Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Images of embedded Jovian planet formation at a wide separation around AB Aurigae

Abstract

Direct images of protoplanets embedded in disks around infant stars provide the key to understanding the formation of gas giant planets such as Jupiter. Using the Subaru Telescope and the Hubble Space Telescope, we find evidence for a Jovian protoplanet around AB Aurigae orbiting at a wide projected separation (~93 au), probably responsible for multiple planet-induced features in the disk. Its emission is reproducible as reprocessed radiation from an embedded protoplanet. We also identify two structures located at 430–580 au that are candidate sites of planet formation. These data reveal planet formation in the embedded phase and a protoplanet discovery at wide, >50 au separations characteristic of most imaged exoplanets. With at least one clump-like protoplanet and multiple spiral arms, the AB Aur system may also provide the evidence for a long-considered alternative to the canonical model for Jupiter’s formation, namely disk (gravitational) instability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Detection of a clump-like protoplanet, AB Aur b, around AB Aur at wide separation (~93 au).
Fig. 2: HST imaging of AB Aur over a 13-year time baseline.
Fig. 3: Orbit fitting results for AB Aur b.
Fig. 4: SCExAO/CHARIS images of AB Aur at different wavelengths and observing modes.
Fig. 5: Simulating AB Aur b’s emission and morphology.

Similar content being viewed by others

Data availability

With the exception of data from the first CHARIS epoch (obtained during engineering observations), all raw SCExAO data are available for public download from the Subaru SMOKA archive: https://smoka.nao.ac.jp/. The first epoch data are available upon request. Keck data are available from the Keck Observatory Archive (https://koa.ipac.caltech.edu/cgi-bin/KOA/nph-KOAlogin); HST data are available from the Milkulski Archive for Space Telescopes (https://archive.stsci.edu/missions-and-data/hst). Processed data are made available from the corresponding author upon reasonable request.

Code availability

Data reduction pipelines used to create CHARIS data cubes and perform subsequent processing are publicly available on GitHub (https://github.com/PrincetonUniversity/charis-dep and https://github.com/thaynecurrie/charis-dpp).

References

  1. Borucki, W. et al. Kepler planet-detection mission: introduction and first results. Science 327, 977–980 (2010).

    Article  ADS  Google Scholar 

  2. Pollack, J. B. et al. Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85 (1996).

    Article  ADS  Google Scholar 

  3. Marois, C. et al. Direct imaging of multiple planets orbiting the star HR 8799. Science 322, 1348–1352 (2008).

    Article  ADS  Google Scholar 

  4. Carson, J. Direct imaging discovery of a ‘super-Jupiter’ around the late B-type star κ And. Astrophys. J. Lett. 763, L32 (2013).

    Article  ADS  Google Scholar 

  5. Currie, T. et al. Direct imaging and spectroscopy of a candidate companion below/near the deuterium-burning limit in the young binary star system, ROXs 42B. Astrophys. J. Lett. 780, L30 (2014).

    Article  ADS  Google Scholar 

  6. Chauvin, G. et al. Discovery of a warm, dusty giant planet around HIP 65426. Astron. Astrophys. 605, L9 (2017).

    Article  ADS  Google Scholar 

  7. Boss, A. P. Evolution of the solar nebula. IV. Giant gaseous protoplanet formation. Astrophys. J. 503, 923–937 (1998).

    Article  ADS  Google Scholar 

  8. Keppler, M. et al. Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70. Astron. Astrophys. 617, A44 (2018).

    Article  Google Scholar 

  9. Haffert, S. Y. et al. Two accreting protoplanets around the young star PDS 70. Nat. Astron. 3, 749–754 (2019).

    Article  ADS  Google Scholar 

  10. Muto, T. et al. Discovery of small-scale spiral structures in the disk of SAO 206462 (HD 135344B): implications for the physical state of the disk from spiral density wave theory. Astrophys. J. Lett. 748, L22 (2012).

    Article  ADS  Google Scholar 

  11. Jovanovic, N. et al. The Subaru Coronagraphic Extreme Adaptive Optics System: enabling high-contrast imaging on solar-system scales. Publ. Astron. Soc. Pac. 127, 890 (2015).

    Article  ADS  Google Scholar 

  12. Groff, T. D. et al. Laboratory testing and performance verification of the CHARIS integral field spectrograph. Proc. SPIE 9908, 99080O (2016).

    Article  Google Scholar 

  13. van der Marel, N. et al. On the diversity of asymmetries in gapped protoplanetary disks. Astron. J. 161, 33 (2021).

    Article  ADS  Google Scholar 

  14. Tang, Y.-W. et al. Planet formation in AB Aurigae: imaging of the inner gaseous spirals observed inside the dust cavity. Astrophys. J. 840, 32 (2017).

    Article  ADS  Google Scholar 

  15. Vorobyov, E., Zakhozhay, O. & Dunham, M. Fragmenting protostellar discs: properties and observational signatures. Mon. Not. R. Astron. Soc. 433, 3256–3273 (2013).

    Article  ADS  Google Scholar 

  16. Blunt, S. et al. orbitize!: a comprehensive orbit-fitting software package for the high-contrast imaging community. Astron. J. 159, 89 (2020).

    Article  ADS  Google Scholar 

  17. Hashimoto, J. et al. Direct imaging of fine structures in giant planet-forming regions of the protoplanetary disk around AB Aurigae. Astrophys. J. Lett. 729, L17 (2011).

    Article  ADS  Google Scholar 

  18. Perrin, M. D. et al. The case of AB Aurigae’s disk in polarized light: is there truly a gap? Astrophys. J. Lett. 707, L132–L136 (2009).

    Article  ADS  Google Scholar 

  19. Norris, B. et al. The VAMPIRES instrument: imaging the innermost regions of protoplanetary discs with polarimetric interferometry. Mon. Not. R. Astron. Soc. 447, 2894–2906 (2015).

    Article  ADS  Google Scholar 

  20. Pecaut, M. J. & Mamajek, E. E. Intrinsic colors, temperatures, and bolometric corrections of pre-main-sequence stars. Astrophys. J. Suppl. Ser. 208, 9 (2013).

    Article  ADS  Google Scholar 

  21. Spiegel, D. S. & Burrows, A. Spectral and photometric diagnostics of giant planet formation scenarios. Astrophys. J. 745, 174 (2012).

    Article  ADS  Google Scholar 

  22. Baraffe, I., Chabrier, G., Barman, T. S., Allard, F. & Hauschildt, P. Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458. Astron. Astrophys. 402, 701–712 (2003).

    Article  ADS  Google Scholar 

  23. Brandt, T. D. The Hipparcos–Gaia Catalog of Accelerations: Gaia EDR3 edition. Astrophys. J. Suppl. Ser. 254, 42 (2021).

    Article  ADS  Google Scholar 

  24. Zhu, Z. Accreting circumplanetary disks: observational signatures. Astrophys. J. 799, 16 (2015).

    Article  ADS  Google Scholar 

  25. Wagner, K., Apai, D. & Kratter, K. M. On the mass function, multiplicity, and origins of wide-orbit giant planets. Astrophys. J. 877, 46 (2019).

    Article  ADS  Google Scholar 

  26. Forgan, D. & Rice, K. Towards a population synthesis model of objects formed by self-gravitating disc fragmentation and tidal downsizing. Mon. Not. R. Astron. Soc. 432, 3168–3185 (2013).

    Article  ADS  Google Scholar 

  27. Boccaletti, A. et al. Possible evidence of ongoing planet formation in AB Aurigae. A showcase of the SPHERE/ALMA synergy. Astron. Astrophys. 637, L5 (2020).

    Article  ADS  Google Scholar 

  28. Gaia Collaboration Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 649, A1 (2021).

    Article  Google Scholar 

  29. Gaia Collaboration Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

    Article  Google Scholar 

  30. deWarf, L. E., Sepinsky, J. F., Guinan, E. F., Ribas, I. & Nadalin, I. Intrinsic properties of the young stellar object SU Aurigae. Astrophys. J. 590, 357–367 (2003).

    Article  ADS  Google Scholar 

  31. Kenyon, S. J., Gomez, M. & Whitney, B. A. in Handbook of Star Forming Regions: Volume I, The Northern Sky (ed. Reipurth, B) 405–458 (Astronomical Society of the Pacific, 2008)

  32. Grady, C. et al. Hubble Space Telescope Space Telescope Imaging Spectrograph coronagraphic imaging of the Herbig AE star AB Aurigae. Astrophys. J. Lett. 523, L151–L154 (1999).

    Article  ADS  Google Scholar 

  33. Oppenheimer, B. R. et al. The Solar System-scale disk around AB Aurigae. Astrophys. J. 679, 1574–1581 (2008).

    Article  ADS  Google Scholar 

  34. Fukagawa, M. et al. Spiral structure in the circumstellar disk around AB Aurigae. Astrophys. J. Lett. 605, L53–L56 (2004).

    Article  ADS  Google Scholar 

  35. Dong, R. The missing cavities in the SEEDS polarized scattered light images of transitional protoplanetary disks: a generic disk model. Astrophys. J. 750, 161 (2012).

    Article  ADS  Google Scholar 

  36. Zhu, Z., Nelson, R. P., Dong, R., Espaillat, C. & Hartmann, L. Dust filtration by planet-induced gap edges: implications for transitional disks. Astrophys. J. 755, 6 (2012).

    Article  ADS  Google Scholar 

  37. Lawson, K. et al. High-contrast integral field polarimetry of planet-forming disks with SCExAO/CHARIS. Proc. SPIE 11823, 118230D (2021).

    Google Scholar 

  38. Marois, C., Lafrenière, D., Doyon, R., Macintosh, B. & Nadeau, D. Angular differential imaging: a powerful high-contrast imaging technique. Astrophys. J. 641, 556–564 (2006).

    Article  ADS  Google Scholar 

  39. Debes, J. H., Ren, B. & Schneider, G. Pushing the limits of the coronagraph occulters on Hubble Space Telescope/Space Telescope Imaging Spectrograph. J. Astron. Telesc. Instrum. Syst. 5, 035003 (2019).

    Article  ADS  Google Scholar 

  40. Brandt, T. D. et al. Data reduction pipeline for the CHARIS integral-field spectrograph I: detector readout calibration and data cube extraction. J. Astron. Telesc. Instrum. Syst. 3, 048002 (2017).

    Article  ADS  Google Scholar 

  41. Currie, T. et al. No clear, direct evidence for multiple protoplanets orbiting LkCa 15: LkCa 15 bcd are likely inner disk signals. Astrophys. J. Lett. 877, L3 (2019).

    Article  ADS  Google Scholar 

  42. Tannirkulam, A. A tale of two Herbig Ae stars, MWC 275 and AB Aurigae: comprehensive models for spectral energy distribution and interferometry. Astrophys. J. 689, 513–531 (2008).

    Article  ADS  Google Scholar 

  43. Currie, T. et al. A combined Subaru/VLT/MMT study of planets orbiting HR 8799: implications for atmospheric properties, masses, and formation. Astrophys. J. 729, 128 (2011).

    Article  ADS  Google Scholar 

  44. Soummer, R., Pueyo, L. & Larkin, J. Detection and characterization of exoplanets and disks using projections on Karhunen–Loève eigenimages. Astrophys. J. Lett. 755, L28 (2012).

    Article  ADS  Google Scholar 

  45. Currie, T. et al. Direct imaging confirmation and characterization of a dust-enshrouded candidate exoplanet orbiting Fomalhaut. Astrophys. J. Lett. 760, L32 (2012).

    Article  ADS  Google Scholar 

  46. Currie, T. et al. Resolving the HD 100546 protoplanetary system with the Gemini Planet Imager: evidence for multiple forming, accreting planets. Astrophys. J. Lett. 814, L27 (2015).

    Article  ADS  Google Scholar 

  47. Stolker, T. et al. Scattered light mapping of protoplanetary disks. Astron. Astrophys. 596, A70 (2016).

    Article  ADS  Google Scholar 

  48. Hines, D. C., Schmidt, G. D. & Schneider, G. Analysis of polarized light with NICMOS. Publ. Astron. Soc. Pac. 112, 983–995 (2000).

    Article  ADS  Google Scholar 

  49. Mawet, D. et al. Fundamental limitations of high contrast imaging set by small sample statistics. Astrophys. J. 792, 97 (2014).

    Article  ADS  Google Scholar 

  50. Krist, J. in Astronomical Data Analysis Software and Systems IV (eds Shaw, R. A. et al.) 349–352 (Astronomical Society of the Pacific, 1995)

  51. Pinilla, P. et al. Trapping dust particles in the outer regions of protoplanetary disks. Astron. Astrophys. 538, A114 (2012).

    Article  Google Scholar 

  52. Min, M., Dullemond, C. P., Dominik, C., de Koter, A. & Hovenier, J. W. Radiative transfer in very optically thick circumstellar disks. Astron. Astrophys. 497, 155–166 (2009).

    Article  ADS  Google Scholar 

  53. Brandenburg, A. & Dobler, W. Hydromagnetic turbulence in computer simulations. Comput. Phys. Commun. 147, 471–475 (2002).

    Article  ADS  MATH  Google Scholar 

  54. Dullemond, C., Juhasz, A. & Pohl, A. RADMC-3D: a multi-purpose radiative transfer tool. Astrophysics Source Code Library ascl:1202.015 (2012).

Download references

Acknowledgements

We thank A. Boccaletti for many helpful conversations regarding the AB Aur protoplanetary disk and system properties. Z. Zhu generously provided circumplanetary disk models; S. Blunt provided expert advice on MCMC-based orbit fitting. We thank the Subaru, NASA-Keck and Hubble Space Telescope Time Allocation committees for their generous allotment of observing time. This research is based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. We acknowledge the very significant cultural role and reverence that the summit of Maunakea holds within the Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. This paper makes use of the following ALMA data: 2012.1.00303.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. This work was partially funded under NASA/XRP programmes 80NSSC20K0252 and NNX17AF88G. The development of SCExAO was supported by the Japan Society for the Promotion of Science (Grant-in-Aid for Research nos. 23340051, 26220704, 23103002, 19H00703 and 19H00695 and partly 18H05442, 15H02063, and 22000005), the Astrobiology Center of the National Institutes of Natural Sciences, Japan, the Mt Cuba Foundation and the director’s contingency fund at Subaru Telescope.

Author information

Authors and Affiliations

Authors

Contributions

T.C. conceived of the project, (co-)led the total intensity data reduction, performed the spectroscopic and orbital analysis, and wrote the manuscript. K.L. and J.W. led the polarized intensity data reduction and the polarimetry-constrained PSF subtraction method for CHARIS. G.S. planned the STIS observations and co-led the HST/STIS and NICMOS reductions. W.L. generated the hydrodynamical models used to compare the real data with models of planet formation. C.G. aided with project and observing planning. O.G., J.L., S.V., V.D., N.J., F.M. and N.S. oversaw the operation of SCExAO. M.T. provided project management. T.K and H.K. planned and obtained one epoch of CHARIS data. T.B. provided dynamical mass estimates. T.U. and B.N. contributed VAMPIRES data reduction steps. R.D. and T.M. aided with interpreting planet-induced disk features. J.C., T.T. and T.G. lead the operation and maintenance of CHARIS. K.W.-D. and W.J. planned the STIS observations. N.v.d.M. provided the AB Aur ALMA image. M.S. obtained SpeX data. The authors all contributed to the original observing proposals, data acquisition and/or paper draft comments.

Corresponding author

Correspondence to Thayne Currie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–10 and Figs. 1–18.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Currie, T., Lawson, K., Schneider, G. et al. Images of embedded Jovian planet formation at a wide separation around AB Aurigae. Nat Astron 6, 751–759 (2022). https://doi.org/10.1038/s41550-022-01634-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01634-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing