Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence for a significant Kuiper belt dust contribution to the zodiacal cloud

Abstract

Interplanetary dust particles are important samples of dust-producing objects in the Solar System, including many primitive and organic-rich bodies that are not sampled by known meteorites. Interplanetary dust particles spiral in towards the Sun under the influence of Poynting–Robertson drag forces and are exposed to solar energetic particles that leave tracks of ionization damage in anhydrous silicate grains. Here we determine the exposure ages of track-rich interplanetary dust particles using a new calibration of the solar energetic particle track production rate and show that track-rich interplanetary dust particles have long exposure ages (>1 Myr) that preclude an origin from main-belt asteroids and Jupiter-family comets. We propose that track-rich interplanetary dust particles represent samples of dust produced by collisions among Edgeworth–Kuiper belt objects and that appreciable amounts of Edgeworth–Kuiper belt object dust contribute to the zodiacal cloud. Many track-rich interplanetary dust particles also contain abundant secondary minerals that provide direct evidence for past aqueous activity on some Edgeworth–Kuiper belt objects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SEP tracks in a pyroxene grain.
Fig. 2: Distribution of track densities.

Similar content being viewed by others

Data availability

The data are provided in the article and the Supplementary Information.

References

  1. Busemann, H. et al. Ultra-primitive interplanetary dust particles from the comet 26P/Grigg–Skjellerup dust stream collection. Earth Planet. Sci. Lett. 288, 44–57 (2009).

    Article  ADS  Google Scholar 

  2. Thomas, K. L., Blanford, G. E., Keller, L. P., Klöck, W. & McKay, D. S. Carbon abundance and silicate mineralogy of anhydrous interplanetary dust particles. Geochim. Cosmochim. Acta 57, 1551–1556 (1993).

    Article  ADS  Google Scholar 

  3. Messenger, S. Identification of molecular cloud material in interplanetary dust particles. Nature 404, 968–971 (2000).

    Article  ADS  Google Scholar 

  4. Fraundorf, P., Flynn, G. J., Shirck, J. & Walker, R. M. Interplanetary dust collected in the earth’s stratosphere—the question of solar flare tracks. In Proc. 11th Lunar Science Conference (ed. Merrill, R. B.) 1235–1249 (Pergamon, 1980).

  5. Bradley, J. P., Brownlee, D. E. & Fraundorf, P. Discovery of nuclear tracks in interplanetary dust. Science 226, 1432–1434 (1984).

    Article  ADS  Google Scholar 

  6. Christoffersen, R. & Buseck, P. R. Mineralogy of interplanetary dust particles from the ‘olivine’ infrared class. Earth Planet. Sci. Lett. 78, 53–66 (1986).

    Article  ADS  Google Scholar 

  7. Crozaz, G. & Walker, R. M. Solar particle tracks in glass from the Surveyor 3 spacecraft. Science 171, 1237–1239 (1971).

    Article  ADS  Google Scholar 

  8. Blanford, G. E., Fruland, R. M. & Morrison, D. A. Long-term differential energy spectrum for solar-flare iron-group particles. In Proc. Sixth Lunar and Planetary Science Conference (ed. Merrill, R. B.) 3557–3576 (Pergamon, 1975).

  9. Keller, L. P., Berger, E. L., Zhang, S. & Christoffersen, R. Solar energetic particle tracks in lunar samples: a transmission electron microscope calibration and implications for lunar space weathering. Meteorit. Planet. Sci. 56, 1685–1707 (2021).

    Article  ADS  Google Scholar 

  10. Nesvorný, D. et al. Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks. Astrophys. J. 713, 816–836 (2010).

    Article  ADS  Google Scholar 

  11. Poppe, A. R. An improved model for interplanetary dust fluxes in the outer Solar System. Icarus 264, 369–386 (2016).

    Article  ADS  Google Scholar 

  12. Koschny, D. et al. Interplanetary dust, meteoroids, meteors and meteorites. Space Sci. Rev. 215, 34–96. (2019).

    Article  ADS  Google Scholar 

  13. Liou, J.-C., Zook, H. A. & Dermott, S. F. Orbital evolution of micron-sized dust grains coming from the Kuiper Belt (abstract). Lunar Planet. Sci. Conf. 26, 853–854 (1995).

  14. Flynn G. J. in Physics, Chemistry and Dynamics of Interplanetary Dust (eds Gustafson, B. A. S. & Hanner, M. S.) 171–175 (Astronomical Society of the Pacific Conference Series Vol. 104, 1996).

  15. Moro-Martín, A. & Malhotra, R. A study of the dynamics of dust from the Kuiper Belt: spatial distribution and spectral energy distribution. Astron. J. 124, 2305–2321 (2002).

    Article  ADS  Google Scholar 

  16. Sandford, S. A. Solar flare track densities in interplanetary dust particles: the determination of an asteroidal versus cometary source of the zodiacal dust cloud. Icarus 68, 377–394 (1986).

    Article  ADS  Google Scholar 

  17. He, H.-Q., Zhou, G. & Wan, W. Propagation of solar energetic particles in three-dimensional interplanetary magnetic fields: radial dependence of peak intensities. Astrophys. J. 842, 71 (2017).

    Article  ADS  Google Scholar 

  18. Shestopalov, D. I., Golubeva, L. F. & Cloutis, E. A. Optical maturation of asteroid surfaces. Icarus 225, 781–793 (2013).

    Article  ADS  Google Scholar 

  19. Vernazza, P., Binzel, R. P., Rossi, A., Fulchignoni, M. & Birlan, M. Solar wind as the origin of rapid reddening of asteroid surfaces. Nature 458, 993–995 (2009).

    Article  ADS  Google Scholar 

  20. Keller, L. P. & Berger, E. L. Transmission electron microscopy of plagioclase-rich Itokawa grains: space weathering effects and solar flare track exposure ages. In Hayabusa 2017: Symposium of Solar System Materials, Sagamihara, Japan, Astromaterials Science Research Group/Japan Aerospace Exploration Agency (2017).

  21. Keller, L. P. & Berger, E. L. Solar energetic particle tracks in Itokawa samples: implications for regolith development on near-Earth asteroids and space weathering. In 84th Annual Meeting of the Meteoritical Society, Lunar and Planetary Institute Contribution No. 2609 abstr. 6111 (2021).

  22. Noguchi, T. et al. Space weathered rims found on the surfaces of the Itokawa dust particles. Meteorit. Planet. Sci. 49, 188–214 (2014).

    Article  ADS  Google Scholar 

  23. Poppe, A. R. et al. Constraining the Solar System’s debris disk with in situ New Horizons measurements from the Edgeworth–Kuiper belt. Astrophys. J. Lett. 881, L12–20 (2019).

    Article  ADS  Google Scholar 

  24. Liou, J.-C. & Zook, H. A. Kuiper Belt dust grains as a source of interplanetary dust particles. Icarus 124, 429–440 (1996).

    Article  ADS  Google Scholar 

  25. Grün, E. et al. Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft. Nature 362, 428–430 (1993).

    Article  ADS  Google Scholar 

  26. Flynn, G. J. & Sutton, S. R. Cosmic dust particle densities: evidence for two populations of stony micrometeorites. In Proc. 21st Lunar and Planetary Science Conference, Lunar and Planetary Institute, Houston, 541–547 (1991).

  27. Mukai, T., Ishimoto, H., Kozasa, T., Blum, J. & Greenberg, J. M. Radiation pressure forces of fluffy porous grains. Astron. Astrophys. 262, 315–320 (1992).

    ADS  Google Scholar 

  28. Webber, W. R. & Lockwood, J. A. Heliocentric radial intensity profiles of galactic cosmic rays measured by the IMP, Voyager, and Pioneer spacecraft in solar 11-year modulation cycles of opposite magnetic polarity. J. Geophys. Res. 109, A11101 (2004).

    Article  ADS  Google Scholar 

  29. Bonino, G. et al. Solar and galactic cosmic-ray records of the Fermo (H) chondrite regolith breccia. Meteorit. Planet. Sci. 36, 831–839 (2001).

    Article  ADS  Google Scholar 

  30. Snead, C. J., McKeegan, K. D., Keller, L. P. & Messenger, S. Ion probe measurements of comet dust and implications for models of oxygen isotope heterogeneity in the Solar System. In 48th Lunar and Planetary Science Conference, Lunar and Planetary Institute Contribution No. 1964 abstr. 2623 (2017).

  31. de Bergh, C., Boehnhardt, H., Barucci, M. A., Lazzarin, M. & Fornasier, S. Aqueous altered silicates at the surface of two plutinos? Astron. Astrophys. 416, 791–798 (2004).

    Article  ADS  Google Scholar 

  32. Jewitt, D. From comets to asteroids: when hairy stars go bald. Earth Moon Planets 72, 185–201 (1996).

    Article  ADS  Google Scholar 

  33. Matzel, J. E. P. et al. Constraints on the formation age of cometary material from the NASA Stardust mission. Science 328, 483–486 (2010).

    Article  ADS  Google Scholar 

  34. Ogliore, R. C. et al. Incorporation of a late-forming chondrule into comet Wild 2. Astrophys. J. Lett. 745, L19 (2012).

    Article  ADS  Google Scholar 

  35. Nakashima, D. et al. Late formation of a comet Wild 2 crystalline silicate particle, Pyxie, inferred from Al–Mg chronology of plagioclase. Earth Planet. Sci. Lett. 410, 54–61 (2015).

    Article  ADS  Google Scholar 

  36. Nakamura-Messenger, K., Messenger, S., Clemett, S. & Keller, L. P. Aqueous alteration in comets. Meteorit. Planet. Sci. 46, 843–856 (2011).

    Article  ADS  Google Scholar 

  37. Keller, L. P., Thomas, K. L. & McKay, D. S. Carbon abundances, major element chemistry and mineralogy of hydrated interplanetary dust particles. In XXIV Lunar and Planetary Science Conference, Lunar and Planetary Institute, Houston 785–786 (1993).

  38. Keller, L. P. et al. The nature of molecular cloud material in interplanetary dust. Geochim. Cosmochim. Acta 68, 2577–2589 (2004).

    Article  ADS  Google Scholar 

  39. Wyatt, S. P. & Whipple, F. L. The Poynting–Robertson effect on meteor orbits. Astrophys. J. 111, 134–141 (1950).

    Article  ADS  Google Scholar 

  40. Takaki, N. et al. Resurfacing processes constrained by crater distribution on Ryugu. Icarus 377, 114911 (2022).

  41. Nakamura, T. et al. Early history of Ryugu’s parent asteroid: evidence from return sample. In 53rd Lunar and Planetary Science Conference, Lunar and Planetary Institute, Houston 1753 (2022).

  42. Dermott, S. F., Durda, D. D., Grogan, K. & Kehoe, T. J. J. in Asteroidal Dust in Asteroids III (eds Bottke, W. F. Jr et al.) 423–442 (Univ. Arizona Press, 2002).

Download references

Acknowledgements

We thank CAPTEM and the JSC Astromaterials Curation Facility for allocating the IDP samples used in this study. The electron microscopy was performed in the Electron Beam Analysis Labs at the NASA Johnson Space Center. This work was supported in part by the Johnson Space Center Coordinated Analysis Work Package to L.P.K. funded by the NASA Internal Scientist Funding Model, and grant NNX19AE59G from the NASA Emerging Worlds programme to G.J.F.

Author information

Authors and Affiliations

Authors

Contributions

L.P.K. measured track densities and wrote parts of the manuscript, G.J.F. preformed the track density calculations and wrote parts of the manuscript.

Corresponding author

Correspondence to Lindsay P. Keller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Andrew Poppe and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text and Figs. 1–27.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keller, L.P., Flynn, G.J. Evidence for a significant Kuiper belt dust contribution to the zodiacal cloud. Nat Astron 6, 731–735 (2022). https://doi.org/10.1038/s41550-022-01647-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01647-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing