc. 509, 3268–3284 (2022).

    Article  ADS  Google Scholar 

  147. Flores, R. A. & Primack, J. R. Observational and theoretical constraints on singular dark matter halos. Astrophys. J. Lett. 427, L1 (1994).

    Article  ADS  Google Scholar 

  148. Moore, B. Evidence against dissipation-less dark matter from observations of galaxy haloes. Nature 370, 629–631 (1994).

    Article  ADS  Google Scholar 

  149. Read, J. I., Wilkinson, M. I., Evans, N. W., Gilmore, G. & Kleyna, J. T. The importance of tides for the Local Group dwarf spheroidals. Mon. Not. R. Astron. Soc. 367, 387–399 (2006).

    Article  ADS  Google Scholar 

  150. Boylan-Kolchin, M., Bullock, J. S. & Kaplinghat, M. Too big to fail? The puzzling darkness of massive Milky Way subhaloes. Mon. Not. R. Astron. Soc. 415, L40–L44 (2011).

    Article  ADS  Google Scholar 

  151. Brooks, A. M. & Zolotov, A. Why baryons matter: the kinematics of dwarf spheroidal satellites. Astrophys. J. 786, 87 (2014).

    Article  ADS  Google Scholar 

  152. Martizzi, D., Teyssier, R. & Moore, B. Cusp-core transformations induced by AGN feedback in the progenitors of cluster galaxies. Mon. Not. R. Astron. Soc. 432, 1947–1954 (2013).

    Article  ADS  Google Scholar 

  153. Peñarrubia, J., Pontzen, A., Walker, M. G. & Koposov, S. E. The coupling between the core/cusp and missing satellite problems. Astrophys. J. Lett. 759, L42 (2012).

    Article  ADS  Google Scholar 

  154. Di Cintio, A. et al. The dependence of dark matter profiles on the stellar-to-halo mass ratio: a prediction for cusps versus cores. Mon. Not. R. Astron. Soc. 437, 415–423 (2014).

    Article  ADS  Google Scholar 

  155. Kaplinghat, M., Tulin, S. & Yu, H.-B. Dark matter halos as particle colliders: unified solution to small-scale structure puzzles from dwarfs to clusters. Phys. Rev. Lett. 116, 041302 (2016).

    Article  ADS  Google Scholar 

  156. Olive, K. A. Supersymmetric dark matter or not. Preprint at https://arxiv.org/abs/1604.07336 (2016).

  157. Hoferichter, M., Klos, P., Menéndez, J. & Schwenk, A. Improved limits for Higgs-portal dark matter from LHC searches. Phys. Rev. Lett. 119, 181803 (2017).

    Article  ADS  Google Scholar 

  158. Du, N. et al. Search for invisible axion dark matter with the axion dark matter experiment. Phys. Rev. Lett. 120, 151301 (2018).

    Article  ADS  Google Scholar 

  159. Boyarsky, A., Drewes, M., Lasserre, T., Mertens, S. & Ruchayskiy, O. Sterile neutrino dark matter. Progr. Part. Nucl. Phys. 104, 1–45 (2019).

    Article  ADS  Google Scholar 

  160. Mac Low, M.-M. & Ferrara, A. Starburst-driven mass loss from dwarf galaxies: efficiency and metal ejection. Astrophys. J. 513, 142–155 (1999).

    Article  ADS  Google Scholar 

  161. Emerick, A., Bryan, G. L. & Mac Low, M.-M. Simulating metal mixing of both common and rare enrichment sources in a low-mass dwarf galaxy. Astrophys. J. 890, 155 (2020).

    Article  ADS  Google Scholar 

  162. Emerick, A., Bryan, G. L. & Mac Low, M.-M. The role of stellar feedback in the chemical evolution of a low mass dwarf galaxy. Preprint at https://arxiv.org/abs/2007.03702 (2020).

  163. Collins, M. L. M. et al. A kinematic study of the Andromeda dwarf spheroidal system. Astrophys. J. 768, 172 (2013).

    Article  ADS  Google Scholar 

  164. Collins, M. L. M. et al. A detailed study of Andromeda XIX, an extreme local analogue of ultradiffuse galaxies. Mon. Not. R. Astron. Soc. 491, 3496–3514 (2020).

    Article  ADS  Google Scholar 

  165. Collins, M. L. M. et al. Andromeda XXI—a dwarf galaxy in a low-density dark matter halo. Mon. Not. R. Astron. Soc. 505, 5686–5701 (2021).

    Article  ADS  Google Scholar 

  166. Wojno, J. et al. Elemental abundances in M31: [Fe/H] and [α/Fe] in M31 dwarf galaxies using coadded spectra. Astrophys. J. 895, 78 (2020).

    Article  ADS  Google Scholar 

  167. Müller, O. et al. The properties of dwarf spheroidal galaxies in the Cen A group. Stellar populations, internal dynamics, and a heart-shaped Hα ring. Astron. Astrophys. 645, A92 (2021).

    Article  Google Scholar 

  168. Kirby, E. N. et al. The universal stellar mass-stellar metallicity relation for dwarf galaxies. Astrophys. J. 779, 102 (2013).

    Article  ADS  Google Scholar 

  169. Orkney, M. D. A. et al. EDGE: two routes to dark matter core formation in ultra-faint dwarfs. Mon. Not. R. Astron. Soc. 504, 3509–3522 (2021).

    Article  ADS  Google Scholar 

  170. Fitts, A. et al. FIRE in the field: simulating the threshold of galaxy formation. Mon. Not. R. Astron. Soc. 471, 3547–3562 (2017).

    Article  ADS  Google Scholar 

  171. Applebaum, E. et al. Ultrafaint dwarfs in a Milky Way context: introducing the Mint Condition DC Justice League Simulations. Astrophys. J. 906, 96 (2021).

    Article  ADS  Google Scholar 

  172. Geha, M. et al. The stellar initial mass function of ultra-faint dwarf galaxies: evidence for IMF variations with galactic environment. Astrophys. J. 771, 29 (2013).

    Article  ADS  Google Scholar 

  173. Muratov, A. L. et al. Metal flows of the circumgalactic medium, and the metal budget in galactic haloes. Mon. Not. R. Astron. Soc. 468, 4170–4188 (2017).

    Article  ADS  Google Scholar 

  174. Kirby, E. N., Martin, C. L. & Finlator, K. Metals removed by outflows from Milky Way dwarf spheroidal galaxies. Astrophys. J. Lett. 742, L25 (2011).

    Article  ADS  Google Scholar 

  175. Berg, D. A. et al. Direct oxygen abundances for low-luminosity LVL galaxies. Astrophys. J. 754, 98 (2012).

    Article  ADS  Google Scholar 

  176. McQuinn, K. B. W. et al. Leo P: an unquenched very low-mass galaxy. Astrophys. J. 812, 158 (2015).

    Article  ADS  Google Scholar 

  177. McQuinn, K. B. W. et al. Leo P: How many metals can a very low mass, isolated galaxy retain? Astrophys. J. Lett. 815, L17 (2015).

    Article  ADS  Google Scholar 

  178. Peeples, M. S. et al. A budget and accounting of metals at z ~0: results from the COS-Halos survey. Astrophys. J. 786, 54 (2014).

    Article  ADS  Google Scholar 

  179. Tollerud, E. J., Bullock, J. S., Strigari, L. E. & Willman, B. Hundreds of Milky Way satellites? Luminosity bias in the satellite luminosity function. Astrophys. J. 688, 277–289 (2008).

    Article  ADS  Google Scholar 

  180. Roman-Duval, J. et al. Ultraviolet Legacy Library of Young Stars as Essential Standards (ULLYSES): data release I. Res. Not. Am. Astron. Soc. 4, 205 (2020).

    ADS  Google Scholar 

  181. Berg, D. et al. The COS Legacy Archive Spectroscopy SurveY (CLASSY) Treasury Atlas. Preprint at https://arxiv.org/abs/2203.07357 (2022).

  182. Fleming, B. T. et al. High-sensitivity far-ultraviolet imaging spectroscopy with the SPRITE Cubesa. In UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XXI SPIE Conference Series (ed. Siegmund, O. H.) Vol. 11118, 111180U (SPIE, 2019).

  183. Richard, J. et al. BlueMUSE: project overview and science cases. Preprint at https://arxiv.org/abs/1906.01657 (2019).

  184. Pathways to Discovery in Astronomy and Astrophysics for the 2020s (National Academies, 2021); https://doi.org/10.17226/26141

  185. Townsley, L. K. et al. A Chandra ACIS study of 30 Doradus. I. Superbubbles and supernova remnants. Astron. J. 131, 2140–2163 (2006).

    Article  ADS  Google Scholar 

  186. Geha, M. et al. Local Group dwarf elliptical galaxies. II. Stellar kinematics to large radii in NGC 147 and NGC 185. Astrophys. J. 711, 361–373 (2010).

    Article  ADS  Google Scholar 

  187. Taibi, S. et al. Stellar chemo-kinematics of the Cetus dwarf spheroidal galaxy. Astron. Astrophys. 618, A122 (2018).

    Article  Google Scholar 

  188. Taibi, S. et al. The Tucana dwarf spheroidal galaxy: not such a massive failure after all. Astron. Astrophys. 635, A152 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the Perspective.

Corresponding author

Correspondence to Michelle L. M. Collins.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Kristen McQuinn, Erin Kado-Fong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collins, M.L.M., Read, J.I. Observational constraints on stellar feedback in dwarf galaxies. Nat Astron 6, 647–658 (2022). https://doi.org/10.1038/s41550-022-01657-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01657-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing