Abstract
When interpreted within the standard framework of Newtonian gravity and dynamics, the kinematics of stars and gas in dwarf galaxies reveals that most of these systems are completely dominated by their dark matter halos. These dwarf galaxies are thus among the best astrophysical laboratories to study the structure of dark halos and the nature of dark matter. We review the properties of the dwarf galaxies of the Local Group from the point of view of stellar dynamics. After describing the observed kinematics of their stellar components and providing an overview of the dynamical modelling techniques, we look into the dark matter content and distribution of these galaxies, as inferred from the combination of observed data and dynamical models. We also briefly touch upon the prospects of using nearby dwarf galaxies as targets for indirect detection of dark matter via annihilation or decay emission.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





Change history
17 October 2022
A Correction to this paper has been published: https://doi.org/10.1038/s41550-022-01829-2
References
Cimatti, A., Fraternali, F. & Nipoti, C. Introduction to Galaxy Formation and Evolution: From Primordial Gas to Present-Day Galaxies (Cambridge Univ. Press, 2019).
Bertone, G. & Tait, T. M. P. A new era in the search for dark matter. Nature 562, 51–56 (2018).
Bullock, J. S. & Boylan-Kolchin, M. Small-scale challenges to the Λ CDM paradigm. Annu. Rev. Astron. Astrophys. 55, 343–387 (2017).
Dekel, A. & Silk, J. The origin of dwarf galaxies, cold dark matter, and biased galaxy formation. Astrophys. J. 303, 39–55 (1986).
Arora, N. et al. NIHAO-LG: The uniqueness of Local Group dwarf galaxies. Preprint at https://arxiv.org/abs/2109.07487 (2021).
Read, J. I., Iorio, G., Agertz, O. & Fraternali, F. The stellar mass-halo mass relation of isolated field dwarfs: a critical test of Λ CDM at the edge of galaxy formation. Mon. Not. R. Astron. Soc. 467, 2019–2038 (2017).
Leung, G. Y. C. et al. Joint gas and stellar dynamical models of WLM: an isolated dwarf galaxy within a cored, prolate DM halo. Mon. Not. R. Astron. Soc. 500, 410–429 (2021).
Lelli, F. Gas dynamics in dwarf galaxies as testbeds for dark matter and galaxy evolution. Nat. Astron. 6, 35–47 (2022). .
Simon, J. D. The faintest dwarf galaxies. Annu. Rev. Astron. Astrophys. 57, 375–415 (2019).
van den Bergh, S. The Local Group of galaxies. Astron. Astrophys. Rev. 9, 273–318 (1999).
Putman, M. E. et al. The gas content and stripping of Local Group dwarf galaxies. Astrophys. J. 913, 53 (2021).
Milgrom, M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 270, 365–370 (1983).
Angus, G. W. Dwarf spheroidals in MOND. Mon. Not. R. Astron. Soc. 387, 1481–1488 (2008).
Hernandez, X., Mendoza, S., Suarez, T. & Bernal, T. Understanding local dwarf spheroidals and their scaling relations under modified Newtonian dynamics. Astron. Astrophys. 514, A101 (2010).
Serra, A. L., Angus, G. W. & Diaferio, A. Implications for dwarf spheroidal mass content from interloper removal. Astron. Astrophys. 524, A16 (2010).
Safarzadeh, M. & Loeb, A. The challenge to MOND from ultra-faint dwarf galaxies. Astrophys. J. Lett. 914, L37 (2021).
McGaugh, S. S. MOND prediction for the velocity dispersion of the “Feeble Giant” Crater II. Astrophys. J. Lett. 832, L37 (2016).
Caldwell, N. et al. Crater 2: an extremely cold dark matter halo. Astrophys. J. 839, 20 (2017).
Mateo, M. L. Dwarf galaxies of the Local Group. Annu. Rev. Astron. Astrophys. 36, 435–506 (1998).
Tolstoy, E., Hill, V. & Tosi, M. Star-formation histories, abundances, and kinematics of dwarf galaxies in the Local Group. Annu. Rev. Astron. Astrophys. 47, 371–425 (2009).
Battaglia, G., Helmi, A. & Breddels, M. Internal kinematics and dynamical models of dwarf spheroidal galaxies around the Milky Way. N. Astron. Rev. 57, 52–79 (2013).
Walker, M. in Planets, Stars and Stellar Systems Vol. 5 (eds Oswalt, T. D. & Gilmore, G.) 1039–1089 (Springer, 2013).
Strigari, L. E. Dark matter in dwarf spheroidal galaxies and indirect detection: a review. Rep. Prog. Phys. 81, 056901 (2018).
Muraveva, T., Clementini, G., Garofalo, A. & Cusano, F. A fresh look at the RR Lyrae population in the Draco dwarf spheroidal galaxy with Gaia. Mon. Not. R. Astron. Soc. 499, 4040–4053 (2020).
Fritz, T. K. et al. Gaia DR2 proper motions of dwarf galaxies within 420 kpc. Orbits, Milky Way mass, tidal influences, planar alignments, and group infall. Astron. Astrophys. 619, A103 (2018).
McConnachie, A. W. & Venn, K. A. Revised and new proper motions for confirmed and candidate Milky Way dwarf galaxies. Astron. J. 160, 124 (2020).
Battaglia, G., Taibi, S., Thomas, G. F. & Fritz, T. K. Gaia early DR3 systemic motions of Local Group dwarf galaxies and orbital properties with a massive Large Magellanic Cloud. Astron. Astrophys. 657, A54 (2022).
Walker, M. G., Olszewski, E. W. & Mateo, M. Bayesian analysis of resolved stellar spectra: application to MMT/Hectochelle observations of the Draco dwarf spheroidal. Mon. Not. R. Astron. Soc. 448, 2717–2732 (2015).
Gaia Collaboration. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. Astron. Astrophys. 616, A12 (2018).
Simon, J. D. Gaia proper motions and orbits of the ultra-faint Milky Way satellites. Astrophys. J. 863, 89 (2018).
Li, H. et al. Gaia EDR3 proper motions of Milky Way dwarfs. I. 3D motions and orbits. Astrophys. J. 916, 8 (2021).
Patel, E. et al. The orbital histories of Magellanic satellites using Gaia DR2 proper motions. Astrophys. J. 893, 121 (2020).
Geha, M., Guhathakurta, P., Rich, R. M. & Cooper, M. C. Local Group dwarf elliptical galaxies. I. Mapping the dynamics of NGC 205 beyond the tidal radius. Astron. J. 131, 332–342 (2006).
Li, T. S. et al. The first tidally disrupted ultra-faint dwarf galaxy? A spectroscopic analysis of the Tucana III stream. Astrophys. J. 866, 22 (2018).
Ji, A. P. et al. Kinematics of Antlia 2 and Crater 2 from the Southern Stellar Stream Spectroscopic Survey (S5). Astrophys. J. 921, 32 (2021).
Peñarrubia, J., Navarro, J. F., McConnachie, A. W. & Martin, N. F. The signature of galactic tides in Local Group dwarf spheroidals. Astrophys. J. 698, 222–232 (2009).
van der Marel, R. P. Magellanic Cloud structure from near-infrared surveys. II. Star count maps and the intrinsic elongation of the Large Magellanic Cloud. Astron. J. 122, 1827–1843 (2001).
Lewis, G. F. et al. Inside the whale: the structure and dynamics of the isolated Cetus dwarf spheroidal. Mon. Not. R. Astron. Soc. 375, 1364–1370 (2007).
Battaglia, G. et al. The kinematic status and mass content of the Sculptor dwarf spheroidal galaxy. Astrophys. J. Lett. 681, L13 (2008).
Walker, M. G., Mateo, M. & Olszewski, E. W. Systemic proper motions of Milky Way satellites from stellar redshifts: the Carina, Fornax, Sculptor, and Sextans dwarf spheroidals. Astrophys. J. Lett. 688, L75 (2008).
Fraternali, F., Tolstoy, E., Irwin, M. J. & Cole, A. A. Life at the periphery of the Local Group: the kinematics of the Tucana dwarf galaxy. Astron. Astrophys. 499, 121–128 (2009).
Kirby, E. N., Bullock, J. S., Boylan-Kolchin, M., Kaplinghat, M. & Cohen, J. G. The dynamics of isolated Local Group galaxies. Mon. Not. R. Astron. Soc. 439, 1015–1027 (2014).
Wheeler, C. et al. The no-spin zone: rotation versus dispersion support in observed and simulated dwarf galaxies. Mon. Not. R. Astron. Soc. 465, 2420–2431 (2017).
Collins, M. L. M. et al. Dynamical evidence for a strong tidal interaction between the Milky Way and its satellite Leo V. Mon. Not. R. Astron. Soc. 467, 573–585 (2017).
Kirby, E. N. et al. Chemistry and kinematics of the late-forming dwarf irregular galaxies Leo A, Aquarius, and Sagittarius DIG. Astrophys. J. 834, 9 (2017).
Kacharov, N. et al. Prolate rotation and metallicity gradient in the transforming dwarf galaxy Phoenix. Mon. Not. R. Astron. Soc. 466, 2006–2023 (2017).
Spencer, M. E. et al. The binary fraction of stars in dwarf galaxies: the case of Leo II. Astron. J. 153, 257 (2017).
Taibi, S. et al. Stellar chemo-kinematics of the Cetus dwarf spheroidal galaxy. Astron. Astrophys. 618, A122 (2018).
Collins, M. L. M. et al. A detailed study of Andromeda XIX, an extreme local analogue of ultradiffuse galaxies. Mon. Not. R. Astron. Soc. 491, 3496–3514 (2020).
Hermosa Muñoz, L. et al. Kinematic and metallicity properties of the Aquarius dwarf galaxy from FORS2 MXU spectroscopy. Astron. Astrophys. 634, A10 (2020).
Taibi, S. et al. The Tucana dwarf spheroidal galaxy: not such a massive failure after all. Astron. Astrophys. 635, A152 (2020).
Belland, B., Kirby, E., Boylan-Kolchin, M. & Wheeler, C. NGC 6822 as a probe of dwarf galactic evolution. Astrophys. J. 903, 10 (2020).
Gregory, A. L. et al. Uncovering the orbit of the hercules dwarf galaxy. Mon. Not. R. Astron. Soc. 496, 1092–1104 (2020).
Kirby, E. N. et al. Elemental abundances in M31: the kinematics and chemical evolution of dwarf spheroidal satellite galaxies. Astron. J. 159, 46 (2020).
Leaman, R. et al. The resolved structure and dynamics of an isolated dwarf galaxy: a VLT and Keck spectroscopic survey of WLM. Astrophys. J. 750, 33 (2012).
Geha, M. et al. Local Group dwarf elliptical galaxies. II. Stellar kinematics to large radii in NGC 147 and NGC 185. Astrophys. J. 711, 361–373 (2010).
Martínez-García, A. M., del Pino, A., Aparicio, A., van der Marel, R. P. & Watkins, L. L. Internal rotation of Milky Way dwarf spheroidal satellites with Gaia Early Data Release 3. Mon. Not. R. Astron. Soc. 505, 5884–5895 (2021).
Tollerud, E. J. et al. The SPLASH survey: spectroscopy of 15 M31 dwarf spheroidal satellite galaxies. Astrophys. J. 752, 45 (2012).
Higgs, C. R. & McConnachie, A. W. Solo dwarfs IV: comparing and contrasting satellite and isolated dwarf galaxies in the Local Group. Mon. Not. R. Astron. Soc. 506, 2766–2779 (2021).
Collins, M. L. M. et al. Comparing the observable properties of dwarf galaxies on and off the Andromeda plane. Astrophys. J. Lett. 799, L13 (2015).
Fu, S. W., Simon, J. D. & Alarcón Jara, A. G. Dynamical histories of the Crater II and Hercules dwarf galaxies. Astrophys. J. 883, 11 (2019).
Gregory, A. L. et al. Kinematics of the Tucana dwarf galaxy: an unusually dense dwarf in the Local Group. Mon. Not. R. Astron. Soc. 485, 2010–2025 (2019).
Zhu, L., van de Ven, G., Watkins, L. L. & Posti, L. A discrete chemo-dynamical model of the dwarf spheroidal galaxy Sculptor: mass profile, velocity anisotropy and internal rotation. Mon. Not. R. Astron. Soc. 463, 1117–1135 (2016).
Hagen, J. H. J., Helmi, A. & Breddels, M. A. Axisymmetric Schwarzschild models of an isothermal axisymmetric mock dwarf spheroidal galaxy. Astron. Astrophys. 632, A99 (2019).
Hayashi, K., Chiba, M. & Ishiyama, T. Diversity of dark matter density profiles in the galactic dwarf spheroidal satellites. Astrophys. J. 904, 45 (2020).
Massari, D. et al. Three-dimensional motions in the Sculptor dwarf galaxy as a glimpse of a new era. Nat. Astron. 2, 156–161 (2018).
Massari, D. et al. Stellar 3D kinematics in the Draco dwarf spheroidal galaxy. Astron. Astrophys. 633, A36 (2020).
Tolstoy, E. et al. Two distinct ancient components in the Sculptor dwarf spheroidal galaxy: first results from the Dwarf Abundances and Radial velocities Team. Astrophys. J. Lett. 617, L119–L122 (2004).
Battaglia, G. et al. The DART imaging and CaT survey of the Fornax dwarf spheroidal galaxy. Astron. Astrophys. 459, 423–440 (2006).
Battaglia, G. et al. Study of the Sextans dwarf spheroidal galaxy from the DART Ca II triplet survey. Mon. Not. R. Astron. Soc. 411, 1013–1034 (2011).
Walker, M. G. & Peñarrubia, J. A method for measuring (slopes of) the mass profiles of dwarf spheroidal galaxies. Astrophys. J. 742, 20 (2011).
Amorisco, N. C. & Evans, N. W. Dark matter cores and cusps: the case of multiple stellar populations in dwarf spheroidals. Mon. Not. R. Astron. Soc. 419, 184–196 (2012).
Fabrizio, M. et al. The Carina Project. X. On the kinematics of old and intermediate-age stellar populations. Astrophys. J. 830, 126 (2016).
Kordopatis, G., Amorisco, N. C., Evans, N. W., Gilmore, G. & Koposov, S. E. Chemodynamic subpopulations of the Carina dwarf galaxy. Mon. Not. R. Astron. Soc. 457, 1299–1307 (2016).
Pace, A. B. et al. Multiple chemodynamic stellar populations of the Ursa Minor dwarf spheroidal galaxy. Mon. Not. R. Astron. Soc. 495, 3022–3040 (2020).
Ibata, R., Chapman, S., Irwin, M., Lewis, G. & Martin, N. A near-zero velocity dispersion stellar component in the Canes Venatici dwarf spheroidal galaxy. Mon. Not. R. Astron. Soc. 373, L70–L74 (2006).
Koposov, S. E. et al. Accurate stellar kinematics at faint magnitudes: application to the Boötes I dwarf spheroidal galaxy. Astrophys. J. 736, 146 (2011).
Breddels, M. A. & Helmi, A. Complexity on dwarf galaxy scales: a bimodal distribution function in Sculptor. Astrophys. J. Lett. 791, L3 (2014).
McConnachie, A. W., Peñarrubia, J. & Navarro, J. F. Multiple dynamical components in Local Group dwarf spheroidals. Mon. Not. R. Astron. Soc. 380, L75–L79 (2007).
Amorisco, N. C. & Evans, N. W. A troublesome past: chemodynamics of the Fornax dwarf spheroidal. Astrophys. J. Lett. 756, L2 (2012).
Cicuéndez, L. & Battaglia, G. Appearances can be deceiving: clear signs of accretion in the seemingly ordinary Sextans dSph. Mon. Not. R. Astron. Soc. 480, 251–260 (2018).
Ho, N. et al. Stellar kinematics of the Andromeda II dwarf spheroidal galaxy. Astrophys. J. 758, 124 (2012).
Hidalgo, S. L., Aparicio, A., Martínez-Delgado, D. & Gallart, C. On the extended structure of the Phoenix dwarf galaxy. Astrophys. J. 705, 704–716 (2009).
Battaglia, G., Rejkuba, M., Tolstoy, E., Irwin, M. J. & Beccari, G. A wide-area view of the Phoenix dwarf galaxy from Very Large Telescope/FORS imaging. Mon. Not. R. Astron. Soc. 424, 1113–1131 (2012).
Thompson, G. P., Ryan, S. G. & Sibbons, L. F. The rotation of the halo of NGC 6822 from the radial velocities of carbon stars. Mon. Not. R. Astron. Soc. 462, 3376–3385 (2016).
del Pino, A., Łokas, E. L., Hidalgo, S. L. & Fouquet, S. The structure of Andromeda II dwarf spheroidal galaxy. Mon. Not. R. Astron. Soc. 469, 4999–5015 (2017).
del Pino, A., Aparicio, A., Hidalgo, S. L. & Łokas, E. L. Rotating stellar populations in the Fornax dSph galaxy. Mon. Not. R. Astron. Soc. 465, 3708–3723 (2017).
Kim, H.-S., Han, S.-I., Joo, S.-J., Jeong, H. & Yoon, S.-J. A possible relic star cluster in the Sextans dwarf galaxy. Astrophys. J. Lett. 870, L8 (2019).
Lokas, E. L., Ebrova, I., DelPino, A. & Semczuk, M. Andromeda II as a merger remnant. Mon. Not. R. Astron. Soc. 445, L6–L10 (2014).
Cardona-Barrero, S., Battaglia, G., Di Cintio, A., Revaz, Y. & Jablonka, P. Origin of stellar prolate rotation in a cosmologically simulated faint dwarf galaxy. Mon. Not. R. Astron. Soc. 505, L100–L105 (2021).
Amorisco, N. C., Evans, N. W. & van de Ven, G. The remnant of a merger between two dwarf galaxies in Andromeda II. Nature 507, 335–337 (2014).
Annibali, F. et al. DDO 68: a flea with smaller fleas that on him prey. Astrophys. J. Lett. 826, L27 (2016).
Bullock, J. S. & Johnston, K. V. Tracing galaxy formation with stellar halos. I. Methods. Astrophys. J. 635, 931–949 (2005).
Peñarrubia, J., Navarro, J. F. & McConnachie, A. W. The tidal evolution of Local Group dwarf spheroidals. Astrophys. J. 673, 226–240 (2008).
Errani, R., Penarrubia, J. & Tormen, G. Constraining the distribution of dark matter in dwarf spheroidal galaxies with stellar tidal streams. Mon. Not. R. Astron. Soc. 449, L46–L50 (2015).
Errani, R. & Peñarrubia, J. Can tides disrupt cold dark matter subhaloes? Mon. Not. R. Astron. Soc. 491, 4591–4601 (2020).
Nipoti, C., Cherchi, G., Iorio, G. & Calura, F. Effective N-body models of composite collisionless stellar systems. Mon. Not. R. Astron. Soc. 503, 4221–4230 (2021).
Battaglia, G., Sollima, A. & Nipoti, C. The effect of tides on the Fornax dwarf spheroidal galaxy. Mon. Not. R. Astron. Soc. 454, 2401–2415 (2015).
Iorio, G., Nipoti, C., Battaglia, G. & Sollima, A. The effect of tides on the Sculptor dwarf spheroidal galaxy. Mon. Not. R. Astron. Soc. 487, 5692–5710 (2019).
Genina, A., Read, J. I., Fattahi, A. & Frenk, C. S. Can tides explain the low dark matter density in Fornax? Mon. Not. R. Astron. Soc. 510, 2186–2205 (2022).
Borukhovetskaya, A., Errani, R., Navarro, J. F., Fattahi, A. & Santos-Santos, I. The tidal evolution of the Fornax dwarf spheroidal and its globular clusters. Mon. Not. R. Astron. Soc. 509, 5330–5339 (2022).
Binney, J. & Tremaine, S. Galactic Dynamics 2nd edn (Princeton Univ. Press, 2008).
Ciotti, L. Introduction to Stellar Dynamics (Cambridge Univ. Press, 2021).
Łokas, E. L., Mamon, G. A. & Prada, F. Dark matter distribution in the Draco dwarf from velocity moments. Mon. Not. R. Astron. Soc. 363, 918–928 (2005).
Łokas, E. L. The mass and velocity anisotropy of the Carina, Fornax, Sculptor and Sextans dwarf spheroidal galaxies. Mon. Not. R. Astron. Soc. 394, L102–L106 (2009).
Strigari, L. E., Frenk, C. S. & White, S. D. M. Kinematics of Milky Way satellites in a Lambda cold dark matter universe. Mon. Not. R. Astron. Soc. 408, 2364–2372 (2010).
Breddels, M. A. & Helmi, A. Model comparison of the dark matter profiles of Fornax, Sculptor, Carina and Sextans. Astron. Astrophys. 558, A35 (2013).
Richardson, T. & Fairbairn, M. Analytical solutions to the mass-anisotropy degeneracy with higher order Jeans analysis: a general method. Mon. Not. R. Astron. Soc. 432, 3361–3380 (2013).
Strigari, L. E., Frenk, C. S. & White, S. D. M. Dynamical constraints on the dark matter distribution of the Sculptor dwarf spheroidal from stellar proper motions. Astrophys. J. 860, 56 (2018).
Pascale, R., Posti, L., Nipoti, C. & Binney, J. Action-based dynamical models of dwarf spheroidal galaxies: application to Fornax. Mon. Not. R. Astron. Soc. 480, 927–946 (2018).
Read, J. I. et al. Breaking beta: a comparison of mass modelling methods for spherical systems. Mon. Not. R. Astron. Soc. 501, 978–993 (2021).
Agnello, A. & Evans, N. W. A virial core in the Sculptor dwarf spheroidal galaxy. Astrophys. J. Lett. 754, L39 (2012).
Strigari, L. E., Frenk, C. S. & White, S. D. M. Dynamical models for the Sculptor dwarf spheroidal in a ? CDM Universe. Astrophys. J. 838, 123 (2017).
Pascale, R., Binney, J., Nipoti, C. & Posti, L. Action-based models for dwarf spheroidal galaxies and globular clusters. Mon. Not. R. Astron. Soc. 488, 2423–2439 (2019).
Binney, J. & Mamon, G. A. M/L and velocity anisotropy from observations of spherical galaxies, or must M87 have a massive black hole ? Mon. Not. R. Astron. Soc. 200, 361–375 (1982).
Woo, J., Courteau, S. & Dekel, A. Scaling relations and the fundamental line of the local group dwarf galaxies. Mon. Not. R. Astron. Soc. 390, 1453–1469 (2008).
Wolf, J. et al. Accurate masses for dispersion-supported galaxies. Mon. Not. R. Astron. Soc. 406, 1220–1237 (2010).
Sanders, J. L. & Evans, N. W. Mass estimators for flattened dispersion-supported galaxies. Astrophys. J. Lett. 830, L26 (2016).
Errani, R., Peñarrubia, J. & Walker, M. G. Systematics in virial mass estimators for pressure-supported systems. Mon. Not. R. Astron. Soc. 481, 5073–5090 (2018).
McGaugh, S. S., Lelli, F. & Schombert, J. M. Radial acceleration relation in rotationally supported galaxies. Phys. Rev. Lett. 117, 201101 (2016).
Lelli, F., McGaugh, S. S., Schombert, J. M. & Pawlowski, M. S. One law to rule them all: the radial acceleration relation of galaxies. Astrophys. J. 836, 152 (2017).
Strigari, L. E. et al. A common mass scale for satellite galaxies of the Milky Way. Nature 454, 1096–1097 (2008).
Read, J. I., Walker, M. G. & Steger, P. Dark matter heats up in dwarf galaxies. Mon. Not. R. Astron. Soc. 484, 1401–1420 (2019).
Navarro, J. F., Frenk, C. S. & White, S. D. M. The structure of cold dark matter halos. Astrophys. J. 462, 563–575 (1996).
Navarro, J. F., Eke, V. R. & Frenk, C. S. The cores of dwarf galaxy haloes. Mon. Not. R. Astron. Soc. 283, L72–L78 (1996).
Read, J. I. & Gilmore, G. Mass loss from dwarf spheroidal galaxies: the origins of shallow dark matter cores and exponential surface brightness profiles. Mon. Not. R. Astron. Soc. 356, 107–124 (2005).
Mashchenko, S., Wadsley, J. & Couchman, H. M. P. Stellar feedback in dwarf galaxy formation. Science 319, 174–177 (2008).
Di Cintio, A. et al. The dependence of dark matter profiles on the stellar-to-halo mass ratio: a prediction for cusps versus cores. Mon. Not. R. Astron. Soc. 437, 415–423 (2014).
Madau, P., Shen, S. & Governato, F. Dark matter heating and early core formation in dwarf galaxies. Astrophys. J. Lett. 789, L17 (2014).
Nipoti, C. & Binney, J. Early flattening of dark matter cusps in dwarf spheroidal galaxies. Mon. Not. R. Astron. Soc. 446, 1820–1828 (2015).
Sawala, T. et al. The APOSTLE simulations: solutions to the Local Groupas cosmic puzzles. Mon. Not. R. Astron. Soc. 457, 1931–1943 (2016).
Benítez-Llambay, A., Frenk, C. S., Ludlow, A. D. & Navarro, J. F. Baryon-induced dark matter cores in the EAGLE simulations. Mon. Not. R. Astron. Soc. 488, 2387–2404 (2019).
Hui, L., Ostriker, J. P., Tremaine, S. & Witten, E. Ultralight scalars as cosmological dark matter. Phys. Rev. D 95, 043541 (2017).
Fitts, A. et al. Dwarf galaxies in CDM, WDM, and SIDM: disentangling baryons and dark matter physics. Mon. Not. R. Astron. Soc. 490, 962–977 (2019).
Burger, J. D. et al. Degeneracies between self-interacting dark matter and supernova feedback as cusp-core transformation mechanisms. Preprint at https://arxiv.org/abs/2108.07358 (2021).
Jardel, J. R., Gebhardt, K., Fabricius, M. H., Drory, N. & Williams, M. J. Measuring dark matter profiles non-parametrically in dwarf spheroidals: an application to Draco. Astrophys. J. 763, 91 (2013).
Read, J. I., Walker, M. G. & Steger, P. The case for a cold dark matter cusp in Draco. Mon. Not. R. Astron. Soc. 481, 860–877 (2018).
Jardel, J. R. & Gebhardt, K. The dark matter density profile of the Fornax dwarf. Astrophys. J. 746, 89 (2012).
Kaplinghat, M., Valli, M. & Yu, H.-B. Too big to fail in light of Gaia. Mon. Not. R. Astron. Soc. 490, 231–242 (2019).
Breddels, M. A., Helmi, A., van den Bosch, R. C. E., van de Ven, G. & Battaglia, G. Orbit-based dynamical models of the Sculptor dSph galaxy. Mon. Not. R. Astron. Soc. 433, 3173–3189 (2013).
Pascale, R. Dynamical Models of Dwarf Spheroidal Galaxies Based on Distribution Functions Depending on Actions PhD thesis, Univ. Bologna (2020).
Pontzen, A. & Governato, F. Cold dark matter heats up. Nature 506, 171–178 (2014).
Tollet, E. et al. NIHAO - IV: core creation and destruction in dark matter density profiles across cosmic time. Mon. Not. R. Astron. Soc. 456, 3542–3552 (2016).
Lazar, A. et al. A dark matter profile to model diverse feedback-induced core sizes of Λ CDM haloes. Mon. Not. R. Astron. Soc. 497, 2393–2417 (2020).
Robles, V. H. & Bullock, J. S. Orbital pericentres and the inferred dark matter halo structure of satellite galaxies. Mon. Not. R. Astron. Soc. 503, 5232–5237 (2021).
Torrealba, G., Koposov, S. E., Belokurov, V. & Irwin, M. The feeble giant. Discovery of a large and diffuse Milky Way dwarf galaxy in the constellation of Crater. Mon. Not. R. Astron. Soc. 459, 2370–2378 (2016).
Borukhovetskaya, A., Navarro, J. F., Errani, R. & Fattahi, A. Galactic tides and the Crater II dwarf spheroidal: a challenge to LCDM? Preprint at https://arxiv.org/abs/2112.01540 (2021).
Evans, N. W., Sanders, J. L. & Geringer-Sameth, A. Simple J-factors and D-factors for indirect dark matter detection. Phys. Rev. D 93, 103512 (2016).
Pace, A. B. & Strigari, L. E. Scaling relations for dark matter annihilation and decay profiles in dwarf spheroidal galaxies. Mon. Not. R. Astron. Soc. 482, 3480–3496 (2019).
Bergström, S. et al. J-factors for self-interacting dark matter in 20 dwarf spheroidal galaxies. Phys. Rev. D 98, 043017 (2018).
Ackermann, M. et al. Searching for dark matter annihilation from Milky Way dwarf spheroidal galaxies with six years of Fermi Large Area Telescope data. Phys. Rev. Lett. 115, 231301 (2015).
Bonnivard, V. et al. Dark matter annihilation and decay in dwarf spheroidal galaxies: the classical and ultrafaint dSphs. Mon. Not. R. Astron. Soc. 453, 849–867 (2015).
Geringer-Sameth, A., Koushiappas, S. M. & Walker, M. Dwarf galaxy annihilation and decay emission profiles for dark matter experiments. Astrophys. J. 801, 74 (2015).
Sanders, J. L., Evans, N. W., Geringer-Sameth, A. & Dehnen, W. Indirect dark matter detection for flattened dwarf galaxies. Phys. Rev. D 94, 063521 (2016).
Hayashi, K. et al. Dark matter annihilation and decay from non-spherical dark halos in galactic dwarf satellites. Mon. Not. R. Astron. Soc. 461, 2914–2928 (2016).
Klop, N., Zandanel, F., Hayashi, K. & Ando, S. Impact of axisymmetric mass models for dwarf spheroidal galaxies on indirect dark matter searches. Phys. Rev. D 95, 123012 (2017).
Chiappo, A., Cohen-Tanugi, J., Conrad, J. & Strigari, L. E. Dwarf spheroidal J-factor likelihoods for generalized NFW profiles. Mon. Not. R. Astron. Soc. 488, 2616–2628 (2019).
Horigome, S. et al. J-factor estimation of Draco, Sculptor, and Ursa Minor dwarf spheroidal galaxies with the member/foreground mixture model. Mon. Not. R. Astron. Soc. 499, 3320–3337 (2020).
Simon, J. et al. Testing the nature of dark matter with extremely large telescopes. Bull. Am. Astron. Soc. 51, 153 (2019).
Hobbs, D. et al. All-sky visible and near infrared space astrometry. Exp. Astron. 51, 783–843 (2021).
WFIRST Astrometry Working Group. Astrometry with the Wide-Field Infrared Space Telescope. J. Astron. Telesc. Instrum. Syst. 5, 044005 (2019).
Anderson, J., Bedin, L. R., Piotto, G., Yadav, R. S. & Bellini, A. Ground-based CCD astrometry with wide field imagers. I. Observations just a few years apart allow decontamination of field objects from members in two globular clusters. Astron. Astrophys. 454, 1029–1045 (2006).
Strigari, L. E., Bullock, J. S. & Kaplinghat, M. Determining the nature of dark matter with astrometry. Astrophys. J. Lett. 657, L1–L4 (2007).
Richardson, T. D., Spolyar, D. & Lehnert, M. D. Plan β: core or cusp? Mon. Not. R. Astron. Soc. 440, 1680–1689 (2014).
Read, J. I. & Steger, P. How to break the density-anisotropy degeneracy in spherical stellar systems. Mon. Not. R. Astron. Soc. 471, 4541–4558 (2017).
Guerra, J., Geha, M. & Strigari, L. E. Forecasts on the dark matter density profiles of dwarf spheroidal galaxies with current and future kinematic observations. Preprint at https://arxiv.org/abs/2112.05166 (2021).
Torrealba, G. et al. At the survey limits: discovery of the Aquarius 2 dwarf galaxy in the VST ATLAS and the SDSS data. Mon. Not. R. Astron. Soc. 463, 712–722 (2016).
Muñoz, R. R. et al. A MegaCam survey of outer halo satellites. III. Photometric and structural parameters. Astrophys. J. 860, 66 (2018).
Torrealba, G. et al. Discovery of two neighbouring satellites in the Carina constellation with MagLiteS. Mon. Not. R. Astron. Soc. 475, 5085–5097 (2018).
Koposov, S. E. et al. Snake in the clouds: a new nearby dwarf galaxy in the Magellanic bridge. Mon. Not. R. Astron. Soc. 479, 5343–5361 (2018).
Kim, D. et al. Portrait of a dark horse: a photometric and spectroscopic study of the ultra-faint Milky Way satellite Pegasus III. Astrophys. J. 833, 16 (2016).
Mutlu-Pakdil, B. et al. A deeper look at the new Milky Way satellites: Sagittarius II, Reticulum II, Phoenix II, and Tucana III. Astrophys. J. 863, 25 (2018).
Cicuéndez, L. et al. Tracing the stellar component of low surface brightness Milky Way dwarf galaxies to their outskirts. I. Sextans. Astron. Astrophys. 609, A53 (2018).
Koposov, S. E., Belokurov, V., Torrealba, G. & Evans, N. W. Beasts of the southern wild: discovery of nine ultra faint satellites in the vicinity of the Magellanic Clouds. Astrophys. J. 805, 130 (2015).
Simon, J. D. et al. Birds of a feather? Magellan/IMACS spectroscopy of the ultra-faint satellites Grus II, Tucana IV, and Tucana V. Astrophys. J. 892, 137 (2020).
Saviane, I., Held, E. V. & Piotto, G. CCD photometry of the Tucana dwarf galaxy. Astron. Astrophys. 315, 40–51 (1996).
Martin, N. F. et al. The PAndAS view of the Andromeda satellite system. II. Detailed properties of 23 M31 dwarf spheroidal galaxies. Astrophys. J. 833, 167 (2016).
Collins, M. L. M. et al. Andromeda XXI—a dwarf galaxy in a low-density dark matter halo. Mon. Not. R. Astron. Soc. 505, 5686–5701 (2021).
Tollerud, E. J., Geha, M. C., Vargas, L. C. & Bullock, J. S. The outer limits of the M31 system: kinematics of the dwarf galaxy satellites And XXVIII & And XXIX. Astrophys. J. 768, 50 (2013).
Higgs, C. R. et al. Solo dwarfs II: the stellar structure of isolated Local Group dwarf galaxies. Mon. Not. R. Astron. Soc. 503, 176–199 (2021).
Cook, K. H. et al. The systemic velocity and internal kinematics of the dwarf galaxy LGS 3: an optical foray beyond the Milky Way. Publ. Astron. Soc. Pac. 111, 306–312 (1999).
McConnachie, A. W. The observed properties of dwarf galaxies in and around the Local Group. Astron. J. 144, 4 (2012).
Lee, M. G. Stellar populations of the dwarf galaxy LGS 3 in the Local Group. Astron. J. 110, 1129–1140 (1995).
Crnojević, D. et al. A PAndAS view of M31 dwarf elliptical satellites: NGC 147 and NGC 185. Mon. Not. R. Astron. Soc. 445, 3862–3877 (2014).
Drlica-Wagner, A. et al. Eight ultra-faint galaxy candidates discovered in year two of the Dark Energy Survey. Astrophys. J. 813, 109 (2015).
Longeard, N. et al. Pristine dwarf galaxy survey—I. A detailed photometric and spectroscopic study of the very metal-poor Draco II satellite. Mon. Not. R. Astron. Soc. 480, 2609–2627 (2018).
Carlin, J. L. et al. Deep Subaru Hyper Suprime-Cam observations of Milky Way satellites Columba I and Triangulum II. Astron. J. 154, 267 (2017).
Walker, M. G., Mateo, M., Olszewski, E. W., Sen, B. & Woodroofe, M. Clean kinematic samples in dwarf spheroidals: an algorithm for evaluating membership and estimating distribution parameters when contamination is present. Astron. J. 137, 3109–3138 (2009).
McConnachie, A. W. & Côté, P. Revisiting the influence of unidentified binaries on velocity dispersion measurements in ultra-faint stellar systems. Astrophys. J. Lett. 722, L209–L214 (2010).
Dabringhausen, J., Kroupa, P., Famaey, B. & Fellhauer, M. Understanding the internal dynamics of elliptical galaxies without non-baryonic dark matter. Mon. Not. R. Astron. Soc. 463, 1865–1880 (2016).
Martinez, G. D. et al. A complete spectroscopic survey of the Milky Way satellite Segue 1: dark matter content, stellar membership, and binary properties from a Bayesian analysis. Astrophys. J. 738, 55 (2011).
Minor, Q. E., Pace, A. B., Marshall, J. L. & Strigari, L. E. Robust velocity dispersion and binary population modelling of the ultrafaint dwarf galaxy Reticulum II. Mon. Not. R. Astron. Soc. 487, 2961–2968 (2019).
Minor, Q. E. Binary populations in Milky Way satellite galaxies: constraints from multi-epoch data in the Carina, Fornax, Sculptor, and Sextans dwarf spheroidal galaxies. Astrophys. J. 779, 116 (2013).
Spencer, M. E. et al. The binary fraction of stars in dwarf galaxies: the cases of Draco and Ursa Minor. Astron. J. 156, 257 (2018).
Amorisco, N. C. & Evans, N. W. Phase-space models of the dwarf spheroidals. Mon. Not. R. Astron. Soc. 411, 2118–2136 (2011).
Wilkinson, M. I., Kleyna, J., Evans, N. W. & Gilmore, G. Dark matter in dwarf spheroidals—I. Models. Mon. Not. R. Astron. Soc. 330, 778–791 (2002).
Williams, A. A. & Evans, N. W. Made-to-measure dark matter haloes, elliptical galaxies and dwarf galaxies in action coordinates. Mon. Not. R. Astron. Soc. 448, 1360–1371 (2015).
Schwarzschild, M. A numerical model for a triaxial stellar system in dynamical equilibrium. Astrophys. J. 232, 236–247 (1979).
Kowalczyk, K., Łokas, E. L. & Valluri, M. Recovering the mass profile and orbit anisotropy of mock dwarf galaxies with Schwarzschild modelling. Mon. Not. R. Astron. Soc. 470, 3959–3969 (2017).
Kowalczyk, K., Łokas, E. L. & Valluri, M. The effect of non-sphericity on mass and anisotropy measurements in dSph galaxies with Schwarzschild method. Mon. Not. R. Astron. Soc. 476, 2918–2930 (2018).
Kowalczyk, K., del Pino, A., Łokas, E. L. & Valluri, M. Schwarzschild dynamical model of the Fornax dwarf spheroidal galaxy. Mon. Not. R. Astron. Soc. 482, 5241–5249 (2019).
Jardel, J. R. & Gebhardt, K. Variations in a universal dark matter profile for dwarf spheroidals. Astrophys. J. Lett. 775, L30 (2013).
Evans, N. W., An, J. & Walker, M. G. Cores and cusps in the dwarf spheroidals. Mon. Not. R. Astron. Soc. 393, L50–L54 (2009).
Walker, M. G. et al. A universal mass profile for dwarf spheroidal galaxies? Astrophys. J. 704, 1274–1287 (2009).
Diakogiannis, F. I. et al. A novel JEANS analysis of the Fornax dwarf using evolutionary algorithms: mass follows light with signs of an off-centre merger. Mon. Not. R. Astron. Soc. 470, 2034–2053 (2017).
Hayashi, K. & Chiba, M. Probing non-spherical dark halos in the galactic dwarf galaxies. Astrophys. J. 755, 145 (2012).
Łokas, E. L. Dark matter distribution in dwarf spheroidal galaxies. Mon. Not. R. Astron. Soc. 333, 697–708 (2002).
Richardson, T. & Fairbairn, M. On the dark matter profile in Sculptor: breaking the β degeneracy with Virial shape parameters. Mon. Not. R. Astron. Soc. 441, 1584–1600 (2014).
Genina, A. et al. To β or not to β: can higher order Jeans analysis break the mass-anisotropy degeneracy in simulated dwarfs? Mon. Not. R. Astron. Soc. 498, 144–163 (2020).
Lazar, A. & Bullock, J. S. Accurate mass estimates from the proper motions of dispersion-supported galaxies. Mon. Not. R. Astron. Soc. 493, 5825–5837 (2020).
Acknowledgements
We are grateful to N. Amorisco, K. Hayashi, M. Kaplinghat, R. Pascale, J. Read, M. Valli and L. Zhu for sharing their data. G.B. acknowledges support from the Agencia Estatal de Investigación del Ministerio de Ciencia en Innovación (AEI-MICIN) and the European Regional Development Fund (ERDF) under grant number AYA2017-89076-P, the AEI under grant number CEX2019-000920-S and the AEI-MICIN under grant number PID2020-118778GB-I00/10.13039/501100011033.
Author information
Authors and Affiliations
Contributions
G.B. and C.N. contributed equally to the design and writing of this Review.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks Ting Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Battaglia, G., Nipoti, C. Stellar dynamics and dark matter in Local Group dwarf galaxies. Nat Astron 6, 659–672 (2022). https://doi.org/10.1038/s41550-022-01638-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41550-022-01638-7