Abstract
Feedback to the interstellar medium from ionizing radiation, stellar winds and supernovae is central to regulating star formation in galaxies. Owing to their low mass (<109 solar masses), dwarf galaxies are particularly susceptible to such processes, making them ideal sites for studying the detailed physics of feedback. In this Perspective, we summarize the latest observational evidence for feedback from star-forming regions and how this feedback drives the formation of ‘superbubbles’ and galaxy-wide winds. We discuss the important role of external ionizing radiation—reionization—for the smallest galaxies, and the observational evidence that this feedback directly impacts galaxy properties such as their star formation histories, metal contents, colours, sizes, morphologies and even their inner dark matter densities. We conclude with a look to the future, summarizing the key questions that remain to be answered and listing some of the outstanding challenges for galaxy formation theories.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
All the data that support the findings of this study are taken from published works (referenced in the text) and are collated into a GitHub repository at https://github.com/justinread/feedback_perspective.
Code availability
The code needed to reproduce all figures in this Perspective is available via GitHub at https://github.com/justinread/feedback_perspective.
References
Tacconi, L. J., Genzel, R. & Sternberg, A. The evolution of the star-forming interstellar medium across cosmic time. Annu. Rev. Astron. Astrophys. 58, 157–203 (2020).
Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).
Efstathiou, G. Suppressing the formation of dwarf galaxies via photoionization. Mon. Not. R. Astron. Soc. 256, 43P–47P (1992).
Wise, J. H. An introductory review on cosmic reionization. Preprint at https://arxiv.org/abs/1907.06653 (2019).
Agertz, O., Kravtsov, A. V., Leitner, S. N. & Gnedin, N. Y. Toward a complete accounting of energy and momentum from stellar feedback in galaxy formation simulations. Astrophys. J. 770, 25 (2013).
Sijacki, D., Springel, V., Di Matteo, T. & Hernquist, L. A unified model for AGN feedback in cosmological simulations of structure formation. Mon. Not. R. Astron. Soc. 380, 877–900 (2007).
Luisi, M. et al. Stellar feedback and triggered star formation in the prototypical bubble RCW 120. Science Advances 7, eabe9511 (2021).
Fraternali, F., Marasco, A., Marinacci, F. & Binney, J. Ionized absorbers as evidence for supernova-driven cooling of the lower galactic corona. Astrophys. J. Lett. 764, L21 (2013).
Hobbs, A., Read, J. & Nicola, A. Growing galaxies via superbubble-driven accretion flows. Mon. Not. R. Astron. Soc. 452, 3593–3609 (2015).
Fraternali, F. in Gas Accretion Onto Galaxies Astrophysics and Space Science Library Vol. 430 (eds Fox, A. & Davé, R.) 323–353 (2017).
Vulcani, B. et al. GASP. VII. Signs of gas inflow onto a lopsided galaxy. Astrophys. J. 852, 94 (2018).
Read, J. I. & Trentham, N. The baryonic mass function of galaxies. Phil. Trans. R. Soc. Lond. A 363, 2693 (2005).
Mathews, W. G. & Baker, J. C. Galactic winds. Astrophys. J. 170, 241 (1971).
Larson, R. B. Effects of supernovae on the early evolution of galaxies. Mon. Not. R. Astron. Soc. 169, 229–246 (1974).
Dekel, A. & Silk, J. The origin of dwarf galaxies, cold dark matter, and biased galaxy formation. Astrophys. J. 303, 39 (1986).
Navarro, J. F., Eke, V. R. & Frenk, C. S. The cores of dwarf galaxy haloes. Mon. Not. R. Astron. Soc. 283, L72–L78 (1996).
Read, J. I. & Gilmore, G. Mass loss from dwarf spheroidal galaxies: the origins of shallow dark matter cores and exponential surface brightness profiles. Mon. Not. R. Astron. Soc. 356, 107–124 (2005).
Governato, F. et al. Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows. Nature 463, 203–206 (2010).
Pontzen, A. & Governato, F. How supernova feedback turns dark matter cusps into cores. Mon. Not. R. Astron. Soc. 421, 3464–3471 (2012).
Read, J. I., Agertz, O. & Collins, M. L. M. Dark matter cores all the way down. Mon. Not. R. Astron. Soc. 459, 2573–2590 (2016).
Read, J. I., Walker, M. G. & Steger, P. Dark matter heats up in dwarf galaxies. Mon. Not. R. Astron. Soc. 484, 1401–1420 (2019).
Bouché, N. F. et al. The MUSE Extremely Deep Field: evidence for SFR-induced cores in dark-matter dominated galaxies at z = 11. Astron. Astrophys. 658, A76 (2022).
Sharma, G., Salucci, P. & van de Ven, G. Observational evidence of evolving dark matter profiles at z≤1. Preprint at https://arxiv.org/abs/2109.14224 (2021).
Brown, T. M. et al. The quenching of the ultra-faint dwarf galaxies in the reionization era. Astrophys. J. 796, 91 (2014).
Reines, A. E. Hunting for massive black holes in dwarf galaxies. Nat. Astron. 6, 26–34 (2022).
Krumholz, M. R., McKee, C. F. & Bland-Hawthorn, J. Star clusters across cosmic time. Annu. Rev. Astron. Astrophys. 57, 227–303 (2019).
Lopez, L. A., Krumholz, M. R., Bolatto, A. D., Prochaska, J. X. & Ramirez-Ruiz, E. What drives the expansion of giant H II regions? A study of stellar feedback in 30 Doradus. Astrophys. J. 731, 91 (2011).
Lopez, L. A. et al. The role of stellar feedback in the dynamics of H II regions. Astrophys. J. 795, 121 (2014).
Stevens, I. R., Read, A. M. & Bravo-Guerrero, J. First-look XMM-Newton EPIC observations of the prototypical starburst galaxy M82. Mon. Not. R. Astron. Soc. 343, L47–L52 (2003).
Smith, N. Mass loss: its effect on the evolution and fate of high-mass stars. Annu. Rev. Astron. Astrophys. 52, 487–528 (2014).
Kavanagh, P. J. Thermal and non-thermal X-ray emission from stellar clusters and superbubbles. Astrophys. Space Sci. 365, 6 (2020).
Hopkins, P. F., Quataert, E. & Murray, N. Stellar feedback in galaxies and the origin of galaxy-scale winds. Mon. Not. R. Astron. Soc. 421, 3522–3537 (2012).
Keller, B. W., Wadsley, J., Benincasa, S. M. & Couchman, H. M. P. A superbubble feedback model for galaxy simulations. Mon. Not. R. Astron. Soc. 442, 3013–3025 (2014).
Oey, M. S., Groves, B., Staveley-Smith, L. & Smith, R. C. The H I environment of three superbubbles in the Large Magellanic Cloud. Astron. J. 123, 255–268 (2002).
Martin, C. L. The impact of star formation on the interstellar medium in dwarf galaxies. II. The formation of galactic winds. Astrophys. J. 506, 222–252 (1998).
De Horta, A. Y. et al. Multi-frequency observations of a superbubble in the LMC: the case of LHA 120-N 70. Astron. J. 147, 162 (2014).
Pokhrel, N. R., Simpson, C. E. & Bagetakos, I. A catalog of holes and shells in the interstellar medium of the LITTLE THINGS dwarf galaxies. Astron. J. 160, 66 (2020).
Dib, S. & Burkert, A. On the origin of the H I holes in the interstellar medium of dwarf irregular galaxies. Astrophys. J. 630, 238–249 (2005).
Rhode, K. L., Salzer, J. J., Westpfahl, D. J. & Radice, L. A. A test of the standard hypothesis for the origin of the H I holes in Holmberg II. Astron. J. 118, 323–336 (1999).
Silich, S. et al. On the neutral gas distribution and kinematics in the dwarf irregular galaxy IC 1613. Astron. Astrophys. 448, 123–131 (2006).
Borissova, J., Kurtev, R., Georgiev, L. & Rosado, M. A catalogue of OB associations in IC 1613. Astron. Astrophys. 413, 889–893 (2004).
Zheng, Y. et al. Tentative detection of the circumgalactic medium of the isolated low-mass dwarf galaxy WLM. Mon. Not. R. Astron. Soc. 490, 467–477 (2019).
Westmoquette, M. S., Smith, L. J. & Gallagher, J. S. Studying the galactic outflow in NGC 1569. Mon. Not. R. Astron. Soc. 383, 864–878 (2008).
McQuinn, K. B. W., Skillman, E. D., Heilman, T. N., Mitchell, N. P. & Kelley, T. Galactic outflows, star formation histories, and time-scales in starburst dwarf galaxies from STARBIRDS. Mon. Not. R. Astron. Soc. 477, 3164–3177 (2018).
Lynds, C. R. & Sandage, A. R. Evidence for an explosion in the center of the galaxy M82. Astrophys. J. 137, 1005 (1963).
Schwartz, C. M. & Martin, C. L. A Keck/HIRES study of kinematics of the cold interstellar medium in dwarf starburst galaxies. Astrophys. J. 610, 201–212 (2004).
McQuinn, K. B. W., van Zee, L. & Skillman, E. D. Galactic winds in low-mass galaxies. Astrophys. J. 886, 74 (2019).
Veilleux, S., Cecil, G. & Bland-Hawthorn, J. Galactic winds. Annu. Rev. Astron. Astrophys. 43, 769–826 (2005).
Martin, C. L.The Role of Galactic Winds in Galaxy Formation 337–362 (Springer, 2006).
Martin, C. L., Kobulnicky, H. A. & Heckman, T. M. The metal content of dwarf starburst winds: results from Chandra observations of NGC 1569. Astrophys. J. 574, 663–692 (2002).
Strickland, D. K. & Heckman, T. M. Supernova feedback efficiency and mass loading in the starburst and galactic superwind exemplar M82. Astrophys. J. 697, 2030–2056 (2009).
Summers, L. K., Stevens, I. R., Strickland, D. K. & Heckman, T. M. Chandra observation of NGC 4449: analysis of the X-ray emission from a dwarf starburst galaxy. Mon. Not. R. Astron. Soc. 342, 690–708 (2003).
Heckman, T. M., Alexandroff, R. M., Borthakur, S., Overzier, R. & Leitherer, C. The systematic properties of the warm phase of starburst-driven galactic winds. Astrophys. J. 809, 147 (2015).
Chisholm, J., Tremonti, C. A., Leitherer, C. & Chen, Y. The mass and momentum outflow rates of photoionized galactic outflows. Mon. Not. R. Astron. Soc. 469, 4831–4849 (2017).
Meurer, G. R., Freeman, K. C., Dopita, M. A. & Cacciari, C. NGC 1705. I. Stellar populations and mass loss via a galactic wind. Astron. J. 103, 60 (1992).
Chisholm, J. et al. Do galaxies that leak ionizing photons have extreme outflows? Astron. Astrophys. 605, A67 (2017).
Krieger, N. et al. The molecular outflow in NGC 253 at a resolution of two parsecs. Astrophys. J. 881, 43 (2019).
Lelli, F., Verheijen, M. & Fraternali, F. Dynamics of starbursting dwarf galaxies. III. A H I study of 18 nearby objects. AAP 566, A71 (2014).
Leroy, A. K. et al. The multi-phase cold fountain in M82 revealed by a wide, sensitive map of the molecular interstellar medium. Astrophys. J. 814, 83 (2015).
Krieger, N. et al. NOEMA high-fidelity imaging of the molecular gas in and around M82. Astrophys. J. Lett. 915, L3 (2021).
Pandya, V. et al. Characterizing mass, momentum, energy, and metal outflow rates of multiphase galactic winds in the FIRE-2 cosmological simulations. Mon. Not. R. Astron. Soc. 508, 2979–3008 (2021).
Booth, C. M., Agertz, O., Kravtsov, A. V. & Gnedin, N. Y. Simulations of disk galaxies with cosmic ray driven galactic winds. Astrophys. J. Lett. 777, L16 (2013).
Tolstoy, E., Hill, V. & Tosi, M. Star-formation histories, abundances, and kinematics of dwarf galaxies in the Local Group. Annu. Rev. Astron. Astrophys. 47, 371–425 (2009).
Weisz, D. R. et al. The ACS Nearby Galaxy Survey Treasury. VIII. The global star formation histories of 60 dwarf galaxies in the Local Volume. Astrophys. J. 739, 5 (2011).
Weisz, D. R. et al. The star formation history of Leo T from Hubble Space Telescope imaging. Astrophys. J. 748, 88 (2012).
Weisz, D. R. et al. The star formation histories of Local Group dwarf galaxies. III. Characterizing quenching in low-mass galaxies. Astrophys. J. 804, 136 (2015).
Weisz, D. R. et al. The star formation histories of Local Group dwarf galaxies. II. Searching for signatures of reionization. Astrophys. J. 789, 148 (2014).
Weisz, D. R. et al. Comparing M31 and Milky Way satellites: the extended star formation histories of Andromeda II and Andromeda XVI. Astrophys. J. 789, 24 (2014).
de Boer, T. J. L. et al. The episodic star formation history of the Carina dwarf spheroidal galaxy. aap 572, A10 (2014).
McQuinn, K. B. W. et al. The nature of starbursts. I. The star formation histories of eighteen nearby starburst dwarf galaxies. Astrophys. J. 721, 297–317 (2010).
Gallart, C. et al. The star formation history of Eridanus II: on the role of supernova feedback in the quenching of ultrafaint dwarf galaxies. Astrophys. J. 909, 192 (2021).
Rusakov, V. et al. The bursty star formation history of the Fornax dwarf spheroidal galaxy revealed with the HST. Mon. Not. R. Astron. Soc. 502, 642–661 (2021).
McQuinn, K. B. W. et al. The nature of starbursts. II. The duration of starbursts in dwarf galaxies. Astrophys. J. 724, 49–58 (2010).
Ciampa, D. A. et al. Mapping the supernovae driven winds of the Large Magellanic Cloud in Hα emission I. Astrophys. J. 908, 62 (2021).
McQuinn, K. B. W., Skillman, E. D., Dolphin, A. E. & Mitchell, N. P. Calibrating UV star formation rates for dwarf galaxies from STARBIRDS. Astrophys. J. 808, 109 (2015).
Muratov, A. L. et al. Gusty, gaseous flows of FIRE: galactic winds in cosmological simulations with explicit stellar feedback. Mon. Not. R. Astron. Soc. 454, 2691–2713 (2015).
Hu, C.-Y., Naab, T., Glover, S. C. O., Walch, S. & Clark, P. C. Variable interstellar radiation fields in simulated dwarf galaxies: supernovae versus photoelectric heating. Mon. Not. R. Astron. Soc. 471, 2151–2173 (2017).
Hu, C.-Y. Supernova-driven winds in simulated dwarf galaxies. Mon. Not. R. Astron. Soc. 483, 3363–3381 (2019).
Smith, M. C. et al. Efficient early stellar feedback can suppress galactic outflows by reducing supernova clustering. Mon. Not. R. Astron. Soc. 506, 3882–3915 (2021).
Read, J. I. & Erkal, D. Abundance matching with the mean star formation rate: there is no missing satellites problem in the Milky Way above M200 ~ 109 M⊙. Mon. Not. R. Astron. Soc. 487, 5799–5812 (2019).
Mashchenko, S., Wadsley, J. & Couchman, H. M. P. Stellar feedback in dwarf galaxy formation. Science 319, 174 (2008).
Teyssier, R., Pontzen, A., Dubois, Y. & Read, J. I. Cusp-core transformations in dwarf galaxies: observational predictions. Mon. Not. R. Astron. Soc. 429, 3068–3078 (2013).
Wise, J. H. et al. The birth of a galaxy - III. Propelling reionization with the faintest galaxies. Mon. Not. R. Astron. Soc. 442, 2560–2579 (2014).
Oñorbe, J. et al. Forged in FIRE: cusps, cores and baryons in low-mass dwarf galaxies. Mon. Not. R. Astron. Soc. 454, 2092–2106 (2015).
Agertz, O. et al. EDGE: the mass-metallicity relation as a critical test of galaxy formation physics. Mon. Not. R. Astron. Soc. 491, 1656–1672 (2020).
Jahn, E. D. et al. Real and counterfeit cores: how feedback expands halos and disrupts tracers of inner gravitational potential in dwarf galaxies. Preprint at https://arxiv.org/abs/2110.00142 (2021).
Gutcke, T. A., Pakmor, R., Naab, T. & Springel, V. LYRA - I. Simulating the multiphase ISM of a dwarf galaxy with variable energy supernovae from individual stars. Mon. Not. R. Astron. Soc. 501, 5597–5615 (2021).
Sales, L. V., Wetzel, A. & Fattahi. A. Baryonic solutions and challenges for cosmological models of dwarf galaxies. Nat. Astron. (in the press).
Noël, N. E. D. et al. Old main-sequence turnoff photometry in the Small Magellanic Cloud. II. Star formation history and its spatial gradients. Astrophys. J. 705, 1260–1274 (2009).
Adamo, A., Östlin, G., Zackrisson, E. & Hayes, M. The massive star clusters in the dwarf merger ESO 185-IG13: is the red excess ubiquitous in starbursts? Mon. Not. R. Astron. Soc. 414, 1793–1812 (2011).
Kimbro, E., Reines, A. E., Molina, M., Deller, A. T. & Stern, D. Clumpy star formation and AGN activity in the dwarf-dwarf galaxy merger Mrk 709. Astrophys. J. 912, 89 (2021).
Glazebrook, K., Blake, C., Economou, F., Lilly, S. & Colless, M. Measurement of the star formation rate from Hα in field galaxies at z = 1. Mon. Not. R. Astron. Soc. 306, 843–856 (1999).
Kauffmann, G. Quantitative constraints on starburst cycles in galaxies with stellar masses in the range 108-1010 M⊙. Mon. Not. R. Astron. Soc. 441, 2717–2724 (2014).
Emami, N. et al. A closer look at bursty star formation with LHα and LUV distributions. Astrophys. J. 881, 71 (2019).
Kennicutt, J. et al. An Hα imaging survey of galaxies in the local 11 Mpc volume. Astrophys. J. Suppl. Ser. 178, 247–279 (2008).
Lee, J. C., Kennicutt, J., Robert, C., Funes, S. J. J. G., Sakai, S. & Akiyama, S. Dwarf galaxy starburst statistics in the Local Volume. Astrophys. J. 692, 1305–1320 (2009).
Read, J. I., Iorio, G., Agertz, O. & Fraternali, F. The stellar mass-halo mass relation of isolated field dwarfs: a critical test of ΛCDM at the edge of galaxy formation. Mon. Not. R. Astron. Soc. 467, 2019–2038 (2017).
Dutton, A. A. & Macciò, A. V. Cold dark matter haloes in the Planck era: evolution of structural parameters for Einasto and NFW profiles. Mon. Not. R. Astron. Soc. 441, 3359–3374 (2014).
Kravtsov, A. V. The size-virial radius relation of galaxies. Astrophys. J. Lett. 764, L31 (2013).
Navarro, J. F., Eke, V. R. & Frenk, C. S. The cores of dwarf galaxy haloes. Mon. Not. R. Astron. Soc. 283, L72–L78 (1996).
Domínguez, A. et al. Consequences of bursty star formation on galaxy observables at high redshifts. Mon. Not. R. Astron. Soc. 451, 839–848 (2015).
Sparre, M. et al. (Star)bursts of FIRE: observational signatures of bursty star formation in galaxies. Mon. Not. R. Astron. Soc. 466, 88–104 (2017).
Applebaum, E., Brooks, A. M., Quinn, T. R. & Christensen, C. R. A stochastically sampled IMF alters the stellar content of simulated dwarf galaxies. Mon. Not. R. Astron. Soc. 492, 8–21 (2020).
Prgomet, M. et al. EDGE: The sensitivity of ultra-faint dwarfs to a metallicity-dependent initial mass function. Preprint at https://arxiv.org/abs/2107.00663 (2021).
McConnachie, A. W. The observed properties of dwarf galaxies in and around the Local Group. Astron. J. 144, 4 (2012).
Simon, J. D. The faintest dwarf galaxies. Annu. Rev. Astron. Astrophys. 57, 375–415 (2019).
Blitz, L. & Robishaw, T. Gas-rich dwarf spheroidals. Astrophys. J. 541, 675–687 (2000).
Grebel, E. K., Gallagher, I., John, S. & Harbeck, D. The progenitors of dwarf spheroidal galaxies. Astron. J. 125, 1926–1939 (2003).
Geha, M., Blanton, M. R., Yan, R. & Tinker, J. L. A stellar mass threshold for quenching of field galaxies. Astrophys. J. 757, 85 (2012).
Gatto, A. et al. Unveiling the corona of the Milky Way via ram-pressure stripping of dwarf satellites. Mon. Not. R. Astron. Soc. 433, 2749–2763 (2013).
Bouwens, R. J. et al. Reionization after Planck: the derived growth of the cosmic ionizing emissivity now matches the growth of the galaxy UV luminosity density. Astrophys. J. 811, 140 (2015).
Jeon, M., Besla, G. & Bromm, V. Connecting the first galaxies with ultrafaint dwarfs in the Local Group: chemical signatures of Population III stars. Astrophys. J. 848, 85 (2017).
Katz, H. et al. How to quench a dwarf galaxy: the impact of inhomogeneous reionization on dwarf galaxies and cosmic filaments. Mon. Not. R. Astron. Soc. 494, 2200–2220 (2020).
Rey, M. P. et al. EDGE: from quiescent to gas-rich to star-forming low-mass dwarf galaxies. Mon. Not. R. Astron. Soc. 497, 1508–1520 (2020).
Mina, M. et al. The baryon cycle of seven dwarfs with superbubble feedback. Astron. Astrophys. 655, A22 (2021).
Gutcke, T. A., Pakmor, R., Naab, T. & Springel, V. LYRA II: cosmological dwarf galaxy formation with inhomogeneous Population III enrichment. Preprint at https://arxiv.org/abs/2110.06233 (2021).
Moore, B. et al. Dark matter substructure within galactic halos. Astrophys. J. Lett. 524, L19–L22 (1999).
Klypin, A., Kravtsov, A. V., Valenzuela, O. & Prada, F. Where are the missing galactic satellites? Astrophys. J. 522, 82–92 (1999).
Bullock, J. S. & Boylan-Kolchin, M. Small-scale challenges to the ΛCDM paradigm. Annu. Rev. Astron. Astrophys. 55, 343–387 (2017).
Simon, J. D. & Geha, M. The kinematics of the ultra-faint Milky Way satellites: solving the missing satellite problem. Astrophys. J. 670, 313–331 (2007).
Katz, H. et al. Testing feedback-modified dark matter haloes with galaxy rotation curves: estimation of halo parameters and consistency with ΛCDM scaling relations. Mon. Not. R. Astron. Soc. 466, 1648–1668 (2017).
Posti, L., Marasco, A., Fraternali, F. & Famaey, B. Galaxy disc scaling relations: a tight linear galaxy-halo connection challenges abundance matching. Astron. Astrophys. 629, A59 (2019).
Aubert, D. et al. The inhomogeneous reionization times of present-day galaxies. Astrophys. J. Lett. 856, L22 (2018).
Jethwa, P., Erkal, D. & Belokurov, V. The upper bound on the lowest mass halo. Mon. Not. R. Astron. Soc. 473, 2060–2083 (2018).
Kim, S. Y., Peter, A. H. G. & Hargis, J. R. Missing satellites problem: completeness corrections to the number of satellite galaxies in the Milky Way are consistent with cold dark matter predictions. Phys. Rev. Lett. 121, 211302 (2018).
Nadler, E. O. et al. Milky Way satellite census. II. Galaxy-halo connection constraints including the impact of the Large Magellanic Cloud. Astrophys. J. 893, 48 (2020).
Zhang, H.-X., Hunter, D. A., Elmegreen, B. G., Gao, Y. & Schruba, A. Outside-in shrinking of the star-forming disk of dwarf irregular galaxies. Astron. J. 143, 47 (2012).
El-Badry, K. et al. Breathing FIRE: how stellar feedback drives radial migration, rapid size fluctuations, and population gradients in low-mass galaxies. Astrophys. J. 820, 131 (2016).
Emami, N. et al. Testing the relationship between bursty star formation and size fluctuations of local dwarf galaxies. Preprint at https://arxiv.org/abs/2108.08857 (2021).
van Dokkum, P. G. et al. Forty-seven Milky Way-sized, extremely diffuse galaxies in the Coma cluster. Astrophys. J. Lett. 798, L45 (2015).
Di Cintio, A. et al. NIHAO - XI. Formation of ultra-diffuse galaxies by outflows. Mon. Not. R. Astron. Soc. 466, L1–L6 (2017).
Chan, T. K. et al. The origin of ultra diffuse galaxies: stellar feedback and quenching. Mon. Not. R. Astron. Soc. 478, 906–925 (2018).
Jiang, F. et al. Formation of ultra-diffuse galaxies in the field and in galaxy groups. Mon. Not. R. Astron. Soc. 487, 5272–5290 (2019).
Kado-Fong, E. et al. The intrinsic shapes of low surface brightness galaxies (LSBGs): a discriminant of LSBG galaxy formation mechanisms. Astrophys. J. 920, 72 (2021).
Liao, S. et al. Ultra-diffuse galaxies in the Auriga simulations. Mon. Not. R. Astron. Soc. 490, 5182–5195 (2019).
Tremmel, M. et al. The formation of ultradiffuse galaxies in the RomulusC galaxy cluster simulation. Mon. Not. R. Astron. Soc. 497, 2786–2810 (2020).
Leaman, R. et al. The resolved structure and dynamics of an isolated dwarf galaxy: a VLT and Keck spectroscopic survey of WLM. Astrophys. J. 750, 33 (2012).
Wheeler, C. et al. The no-spin zone: rotation versus dispersion support in observed and simulated dwarf galaxies. Mon. Not. R. Astron. Soc. 465, 2420–2431 (2017).
Read, J. I., Iorio, G., Agertz, O. & Fraternali, F. Understanding the shape and diversity of dwarf galaxy rotation curves in ΛCDM. Mon. Not. R. Astron. Soc. 462, 3628–3645 (2016).
Oh, S.-H. et al. Dark and luminous matter in THINGS dwarf galaxies. Astron. J. 141, 193 (2011).
Kirby, E. N., Bullock, J. S., Boylan-Kolchin, M., Kaplinghat, M. & Cohen, J. G. The dynamics of isolated Local Group galaxies. Mon. Not. R. Astron. Soc. 439, 1015–1027 (2014).
Iorio, G. et al. LITTLE THINGS in 3D: robust determination of the circular velocity of dwarf irregular galaxies. Mon. Not. R. Astron. Soc. 466, 4159–4192 (2017).
Oman, K. A. et al. Missing dark matter in dwarf galaxies? Mon. Not. R. Astron. Soc. 460, 3610–3623 (2016).
Lelli, F., McGaugh, S. S. & Schombert, J. M. The small scatter of the baryonic Tully-Fisher relation. Astrophys. J. Lett. 816, L14 (2016).
Ponomareva, A. A. et al. MIGHTEE-H I: the baryonic Tully-Fisher relation over the last billion years. Mon. Not. R. Astron. Soc. 508, 1195–1205 (2021).
Oman, K. A. The ALFALFA H I velocity width function. Mon. Not. R. Astron. Soc. 509, 3268–3284 (2022).
Flores, R. A. & Primack, J. R. Observational and theoretical constraints on singular dark matter halos. Astrophys. J. Lett. 427, L1 (1994).
Moore, B. Evidence against dissipation-less dark matter from observations of galaxy haloes. Nature 370, 629–631 (1994).
Read, J. I., Wilkinson, M. I., Evans, N. W., Gilmore, G. & Kleyna, J. T. The importance of tides for the Local Group dwarf spheroidals. Mon. Not. R. Astron. Soc. 367, 387–399 (2006).
Boylan-Kolchin, M., Bullock, J. S. & Kaplinghat, M. Too big to fail? The puzzling darkness of massive Milky Way subhaloes. Mon. Not. R. Astron. Soc. 415, L40–L44 (2011).
Brooks, A. M. & Zolotov, A. Why baryons matter: the kinematics of dwarf spheroidal satellites. Astrophys. J. 786, 87 (2014).
Martizzi, D., Teyssier, R. & Moore, B. Cusp-core transformations induced by AGN feedback in the progenitors of cluster galaxies. Mon. Not. R. Astron. Soc. 432, 1947–1954 (2013).
Peñarrubia, J., Pontzen, A., Walker, M. G. & Koposov, S. E. The coupling between the core/cusp and missing satellite problems. Astrophys. J. Lett. 759, L42 (2012).
Di Cintio, A. et al. The dependence of dark matter profiles on the stellar-to-halo mass ratio: a prediction for cusps versus cores. Mon. Not. R. Astron. Soc. 437, 415–423 (2014).
Kaplinghat, M., Tulin, S. & Yu, H.-B. Dark matter halos as particle colliders: unified solution to small-scale structure puzzles from dwarfs to clusters. Phys. Rev. Lett. 116, 041302 (2016).
Olive, K. A. Supersymmetric dark matter or not. Preprint at https://arxiv.org/abs/1604.07336 (2016).
Hoferichter, M., Klos, P., Menéndez, J. & Schwenk, A. Improved limits for Higgs-portal dark matter from LHC searches. Phys. Rev. Lett. 119, 181803 (2017).
Du, N. et al. Search for invisible axion dark matter with the axion dark matter experiment. Phys. Rev. Lett. 120, 151301 (2018).
Boyarsky, A., Drewes, M., Lasserre, T., Mertens, S. & Ruchayskiy, O. Sterile neutrino dark matter. Progr. Part. Nucl. Phys. 104, 1–45 (2019).
Mac Low, M.-M. & Ferrara, A. Starburst-driven mass loss from dwarf galaxies: efficiency and metal ejection. Astrophys. J. 513, 142–155 (1999).
Emerick, A., Bryan, G. L. & Mac Low, M.-M. Simulating metal mixing of both common and rare enrichment sources in a low-mass dwarf galaxy. Astrophys. J. 890, 155 (2020).
Emerick, A., Bryan, G. L. & Mac Low, M.-M. The role of stellar feedback in the chemical evolution of a low mass dwarf galaxy. Preprint at https://arxiv.org/abs/2007.03702 (2020).
Collins, M. L. M. et al. A kinematic study of the Andromeda dwarf spheroidal system. Astrophys. J. 768, 172 (2013).
Collins, M. L. M. et al. A detailed study of Andromeda XIX, an extreme local analogue of ultradiffuse galaxies. Mon. Not. R. Astron. Soc. 491, 3496–3514 (2020).
Collins, M. L. M. et al. Andromeda XXI—a dwarf galaxy in a low-density dark matter halo. Mon. Not. R. Astron. Soc. 505, 5686–5701 (2021).
Wojno, J. et al. Elemental abundances in M31: [Fe/H] and [α/Fe] in M31 dwarf galaxies using coadded spectra. Astrophys. J. 895, 78 (2020).
Müller, O. et al. The properties of dwarf spheroidal galaxies in the Cen A group. Stellar populations, internal dynamics, and a heart-shaped Hα ring. Astron. Astrophys. 645, A92 (2021).
Kirby, E. N. et al. The universal stellar mass-stellar metallicity relation for dwarf galaxies. Astrophys. J. 779, 102 (2013).
Orkney, M. D. A. et al. EDGE: two routes to dark matter core formation in ultra-faint dwarfs. Mon. Not. R. Astron. Soc. 504, 3509–3522 (2021).
Fitts, A. et al. FIRE in the field: simulating the threshold of galaxy formation. Mon. Not. R. Astron. Soc. 471, 3547–3562 (2017).
Applebaum, E. et al. Ultrafaint dwarfs in a Milky Way context: introducing the Mint Condition DC Justice League Simulations. Astrophys. J. 906, 96 (2021).
Geha, M. et al. The stellar initial mass function of ultra-faint dwarf galaxies: evidence for IMF variations with galactic environment. Astrophys. J. 771, 29 (2013).
Muratov, A. L. et al. Metal flows of the circumgalactic medium, and the metal budget in galactic haloes. Mon. Not. R. Astron. Soc. 468, 4170–4188 (2017).
Kirby, E. N., Martin, C. L. & Finlator, K. Metals removed by outflows from Milky Way dwarf spheroidal galaxies. Astrophys. J. Lett. 742, L25 (2011).
Berg, D. A. et al. Direct oxygen abundances for low-luminosity LVL galaxies. Astrophys. J. 754, 98 (2012).
McQuinn, K. B. W. et al. Leo P: an unquenched very low-mass galaxy. Astrophys. J. 812, 158 (2015).
McQuinn, K. B. W. et al. Leo P: How many metals can a very low mass, isolated galaxy retain? Astrophys. J. Lett. 815, L17 (2015).
Peeples, M. S. et al. A budget and accounting of metals at z ~0: results from the COS-Halos survey. Astrophys. J. 786, 54 (2014).
Tollerud, E. J., Bullock, J. S., Strigari, L. E. & Willman, B. Hundreds of Milky Way satellites? Luminosity bias in the satellite luminosity function. Astrophys. J. 688, 277–289 (2008).
Roman-Duval, J. et al. Ultraviolet Legacy Library of Young Stars as Essential Standards (ULLYSES): data release I. Res. Not. Am. Astron. Soc. 4, 205 (2020).
Berg, D. et al. The COS Legacy Archive Spectroscopy SurveY (CLASSY) Treasury Atlas. Preprint at https://arxiv.org/abs/2203.07357 (2022).
Fleming, B. T. et al. High-sensitivity far-ultraviolet imaging spectroscopy with the SPRITE Cubesa. In UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XXI SPIE Conference Series (ed. Siegmund, O. H.) Vol. 11118, 111180U (SPIE, 2019).
Richard, J. et al. BlueMUSE: project overview and science cases. Preprint at https://arxiv.org/abs/1906.01657 (2019).
Pathways to Discovery in Astronomy and Astrophysics for the 2020s (National Academies, 2021); https://doi.org/10.17226/26141
Townsley, L. K. et al. A Chandra ACIS study of 30 Doradus. I. Superbubbles and supernova remnants. Astron. J. 131, 2140–2163 (2006).
Geha, M. et al. Local Group dwarf elliptical galaxies. II. Stellar kinematics to large radii in NGC 147 and NGC 185. Astrophys. J. 711, 361–373 (2010).
Taibi, S. et al. Stellar chemo-kinematics of the Cetus dwarf spheroidal galaxy. Astron. Astrophys. 618, A122 (2018).
Taibi, S. et al. The Tucana dwarf spheroidal galaxy: not such a massive failure after all. Astron. Astrophys. 635, A152 (2020).
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the Perspective.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks Kristen McQuinn, Erin Kado-Fong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Collins, M.L.M., Read, J.I. Observational constraints on stellar feedback in dwarf galaxies. Nat Astron 6, 647–658 (2022). https://doi.org/10.1038/s41550-022-01657-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41550-022-01657-4