Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Atmospheric dynamics of a near tidally locked Earth-sized planet

Abstract

The discovery and characterization of Earth-sized planets that are in, or near, a tidally locked state are of crucial importance to understanding terrestrial planet evolution. For this purpose Venus is a clear analogue. Exoplanetary science lies at the threshold of characterizing hundreds of terrestrial planetary atmospheres, thereby providing a statistical sample far greater than the limited inventory of terrestrial planetary atmospheres within the Solar System. However, the model-based approach for characterizing exoplanet atmospheres relies on Solar System data, resulting in our limited inventory being both foundational and critical atmospheric laboratories. Present terrestrial exoplanet demographics are heavily biased toward short-period planets, many of which are expected to be tidally locked, and also potentially runaway greenhouse candidates, similar to Venus. Here we describe the rise in the terrestrial exoplanet population and the study of tidal locking in climate simulations. These exoplanet studies are placed within the context of Venus, a local example of an Earth-sized, asynchronous rotator that is near the tidal locking limit. We describe the recent lessons learned regarding the dynamics of the Venusian atmosphere and how these lessons pertain to the evolution of our sibling planet. We discuss their implications for exoplanet atmospheres, and outline the need for a full characterization of the Venusian climate to achieve a full and robust interpretation of terrestrial planetary atmospheres.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Histogram of the radius distribution for the known exoplanet population.
Fig. 2: The HZ boundaries and tidal locking distance as a function of stellar effective temperature and stellar flux received by the planet.
Fig. 3: A Robinson projection of the results from a ROCKE-3D simulation for the exoVenus candidate Kepler-1649b73, showing the surface temperature and a Venus topography overlay.
Fig. 4: Akatsuki data showing the brightness temperature and UV brightness of the Venusian disk.
Fig. 5: Spectra of Earth, Venus and Mars in the visible to NIR wavelength range.
Fig. 6: Simulation of a direct imaging observation of Venus.

Similar content being viewed by others

Data availability

Figure 1 used data from the NASA Exoplanet Archive, available here: https://exoplanetarchive.ipac.caltech.edu/. Figure 3 used output data from ROCKE-3D simulations in netCDF format73. Figure 6 used data from the Akatsuki Science Data Archive, available here: https://darts.isas.jaxa.jp/planet/project/akatsuki/. The data from Figs. 1, 3 and 6 are available here: http://stephenkane.net/tidalvenus/

References

  1. Butler, R. P. et al. Catalog of nearby exoplanets. Astrophys. J. 646, 505–522 (2006).

    Article  ADS  Google Scholar 

  2. Akeson, R. L. et al. The NASA Exoplanet Archive: data and tools for exoplanet research. Publ. Astron. Soc. Pac. 125, 989 (2013).

    Article  ADS  Google Scholar 

  3. Borucki, W. J. KEPLER mission: development and overview. Rep. Prog. Phys. 79, 036901 (2016).

    Article  ADS  Google Scholar 

  4. Ricker, G. R. et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc. Instrum. Syst. 1, 014003 (2015).

    Article  ADS  Google Scholar 

  5. Ford, E. B. Architectures of planetary systems and implications for their formation. Proc. Natl Acad. Sci. USA 111, 12616–12621 (2014).

    Article  ADS  Google Scholar 

  6. Winn, J. N. & Fabrycky, D. C. The occurrence and architecture of exoplanetary systems. Annu. Rev. Astron. Astrophys. 53, 409–447 (2015).

    Article  ADS  Google Scholar 

  7. Funk, B., Wuchterl, G., Schwarz, R., Pilat-Lohinger, E. & Eggl, S. The stability of ultra-compact planetary systems. Astron. Astrophys. 516, A82 (2010).

    Article  ADS  MATH  Google Scholar 

  8. Kane, S. R., Hinkel, N. R. & Raymond, S. N. Solar System moons as analogs for compact exoplanetary systems. Astron. J. 146, 122 (2013).

    Article  ADS  Google Scholar 

  9. Barnes, R. Tidal locking of habitable exoplanets. Celest. Mech. Dyn. Astron. 129, 509–536 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Kasting, J. F., Whitmire, D. P. & Reynolds, R. T. Habitable zones around main sequence stars. Icarus 101, 108–128 (1993).

    Article  ADS  Google Scholar 

  11. Kane, S. R. & Gelino, D. M. The habitable zone gallery. Publ. Astron. Soc. Pac. 124, 323 (2012).

    Article  ADS  Google Scholar 

  12. Kopparapu, R. K. et al. Habitable zones around main-sequence stars: new estimates. Astrophys. J. 765, 131 (2013).

    Article  ADS  Google Scholar 

  13. Kopparapu, R. K. et al. Habitable zones around main-sequence stars: dependence on planetary mass. Astrophys. J. 787, L29 (2014).

    Article  ADS  Google Scholar 

  14. Kane, S. R. et al. A catalog of Kepler habitable zone exoplanet candidates. Astrophys. J. 830, 1 (2016).

    Article  ADS  Google Scholar 

  15. Forget, F. & Leconte, J. Possible climates on terrestrial exoplanets. Philos. Trans. R. Soc. A 372, 20130084 (2014).

    Article  ADS  Google Scholar 

  16. Shields, A. L. The climates of other worlds: a review of the emerging field of exoplanet climatology. Astrophys. J. Suppl. 243, 30 (2019).

    Article  ADS  Google Scholar 

  17. Way, M. J. et al. Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: a general circulation model for simulating the climates of rocky planets. Astrophys. J. Suppl. 231, 12 (2017).

    Article  ADS  Google Scholar 

  18. Fauchez, T. J. et al. TRAPPIST Habitable Atmosphere Intercomparison (THAI) workshop report. Planet. Sci. J. 2, 106 (2021).

    Article  Google Scholar 

  19. Hamano, K., Abe, Y. & Genda, H. Emergence of two types of terrestrial planet on solidification of magma ocean. Nature 497, 607–610 (2013).

    Article  ADS  Google Scholar 

  20. Turbet, M. et al. Day–night cloud asymmetry prevents early oceans on Venus but not on Earth. Nature 598, 276–280 (2021).

    Article  ADS  Google Scholar 

  21. Way, M. J. et al. Was Venus the first habitable world of our Solar System?. Geophys. Res. Lett. 43, 8376–8383 (2016).

    Article  ADS  Google Scholar 

  22. Kempton, E. M. R. et al. A framework for prioritizing the TESS planetary candidates most amenable to atmospheric characterization. Publ. Astron. Soc. Pac. 130, 114401 (2018).

    Article  ADS  Google Scholar 

  23. Kane, S. R. et al. The fundamental connections between the Solar System and exoplanetary science. J. Geophys. Res. Planets 126, e2020JE006643 (2021).

    Article  ADS  Google Scholar 

  24. Taylor, F. & Grinspoon, D. Climate evolution of Venus. J. Geophys. Res. Planets 114, E00B40 (2009).

    Article  ADS  Google Scholar 

  25. Taylor, F. W., Svedhem, H. & Head, J. W. Venus: the atmosphere, climate, surface, interior and near-space environment of an Earth-like planet. Space Sci. Rev. 214, 35 (2018).

    Article  ADS  Google Scholar 

  26. Lebonnois, S. et al. An experimental study of the mixing of CO2 and N2 under conditions found at the surface of Venus. Icarus 338, 113550 (2020).

    Article  Google Scholar 

  27. Kasting, J. F. Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74, 472–494 (1988).

    Article  ADS  Google Scholar 

  28. Kane, S. R. et al. Venus as a laboratory for exoplanetary science. J. Geophys. Res. Planets 124, 2015–2028 (2019).

    Article  ADS  Google Scholar 

  29. Leconte, J., Wu, H., Menou, K. & Murray, N. Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars. Science 347, 632–635 (2015).

    Article  ADS  Google Scholar 

  30. Ingersoll, A. P. & Dobrovolskis, A. R. Venus’ rotation and atmospheric tides. Nature 275, 37–38 (1978).

    Article  ADS  Google Scholar 

  31. Correia, A. C. M. & Laskar, J. The four final rotation states of Venus. Nature 411, 767–770 (2001).

    Article  ADS  Google Scholar 

  32. Auclair-Desrotour, P., Laskar, J., Mathis, S. & Correia, A. C. M. The rotation of planets hosting atmospheric tides: from Venus to habitable super-Earths. Astron. Astrophys. 603, A108 (2017).

    Article  ADS  Google Scholar 

  33. Lee, C., Lewis, S. R. & Read, P. L. Superrotation in a Venus general circulation model. J. Geophys. Res. Planets 112, E04S11 (2007).

    Article  ADS  Google Scholar 

  34. Takagi, M. & Matsuda, Y. Effects of thermal tides on the Venus atmospheric superrotation. J. Geophys. Res. Atmos. 112, D09112 (2007).

    Article  ADS  Google Scholar 

  35. Lebonnois, S. et al. Superrotation of Venus’ atmosphere analyzed with a full general circulation model. J. Geophys. Res. Planets 115, E06006 (2010).

    Article  ADS  Google Scholar 

  36. Sergeev, D. E. et al. Atmospheric convection plays a key role in the climate of tidally locked terrestrial exoplanets: insights from high-resolution simulations. Astrophys. J. 894, 84 (2020).

    Article  ADS  Google Scholar 

  37. Clanton, C. & Gaudi, B. S. Synthesizing exoplanet demographics from radial velocity and microlensing surveys. II. The frequency of planets orbiting M dwarfs. Astrophys. J. 791, 91 (2014).

    Article  ADS  Google Scholar 

  38. Rogers, L. A. Most 1.6 Earth-radius planets are not rocky. Astrophys. J. 801, 41 (2015).

    Article  ADS  Google Scholar 

  39. Wolfgang, A., Rogers, L. A. & Ford, E. B. Probabilistic mass–radius relationship for sub-Neptune-sized planets. Astrophys. J. 825, 19 (2016).

    Article  ADS  Google Scholar 

  40. Lopez, E. D. & Fortney, J. J. The role of core mass in controlling evaporation: the Kepler radius distribution and the Kepler-36 density dichotomy. Astrophys. J. 776, 2 (2013).

    Article  ADS  Google Scholar 

  41. Owen, J. E. & Wu, Y. Kepler planets: a tale of evaporation. Astrophys. J. 775, 105 (2013).

    Article  ADS  Google Scholar 

  42. Fulton, B. J. et al. The California–Kepler Survey. III. A gap in the radius distribution of small planets. Astron. J. 154, 109 (2017).

    Article  ADS  Google Scholar 

  43. Dressing, C. D. & Charbonneau, D. The occurrence rate of small planets around small stars. Astrophys. J. 767, 95 (2013).

    Article  ADS  Google Scholar 

  44. Bryson, S. et al. The occurrence of rocky habitable-zone planets around solar-like stars from Kepler data. Astron. J. 161, 36 (2021).

    Article  ADS  Google Scholar 

  45. Kane, S. R., Kopparapu, R. K. & Domagal-Goldman, S. D. On the frequency of potential Venus analogs from Kepler data. Astrophys. J. Lett. 794, L5 (2014).

    Article  ADS  Google Scholar 

  46. Barnes, R. et al. Tidal Venuses: triggering a climate catastrophe via tidal heating. Astrobiology 13, 225–250 (2013).

    Article  ADS  Google Scholar 

  47. Yang, J., Boué, G., Fabrycky, D. C. & Abbot, D. S. Strong dependence of the inner edge of the habitable zone on planetary rotation rate. Astrophys. J. Lett. 787, L2 (2014).

    Article  ADS  Google Scholar 

  48. Kane, S. R., Vervoort, P., Horner, J. & Pozuelos, F. J. Could the migration of Jupiter have accelerated the atmospheric evolution of Venus?. Planet. Sci. J. 1, 42 (2020).

    Article  Google Scholar 

  49. Christensen, U. R. & Aubert, J. Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys. J. Int. 166, 97–114 (2006).

    Article  ADS  Google Scholar 

  50. Driscoll, P. E. & Barnes, R. Tidal heating of Earth-like exoplanets around M stars: thermal, magnetic, and orbital evolutions. Astrobiology 15, 739–760 (2015).

    Article  ADS  Google Scholar 

  51. Zhang, T. L. et al. Disappearing induced magnetosphere at Venus: implications for close-in exoplanets. Geophys. Res. Lett. 36, L20203 (2009).

    Article  ADS  Google Scholar 

  52. Gunell, H. et al. Why an intrinsic magnetic field does not protect a planet against atmospheric escape. Astron. Astrophys. 614, L3 (2018).

    Article  ADS  Google Scholar 

  53. Stauffer, J. et al. Accurate coordinates and 2MASS cross identifications for (almost) all Gliese catalog star. Publ. Astron. Soc. Pac. 122, 885–897 (2010).

    Article  ADS  Google Scholar 

  54. Gladman, B., Quinn, D. D., Nicholson, P. & Rand, R. Synchronous locking of tidally evolving satellites. Icarus 122, 166–192 (1996).

    Article  ADS  Google Scholar 

  55. Konopliv, A. S. & Yoder, C. F. Venusian k2 tidal Love number from Magellan and PVO tracking data. Geophys. Res. Lett. 23, 1857–1860 (1996).

    Article  ADS  Google Scholar 

  56. Dumoulin, C., Tobie, G., Verhoeven, O., Rosenblatt, P. & Rambaux, N. Tidal constraints on the interior of Venus. J. Geophys. Res. Planets 122, 1338–1352 (2017).

    Article  ADS  Google Scholar 

  57. Bills, B. G. Variations in the rotation rate of Venus due to orbital eccentricity modulation of solar tidal torques. J. Geophys. Res. Planets 110, E11007 (2005).

    Article  ADS  Google Scholar 

  58. Campbell, B. A. et al. The mean rotation rate of Venus from 29 years of Earth-based radar observations. Icarus 332, 19–23 (2019).

    Article  ADS  Google Scholar 

  59. Kite, E. S., Gaidos, E. & Manga, M. Climate instability on tidally locked exoplanets. Astrophys. J. 743, 41 (2011).

    Article  ADS  Google Scholar 

  60. Wordsworth, R. Atmospheric heat redistribution and collapse on tidally locked rocky planets. Astrophys. J. 806, 180 (2015).

    Article  ADS  Google Scholar 

  61. Auclair-Desrotour, P. & Heng, K. Atmospheric stability and collapse on tidally locked rocky planets. Astron. Astrophys. 638, A77 (2020).

    Article  ADS  Google Scholar 

  62. Koll, D. D. B. & Abbot, D. S. Temperature structure and atmospheric circulation of dry tidally locked rocky exoplanets. Astrophys. J. 825, 99 (2016).

    Article  ADS  Google Scholar 

  63. Hammond, M. & Lewis, N. T. The rotational and divergent components of atmospheric circulation on tidally locked planets. Proc. Natl Acad. Sci. USA 118, 2022705118 (2021).

    Article  Google Scholar 

  64. Yang, J., Cowan, N. B. & Abbot, D. S. Stabilizing cloud feedback dramatically expands the habitable zone of tidally locked planets. Astrophys. J. Lett. 771, L45 (2013).

    Article  ADS  Google Scholar 

  65. Yang, J., Liu, Y., Hu, Y. & Abbot, D. S. Water trapping on tidally locked terrestrial planets requires special conditions. Astrophys. J. Lett. 796, L22 (2014).

    Article  ADS  Google Scholar 

  66. Yang, J. et al. Simulations of water vapor and clouds on rapidly rotating and tidally locked planets: a 3D model intercomparison. Astrophys. J. 875, 46 (2019).

    Article  ADS  Google Scholar 

  67. Ding, F. & Wordsworth, R. D. Stabilization of dayside surface liquid water via tropopause cold trapping on arid slowly rotating tidally locked planets. Astrophys. J. Lett. 891, L18 (2020).

    Article  ADS  Google Scholar 

  68. Carone, L., Keppens, R. & Decin, L. Connecting the dots—III. Nightside cooling and surface friction affect climates of tidally locked terrestrial planets. Mon. Not. R. Astron. Soc. 461, 1981–2002 (2016).

    Article  ADS  Google Scholar 

  69. Lewis, N. T. et al. The influence of a substellar continent on the climate of a tidally locked exoplanet. Astrophys. J. 854, 171 (2018).

    Article  ADS  Google Scholar 

  70. Turbet, M. et al. The habitability of Proxima Centauri b. II. Possible climates and observability. Astron. Astrophys. 596, A112 (2016).

    Article  Google Scholar 

  71. Del Genio, A. D. et al. Habitable climate scenarios for Proxima Centauri b with a dynamic ocean. Astrobiology 19, 99–125 (2019).

    Article  ADS  Google Scholar 

  72. Angelo, I. et al. Kepler-1649b: an exo-Venus in the solar neighborhood. Astron. J. 153, 162 (2017).

    Article  ADS  Google Scholar 

  73. Kane, S. R., Ceja, A. Y., Way, M. J. & Quintana, E. V. Climate modeling of a potential exovenus. Astrophys. J. 869, 46 (2018).

    Article  ADS  Google Scholar 

  74. Way, M. J. & Del Genio, A. D. Venusian habitable climate scenarios: modeling Venus through time and applications to slowly rotating Venus-like exoplanets. J. Geophys. Res. Planets 125, e06276 (2020).

    Article  Google Scholar 

  75. Schubert, G. et al. Structure and circulation of the Venus atmosphere. J. Geophys. Res. 85, 8007–8025 (1980).

    Article  ADS  Google Scholar 

  76. Crisp, D. Radiative forcing of the Venus mesosphere I. Solar fluxes and heating rates. Icarus 67, 484–514 (1986).

    Article  ADS  Google Scholar 

  77. Horinouchi, T. et al. How waves and turbulence maintain the super-rotation of Venus’ atmosphere. Science 368, 405–409 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  78. Imamura, T. et al. Superrotation in planetary atmospheres. Space Sci. Rev. 216, 87 (2020).

    Article  ADS  Google Scholar 

  79. Kaspi, Y. et al. Comparison of the deep atmospheric dynamics of Jupiter and Saturn in light of the Juno and Cassini gravity measurements. Space Sci. Rev. 216, 84 (2020).

    Article  ADS  Google Scholar 

  80. Read, P. L. & Lebonnois, S. Superrotation on Venus, on Titan, and elsewhere. Annu. Rev. Earth Planet. Sci. 46, 175–202 (2018).

    Article  ADS  Google Scholar 

  81. Young, R. E. et al. Characteristics of gravity waves generated by surface topography on Venus: comparison with the VEGA balloon results. J. Atmos. Sci. 44, 2628–2639 (1987).

    Article  ADS  Google Scholar 

  82. Young, R. E. et al. Characteristics of finite amplitude stationary gravity waves in the atmosphere of Venus. J. Atmos. Sci. 51, 1857–1875 (1994).

    Article  ADS  Google Scholar 

  83. Peralta, J. et al. Stationary waves and slowly moving features in the night upper clouds of Venus. Nat. Astron. 1, 0187 (2017).

    Article  Google Scholar 

  84. Fukuhara, T. et al. Large stationary gravity wave in the atmosphere of Venus. Nat. Geosci. 10, 85–88 (2017).

    Article  ADS  Google Scholar 

  85. Bertaux, J.-L. et al. Influence of Venus topography on the zonal wind and UV albedo at cloud top level: the role of stationary gravity waves. J. Geophys. Res. Planets 121, 1087–1101 (2016).

    Article  ADS  Google Scholar 

  86. Kouyama, T. et al. Topographical and local time dependence of large stationary gravity waves observed at the cloud top of Venus. Geophys. Res. Lett. 44, 12,098–12,105 (2017).

    Article  Google Scholar 

  87. Navarro, T., Schubert, G. & Lebonnois, S. Atmospheric mountain wave generation on Venus and its influence on the solid planet’s rotation rate. Nat. Geosci. 11, 487–491 (2018).

    Article  ADS  Google Scholar 

  88. Pepe, F., Ehrenreich, D. & Meyer, M. R. Instrumentation for the detection and characterization of exoplanets. Nature 513, 358–366 (2014).

    Article  ADS  Google Scholar 

  89. Greene, T. P. et al. Characterizing transiting exoplanet atmospheres with JWST. Astrophys. J. 817, 17 (2016).

    Article  ADS  Google Scholar 

  90. Morley, C. V., Kreidberg, L., Rustamkulov, Z., Robinson, T. & Fortney, J. J. Observing the atmospheres of known temperate earth-sized planets with JWST. Astrophys. J. 850, 121 (2017).

    Article  ADS  Google Scholar 

  91. Batalha, N. E., Lewis, N. K., Line, M. R., Valenti, J. & Stevenson, K. Strategies for constraining the atmospheres of temperate terrestrial planets with JWST. Astrophys. J. Lett. 856, L34 (2018).

    Article  ADS  Google Scholar 

  92. Lincowski, A. P., Lustig-Yaeger, J. & Meadows, V. S. Observing isotopologue bands in terrestrial exoplanet atmospheres with the James Webb Space Telescope: implications for identifying past atmospheric and ocean loss. Astron. J. 158, 26 (2019).

    Article  ADS  Google Scholar 

  93. Lustig-Yaeger, J., Meadows, V. S. & Lincowski, A. P. The detectability and characterization of the TRAPPIST-1 exoplanet atmospheres with JWST. Astron. J. 158, 27 (2019).

    Article  ADS  Google Scholar 

  94. Ehrenreich, D., Tinetti, G., Lecavelier Des Etangs, A., Vidal-Madjar, A. & Selsis, F. The transmission spectrum of Earth-size transiting planets. Astron. Astrophys. 448, 379–393 (2006).

    Article  ADS  Google Scholar 

  95. Ehrenreich, D. et al. Transmission spectrum of Venus as a transiting exoplanet. Astron. Astrophys. 537, L2 (2012).

    Article  ADS  Google Scholar 

  96. Barstow, J. K., Aigrain, S., Irwin, P. G. J., Kendrew, S. & Fletcher, L. N. Telling twins apart: exo-Earths and Venuses with transit spectroscopy. Mon. Not. R. Astron. Soc. 458, 2657–2666 (2016).

    Article  ADS  Google Scholar 

  97. Kaltenegger, L. How to characterize habitable worlds and signs of life. Annu. Rev. Astron. Astrophys. 55, 433–485 (2017).

    Article  ADS  Google Scholar 

  98. Fujii, Y. et al. Exoplanet biosignatures: observational prospects. Astrobiology 18, 739–778 (2018).

    Article  ADS  Google Scholar 

  99. Lustig-Yaeger, J., Meadows, V. S. & Lincowski, A. P. A mirage of the cosmic shoreline: Venus-like clouds as a statistical false positive for exoplanet atmospheric erosion. Astrophys. J. Lett. 887, L11 (2019).

    Article  ADS  Google Scholar 

  100. Ostberg, C. & Kane, S. R. Predicting the yield of potential Venus analogs from TESS and their potential for atmospheric characterization. Astron. J. 158, 195 (2019).

    Article  ADS  Google Scholar 

  101. Seager, S. & Deming, D. Exoplanet atmospheres. Annu. Rev. Astron. Astrophys. 48, 631–672 (2010).

    Article  ADS  Google Scholar 

  102. Hu, R., Ehlmann, B. L. & Seager, S. Theoretical spectra of terrestrial exoplanet surfaces. Astrophys. J. 752, 7 (2012).

    Article  ADS  Google Scholar 

  103. Cowan, N. B. & Strait, T. E. Determining reflectance spectra of surfaces and clouds on exoplanets. Astrophys. J. Lett. 765, L17 (2013).

    Article  ADS  Google Scholar 

  104. Madhusudhan, N. Exoplanetary atmospheres: key insights, challenges, and prospects. Annu. Rev. Astron. Astrophys. 57, 617–663 (2019).

    Article  ADS  Google Scholar 

  105. Bezard, B., de Bergh, C., Crisp, D. & Maillard, J. P. The deep atmosphere of Venus revealed by high-resolution nightside spectra. Nature 345, 508–511 (1990).

    Article  ADS  Google Scholar 

  106. Pollack, J. B. et al. Near-infrared light from Venus’ nightside: a spectroscopic analysis. Icarus 103, 1–42 (1993).

    Article  ADS  Google Scholar 

  107. Meadows, V. S. & Crisp, D. Ground-based near-infrared observations of the Venus nightside: the thermal structure and water abundance near the surface. J. Geophys. Res. 101, 4595–4622 (1996).

    Article  ADS  Google Scholar 

  108. Arney, G. et al. Spatially resolved measurements of H2O, HCl, CO, OCS, SO2, cloud opacity, and acid concentration in the Venus near-infrared spectral windows. J. Geophys. Res. Planets 119, 1860–1891 (2014).

    Article  ADS  Google Scholar 

  109. Guzewich, S. D. et al. The impact of planetary rotation rate on the reflectance and thermal emission spectrum of terrestrial exoplanets around sunlike stars. Astrophys. J. 893, 140 (2020).

    Article  ADS  Google Scholar 

  110. Stark, C. C. et al. Toward complete characterization: prospects for directly imaging transiting exoplanets. Astron. J. 159, 286 (2020).

    Article  ADS  Google Scholar 

  111. Kopparapu, R. K. et al. Exoplanet classification and yield estimates for direct imaging missions. Astrophys. J. 856, 122 (2018).

    Article  ADS  Google Scholar 

  112. Kasdin, N. J. et al. The Nancy Grace Roman Space Telescope Coronagraph Instrument (CGI) technology demonstration. Proc. SPIE 11443, 114431U (2020).

  113. The LUVOIR Team. The LUVOIR Mission Concept Study Final Report. Preprint at https://arxiv.org/abs/1912.06219 (2019).

  114. Gaudi, B. S. et al. The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report. Preprint at https://arxiv.org/abs/2001.06683 (2020).

  115. Horner, J. et al. Solar System physics for exoplanet research. Publ. Astron. Soc. Pac. 132, 102001 (2020).

    Article  ADS  Google Scholar 

  116. Abe, Y., Abe-Ouchi, A., Sleep, N. H. & Zahnle, K. J. Habitable zone limits for dry planets. Astrobiology 11, 443–460 (2011).

    Article  ADS  Google Scholar 

  117. Leconte, J., Forget, F., Charnay, B., Wordsworth, R. & Pottier, A. Increased insolation threshold for runaway greenhouse processes on Earth-like planets. Nature 504, 268–271 (2013).

    Article  ADS  Google Scholar 

  118. Wolf, E. T. & Toon, O. B. Delayed onset of runaway and moist greenhouse climates for Earth. Geophys. Res. Lett. 41, 167–172 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology under contract with NASA within the Exoplanet Exploration Program. The results reported herein benefited from collaborations and/or information exchange under NASA’s Nexus for Exoplanet System Science (NExSS) research coordination network, which is sponsored by NASA’s Science Mission Directorate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. Kane.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Jun Yang and Elizabeth Tasker for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kane, S.R. Atmospheric dynamics of a near tidally locked Earth-sized planet. Nat Astron 6, 420–427 (2022). https://doi.org/10.1038/s41550-022-01626-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01626-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing