Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Radio pulsations from a neutron star within the gamma-ray binary LS I +61° 303

Abstract

LS I +61° 303 is one of the rare gamma-ray binaries1 that emit most of their luminosity in photons with energies beyond 100 MeV (ref. 2). It is well characterized—the ~26.5 day orbital period is clearly detected at many wavelengths2,3,4—and other aspects of its multifrequency behaviour make it the most interesting example of its class. The morphology of high-resolution radio images changes with orbital phase, displaying a cometary tail pointing away from the high-mass star component5 and LS I +61° 303 also shows superorbital variability3,6,7,8,9. A couple of energetic (~1037 erg s−1), short, magnetar-like bursts have been plausibly ascribed to it10,11,12,13. Although the phenomenology of LS I +61° 303 has been the subject of theoretical scrutiny for decades, there has been a lack of certainty regarding the nature of the compact object in the binary that has hampered our understanding of the source. Here, using observations with the Five-hundred-meter Aperture Spherical radio Telescope, we report the existence of transient radio pulsations from the direction of LS I +61° 303 with a period P = 269.15508 ± 0.00016 ms at a significance of >20σ. These pulsations strongly argue for the existence of a rotating neutron star within LS I +61° 303.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Radio pulsations were recorded in the FAST data recorded on 2020 January 7.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding authors on reasonable request.

Code availability

PRESTO is available at https://www.cv.nrao.edu/~sransom/presto/ and BEAR is available at https://psr.pku.edu.cn/index.php/publications/software.

References

  1. Dubus, G. Gamma-ray binaries and related systems. Astron. Astrophys. Rev. 21, 64 (2013).

    Article  ADS  Google Scholar 

  2. Abdo, A. A., Ackermann, M. & Ajello, M. et al. Fermi LAT observations of LS I +61 303: first detection of an orbital modulation in GeV gamma rays. Astrophys. J. Lett. 701, L123–L128 (2009).

    Article  ADS  Google Scholar 

  3. Gregory, P. C. Bayesian analysis of radio observations of the Be X-ray binary LS I +61 303. Astrophys. J. 575, 427–434 (2002).

    Article  ADS  Google Scholar 

  4. Albert, J., Aliu, E. & Anderhub, H. et al. Multiwavelength (radio, X-ray, and γ-ray) observations of the γ-ray binary LS I +61 303. Astrophys. J. 684, 1351–1358 (2008).

    Article  ADS  Google Scholar 

  5. Dhawan, V., Mioduszewski, A. & Rupen, M. LS I +61 303 is a Be-pulsar binary, not a microquasar. In VI Microquasar Workshop: Microquasars and Beyond 52.1 (ed. Belloni, T.) (Proceedings of Science, 2006).

  6. Chernyakova, M. et al. Superorbital modulation of X-ray emission from gamma-ray binary LSI +61 303. Astrophys. J. Lett. 747, L29 (2012).

    Article  ADS  Google Scholar 

  7. Li, J., Torres, D. F. & Zhang, S. et al. Unveiling the super-orbital modulation of LS I +61 303 in X-Rays. Astrophys. J. Lett. 744, L13 (2012).

    Article  ADS  Google Scholar 

  8. Ackermann, M. et al. Associating long-term γ-ray variability with the superorbital period of LS I +61303. Astrophys. J. Lett. 773, L35 (2013).

    Article  ADS  Google Scholar 

  9. Ahnen, M. L. et al. Super-orbital variability of LS I +61303 at TeV energies. Astron. Astrophys. 591, A76 (2016).

    Article  Google Scholar 

  10. De Pasquale, M., Barthelmy, S. D. & Baumgartner, W. H. et al. Swift trigger 324362 (LS I +61 303 ?). GRB Coord. Netw. Circ. No. 8209 (2008).

  11. Barthelmy, S. D. et al. Swift-BAT/-XRT refined analysis on trigger 324362 (LS I +61 303). GRB Coord. Netw. Circ. No. 8215 (2008).

  12. Muñoz-Arjonilla, A. J. et al. Candidate counterparts to the soft gamma-ray flare in the direction of LS I +61 303. Astron. Astrophys. 497, 457–461 (2009).

    Article  ADS  Google Scholar 

  13. Torres, D. F., Rea, N. & Esposito, P. et al. A magnetar-like event from LS I +61 303 and its nature as a gamma-ray binary. Astrophys. J. 744, 106 (2012).

    Article  ADS  Google Scholar 

  14. Lindegren, L. et al. Gaia Early Data Release 3. The astrometric solution. Astron. Astrophys. 649, A2 (2021).

    Article  Google Scholar 

  15. Casares, J., Ribas, I., Paredes, J. M., Martí, J. & Allende Prieto, C. Orbital parameters of the microquasar LS I +61 303. Mon. Not. R. Astron. Soc. 360, 1105–1109 (2005).

    Article  ADS  Google Scholar 

  16. Grundstrom, E. D., Caballero-Nieves, S. M. & Gies, D. R. et al. Joint Hα and X-ray observations of massive x-ray binaries. II. The Be X-ray binary and microquasar LS I +61 303. Astrophys. J. 656, 437–443 (2007).

    Article  ADS  Google Scholar 

  17. Aragona, C. et al. The orbits of the γ-ray binaries LS I +61 303 and LS 5039. Astrophys. J. 698, 514–518 (2009).

    Article  ADS  Google Scholar 

  18. Massi, M. LS I +61303 in the context of microquasars. Astron. Astrophys. 422, 267–270 (2004).

    Article  ADS  Google Scholar 

  19. Maraschi, L. & Treves, A. A model for LS I 61 303. Mon. Not. R. Astron. Soc. 194, 1P–5P (1981).

    Article  ADS  Google Scholar 

  20. Zamanov, R. K. An ejector-propeller model for LS I +61 303. Mon. Not. R. Astron. Soc. 272, 308–310 (1995).

    Article  ADS  Google Scholar 

  21. McSwain, M. V., Ray, P. S. & Ransom, S. M. et al. A radio pulsar search of the γ-ray binaries LS I +61 303 and LS 5039. Astrophys. J. 738, 105 (2011).

    Article  ADS  Google Scholar 

  22. Cañellas, A. et al. Search for radio pulsations in LS I +61 303. Astron. Astrophys. 543, A122 (2012).

    Article  Google Scholar 

  23. Rea, N., Torres, D. F. & van der Klis, M. et al. Deep Chandra observations of TeV binaries—I. LSI+61 303. Mon. Not. R. Astron. Soc. 405, 2206–2214 (2010).

    ADS  Google Scholar 

  24. Hadasch, D., Torres, D. F. & Tanaka, T. et al. Long-term monitoring of the high-energy γ-ray emission from LS I +61 303 and LS 5039. Astrophys. J. 749, 54 (2012).

    Article  ADS  Google Scholar 

  25. Zdziarski, A. A., Neronov, A. & Chernyakova, M. A compact pulsar wind nebula model of the γ-ray-loud binary LS I +61303. Mon. Not. R. Astron. Soc. 403, 1873–1886 (2010).

    Article  ADS  Google Scholar 

  26. Caliandro, G. A., Torres, D. F. & Rea, N. Impact of the orbital uncertainties on the timing of pulsars in binary systems. Mon. Not. R. Astron. Soc. 427, 2251–2274 (2012).

    Article  ADS  Google Scholar 

  27. Ransom, S. M., Eikenberry, S. S. & Middleditch, J. Fourier techniques for very long astrophysical time-series analysis. Astron. J. 124, 1788–1809 (2002).

    Article  ADS  Google Scholar 

  28. Yao, J. M., Manchester, R. N. & Wang, N. A new electron-density model for estimation of pulsar and FRB distances. Astrophys. J. 835, 29 (2017).

    Article  ADS  Google Scholar 

  29. Cordes, J. M. & Rickett, B. J. Diffractive interstellar scintillation timescales and velocities. Astrophys. J. 507, 846–860 (1998).

    Article  ADS  Google Scholar 

  30. Narayan, R. The physics of pulsar scintillation. Phil. Trans. R. Soc. Lond. A 341, 151–165 (1992).

    Article  ADS  Google Scholar 

  31. Sheikh, S. Z. & MacDonald, M. G. A statistical analysis of the nulling pulsar population. Mon. Not. R. Astron. Soc. 502, 4669–4679 (2021).

    Article  ADS  Google Scholar 

  32. Wang, N., Manchester, R. N. & Johnston, S. Pulsar nulling and mode changing. Mon. Not. R. Astron. Soc. 377, 1383–1392 (2007).

    Article  ADS  Google Scholar 

  33. McLaughlin, M. A. et al. Transient radio bursts from rotating neutron stars. Nature 439, 817–820 (2006).

    Article  ADS  Google Scholar 

  34. Johnston, S., Ball, L., Wang, N. & Manchester, R. N. Radio observations of PSR B1259-63 through the 2004 periastron passage. Mon. Not. R. Astron. Soc. 358, 1069–1075 (2005).

    Article  ADS  Google Scholar 

  35. Bogdanov, S. et al. Simultaneous Chandra and VLA observations of the transitional millisecond pulsar PSR J1023+0038: anti-correlated X-ray and radio variability. Astrophys. J. 856, 54 (2018).

    Article  ADS  Google Scholar 

  36. Papitto, A., Torres, D. F. & Rea, N. Possible changes of state and relevant timescales for a neutron star in LS I +61303. Astrophys. J. 756, 188 (2012).

    Article  ADS  Google Scholar 

  37. Nan, R. et al. The Five-hundred-meter Aperture Spherical Radio Telescope (FAST) project. Int. J. Mod. Phys. D 20, 989–1024 (2011).

    Article  ADS  Google Scholar 

  38. Jiang, P. et al. Commissioning progress of the FAST. Sci. China Phys. Mech. Astron. 62, 959502 (2019).

    Article  ADS  Google Scholar 

  39. Han, J. L. et al. The FAST Galactic Plane Pulsar Snapshot survey: I. Project design and pulsar discoveries. Res. Astron. Astrophys. 21, 107 (2021).

    Article  ADS  Google Scholar 

  40. Qian, L. et al. FAST: its scientific achievements and prospects. Innovation 1, 100053 (2020).

    Google Scholar 

  41. Pan, Z. et al. FAST Globular Cluster Pulsar survey: twenty-four pulsars discovered in 15 globular clusters. Astrophys. J. Lett. 915, L28 (2021).

    Article  ADS  Google Scholar 

  42. Lynch, R. S., Ransom, S. M., Freire, P. C. C. & Stairs, I. H. Six new recycled globular cluster pulsars discovered with the Green Bank Telescope. Astrophys. J. 734, 89 (2011).

    Article  ADS  Google Scholar 

  43. Men, Y. P. et al. Piggyback search for fast radio bursts using Nanshan 26 m and Kunming 40 m radio telescopes—I. Observing and data analysis systems, discovery of a mysterious peryton. Mon. Not. R. Astron. Soc. 488, 3957–3971 (2019).

    Article  ADS  Google Scholar 

  44. Lorimer, D. R. & Kramer, M. Handbook of Pulsar Astronomy (Cambridge Univ. Press, 2012).

    Google Scholar 

  45. Jiang, P. et al. The fundamental performance of FAST with 19-beam receiver at L band. Res. Astron. Astrophys. 20, 064 (2020).

    Article  ADS  Google Scholar 

  46. Lang, K. R. Interstellar scintillation of pulsar radiation. Astrophys. J. 164, 249 (1971).

    Article  ADS  Google Scholar 

  47. Romani, R. W., Narayan, R. & Blandford, R. Refractive effects in pulsar scintillation. Mon. Not. R. Astron. Soc. 220, 19–49 (1986).

    Article  ADS  Google Scholar 

  48. Bansal, K., Taylor, G. B., Stovall, K. & Dowell, J. Scattering study of pulsars below 100 MHz using LWA1. Astrophys. J. 875, 146 (2019).

    Article  ADS  Google Scholar 

  49. Kravtsov, V. et al. Orbital variability of the optical linear polarization of the γ-ray binary LS I +61 303 and new constraints on the orbital parameters. Astron. Astrophys. 643, A170 (2020).

    Article  Google Scholar 

  50. Manchester, R. N., Hobbs, G. B., Teoh, A. & Hobbs, M. The Australia Telescope National Facility pulsar catalogue. Astron. J. 129, 1993–2006 (2005).

    Article  ADS  Google Scholar 

  51. Kaspi, V. M. & Beloborodov, A. M. Magnetars. Annu. Rev. Astron. Astrophys. 55, 261–301 (2017).

    Article  ADS  Google Scholar 

  52. Beniamini, P., Hotokezaka, K., van der Horst, A. & Kouveliotou, C. Formation rates and evolution histories of magnetars. Mon. Not. R. Astron. Soc. 487, 1426–1438 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work made use of the data from FAST. FAST is a Chinese national mega-science facility, operated by National Astronomical Observatories, Chinese Academy of Sciences. We acknowledge the use of the ATNF Pulsar Catalogue. S.-S.W. and B.-J.W. thank Z. Pan for discussions on the FAST data analysis. S.-S.W. thanks Z.-X. Wang, S.-N. Zhang and K. Lee for many valuable discussions. J.L., D.F.T. and A.P. acknowledge discussions with the international team on ‘Understanding and unifying the gamma rays emitting scenarios in high mass and low mass X-ray binaries’ of the ISSI (International Space Science Institute), Beijing. We acknowledge support from National Key R&D programme of China grant numbers 2017YFA0402602 and 2021YFA0718500, National SKA Program of China grant numbers 2020SKA0120100 and 2020SKA0120201, National Natural Science Foundation of China grant numbers U2038103, 11733009, U2031205, U1938109 and 11873032, the Youth Innovation Promotion Association of the CAS (grant id 2018075), the Chinese Academy of Sciences Presidential Fellowship Initiative 2021VMA0001, National Foreign Experts Program of Ministry of Science and Technology of the People’s Republic of China grant number G2021200001L and the International Visiting Professorship programme of the University of Science and Technology of China grant number 2021BVR05. S.-S.W. acknowledges financial support from the Jiangsu Qing Lan Project. D.F.T. also acknowledges grants PID2021-124581OB-I00, PGC2018-095512-B-I00 and Spanish programme Unidad de Excelencia ‘María de Maeztu’ grant number CEX2020-001058-M. A.P. acknowledges financial support from the Italian Space Agency (ASI) and National Institute for Astrophysics (INAF) under grant agreement numbers ASI-INAF I/037/12/0 and ASI-INAF n.2017-14-H.0, from INAF ’Sostegno alla ricerca scientifica main streams dell’INAF’, Presidential Decree 43/2018 and from PHAROS COST Action number 16214.

Author information

Authors and Affiliations

Authors

Contributions

S.-S.W. proposed the observational project. The FAST team led by P.J. designed and scheduled the observations during the FAST commissioning stage. L.Q. carried out the observations and B.J-.W. analysed the data. D.F.T., J.L. and A.P. contributed to interpreting the results. D.F.T., S.-S.W. and B.-J.W. wrote the paper. P.J., R.X., J.-Z.Y., Q.-Z.L., M.-Y.G. and Q.-R.Y. participated in the interpretation of the results. All authors discussed the contents of the paper and contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to Shan-Shan Weng or D. F. Torres.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Jumpei Takata, Scott Ransom and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5 and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, SS., Qian, L., Wang, BJ. et al. Radio pulsations from a neutron star within the gamma-ray binary LS I +61° 303. Nat Astron 6, 698–702 (2022). https://doi.org/10.1038/s41550-022-01630-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01630-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing