Abstract
The discovery and characterization of Earth-sized planets that are in, or near, a tidally locked state are of crucial importance to understanding terrestrial planet evolution. For this purpose Venus is a clear analogue. Exoplanetary science lies at the threshold of characterizing hundreds of terrestrial planetary atmospheres, thereby providing a statistical sample far greater than the limited inventory of terrestrial planetary atmospheres within the Solar System. However, the model-based approach for characterizing exoplanet atmospheres relies on Solar System data, resulting in our limited inventory being both foundational and critical atmospheric laboratories. Present terrestrial exoplanet demographics are heavily biased toward short-period planets, many of which are expected to be tidally locked, and also potentially runaway greenhouse candidates, similar to Venus. Here we describe the rise in the terrestrial exoplanet population and the study of tidal locking in climate simulations. These exoplanet studies are placed within the context of Venus, a local example of an Earth-sized, asynchronous rotator that is near the tidal locking limit. We describe the recent lessons learned regarding the dynamics of the Venusian atmosphere and how these lessons pertain to the evolution of our sibling planet. We discuss their implications for exoplanet atmospheres, and outline the need for a full characterization of the Venusian climate to achieve a full and robust interpretation of terrestrial planetary atmospheres.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Venus Evolution Through Time: Key Science Questions, Selected Mission Concepts and Future Investigations
Space Science Reviews Open Access 03 October 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






Data availability
Figure 1 used data from the NASA Exoplanet Archive, available here: https://exoplanetarchive.ipac.caltech.edu/. Figure 3 used output data from ROCKE-3D simulations in netCDF format73. Figure 6 used data from the Akatsuki Science Data Archive, available here: https://darts.isas.jaxa.jp/planet/project/akatsuki/. The data from Figs. 1, 3 and 6 are available here: http://stephenkane.net/tidalvenus/
References
Butler, R. P. et al. Catalog of nearby exoplanets. Astrophys. J. 646, 505–522 (2006).
Akeson, R. L. et al. The NASA Exoplanet Archive: data and tools for exoplanet research. Publ. Astron. Soc. Pac. 125, 989 (2013).
Borucki, W. J. KEPLER mission: development and overview. Rep. Prog. Phys. 79, 036901 (2016).
Ricker, G. R. et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc. Instrum. Syst. 1, 014003 (2015).
Ford, E. B. Architectures of planetary systems and implications for their formation. Proc. Natl Acad. Sci. USA 111, 12616–12621 (2014).
Winn, J. N. & Fabrycky, D. C. The occurrence and architecture of exoplanetary systems. Annu. Rev. Astron. Astrophys. 53, 409–447 (2015).
Funk, B., Wuchterl, G., Schwarz, R., Pilat-Lohinger, E. & Eggl, S. The stability of ultra-compact planetary systems. Astron. Astrophys. 516, A82 (2010).
Kane, S. R., Hinkel, N. R. & Raymond, S. N. Solar System moons as analogs for compact exoplanetary systems. Astron. J. 146, 122 (2013).
Barnes, R. Tidal locking of habitable exoplanets. Celest. Mech. Dyn. Astron. 129, 509–536 (2017).
Kasting, J. F., Whitmire, D. P. & Reynolds, R. T. Habitable zones around main sequence stars. Icarus 101, 108–128 (1993).
Kane, S. R. & Gelino, D. M. The habitable zone gallery. Publ. Astron. Soc. Pac. 124, 323 (2012).
Kopparapu, R. K. et al. Habitable zones around main-sequence stars: new estimates. Astrophys. J. 765, 131 (2013).
Kopparapu, R. K. et al. Habitable zones around main-sequence stars: dependence on planetary mass. Astrophys. J. 787, L29 (2014).
Kane, S. R. et al. A catalog of Kepler habitable zone exoplanet candidates. Astrophys. J. 830, 1 (2016).
Forget, F. & Leconte, J. Possible climates on terrestrial exoplanets. Philos. Trans. R. Soc. A 372, 20130084 (2014).
Shields, A. L. The climates of other worlds: a review of the emerging field of exoplanet climatology. Astrophys. J. Suppl. 243, 30 (2019).
Way, M. J. et al. Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: a general circulation model for simulating the climates of rocky planets. Astrophys. J. Suppl. 231, 12 (2017).
Fauchez, T. J. et al. TRAPPIST Habitable Atmosphere Intercomparison (THAI) workshop report. Planet. Sci. J. 2, 106 (2021).
Hamano, K., Abe, Y. & Genda, H. Emergence of two types of terrestrial planet on solidification of magma ocean. Nature 497, 607–610 (2013).
Turbet, M. et al. Day–night cloud asymmetry prevents early oceans on Venus but not on Earth. Nature 598, 276–280 (2021).
Way, M. J. et al. Was Venus the first habitable world of our Solar System?. Geophys. Res. Lett. 43, 8376–8383 (2016).
Kempton, E. M. R. et al. A framework for prioritizing the TESS planetary candidates most amenable to atmospheric characterization. Publ. Astron. Soc. Pac. 130, 114401 (2018).
Kane, S. R. et al. The fundamental connections between the Solar System and exoplanetary science. J. Geophys. Res. Planets 126, e2020JE006643 (2021).
Taylor, F. & Grinspoon, D. Climate evolution of Venus. J. Geophys. Res. Planets 114, E00B40 (2009).
Taylor, F. W., Svedhem, H. & Head, J. W. Venus: the atmosphere, climate, surface, interior and near-space environment of an Earth-like planet. Space Sci. Rev. 214, 35 (2018).
Lebonnois, S. et al. An experimental study of the mixing of CO2 and N2 under conditions found at the surface of Venus. Icarus 338, 113550 (2020).
Kasting, J. F. Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74, 472–494 (1988).
Kane, S. R. et al. Venus as a laboratory for exoplanetary science. J. Geophys. Res. Planets 124, 2015–2028 (2019).
Leconte, J., Wu, H., Menou, K. & Murray, N. Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars. Science 347, 632–635 (2015).
Ingersoll, A. P. & Dobrovolskis, A. R. Venus’ rotation and atmospheric tides. Nature 275, 37–38 (1978).
Correia, A. C. M. & Laskar, J. The four final rotation states of Venus. Nature 411, 767–770 (2001).
Auclair-Desrotour, P., Laskar, J., Mathis, S. & Correia, A. C. M. The rotation of planets hosting atmospheric tides: from Venus to habitable super-Earths. Astron. Astrophys. 603, A108 (2017).
Lee, C., Lewis, S. R. & Read, P. L. Superrotation in a Venus general circulation model. J. Geophys. Res. Planets 112, E04S11 (2007).
Takagi, M. & Matsuda, Y. Effects of thermal tides on the Venus atmospheric superrotation. J. Geophys. Res. Atmos. 112, D09112 (2007).
Lebonnois, S. et al. Superrotation of Venus’ atmosphere analyzed with a full general circulation model. J. Geophys. Res. Planets 115, E06006 (2010).
Sergeev, D. E. et al. Atmospheric convection plays a key role in the climate of tidally locked terrestrial exoplanets: insights from high-resolution simulations. Astrophys. J. 894, 84 (2020).
Clanton, C. & Gaudi, B. S. Synthesizing exoplanet demographics from radial velocity and microlensing surveys. II. The frequency of planets orbiting M dwarfs. Astrophys. J. 791, 91 (2014).
Rogers, L. A. Most 1.6 Earth-radius planets are not rocky. Astrophys. J. 801, 41 (2015).
Wolfgang, A., Rogers, L. A. & Ford, E. B. Probabilistic mass–radius relationship for sub-Neptune-sized planets. Astrophys. J. 825, 19 (2016).
Lopez, E. D. & Fortney, J. J. The role of core mass in controlling evaporation: the Kepler radius distribution and the Kepler-36 density dichotomy. Astrophys. J. 776, 2 (2013).
Owen, J. E. & Wu, Y. Kepler planets: a tale of evaporation. Astrophys. J. 775, 105 (2013).
Fulton, B. J. et al. The California–Kepler Survey. III. A gap in the radius distribution of small planets. Astron. J. 154, 109 (2017).
Dressing, C. D. & Charbonneau, D. The occurrence rate of small planets around small stars. Astrophys. J. 767, 95 (2013).
Bryson, S. et al. The occurrence of rocky habitable-zone planets around solar-like stars from Kepler data. Astron. J. 161, 36 (2021).
Kane, S. R., Kopparapu, R. K. & Domagal-Goldman, S. D. On the frequency of potential Venus analogs from Kepler data. Astrophys. J. Lett. 794, L5 (2014).
Barnes, R. et al. Tidal Venuses: triggering a climate catastrophe via tidal heating. Astrobiology 13, 225–250 (2013).
Yang, J., Boué, G., Fabrycky, D. C. & Abbot, D. S. Strong dependence of the inner edge of the habitable zone on planetary rotation rate. Astrophys. J. Lett. 787, L2 (2014).
Kane, S. R., Vervoort, P., Horner, J. & Pozuelos, F. J. Could the migration of Jupiter have accelerated the atmospheric evolution of Venus?. Planet. Sci. J. 1, 42 (2020).
Christensen, U. R. & Aubert, J. Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys. J. Int. 166, 97–114 (2006).
Driscoll, P. E. & Barnes, R. Tidal heating of Earth-like exoplanets around M stars: thermal, magnetic, and orbital evolutions. Astrobiology 15, 739–760 (2015).
Zhang, T. L. et al. Disappearing induced magnetosphere at Venus: implications for close-in exoplanets. Geophys. Res. Lett. 36, L20203 (2009).
Gunell, H. et al. Why an intrinsic magnetic field does not protect a planet against atmospheric escape. Astron. Astrophys. 614, L3 (2018).
Stauffer, J. et al. Accurate coordinates and 2MASS cross identifications for (almost) all Gliese catalog star. Publ. Astron. Soc. Pac. 122, 885–897 (2010).
Gladman, B., Quinn, D. D., Nicholson, P. & Rand, R. Synchronous locking of tidally evolving satellites. Icarus 122, 166–192 (1996).
Konopliv, A. S. & Yoder, C. F. Venusian k2 tidal Love number from Magellan and PVO tracking data. Geophys. Res. Lett. 23, 1857–1860 (1996).
Dumoulin, C., Tobie, G., Verhoeven, O., Rosenblatt, P. & Rambaux, N. Tidal constraints on the interior of Venus. J. Geophys. Res. Planets 122, 1338–1352 (2017).
Bills, B. G. Variations in the rotation rate of Venus due to orbital eccentricity modulation of solar tidal torques. J. Geophys. Res. Planets 110, E11007 (2005).
Campbell, B. A. et al. The mean rotation rate of Venus from 29 years of Earth-based radar observations. Icarus 332, 19–23 (2019).
Kite, E. S., Gaidos, E. & Manga, M. Climate instability on tidally locked exoplanets. Astrophys. J. 743, 41 (2011).
Wordsworth, R. Atmospheric heat redistribution and collapse on tidally locked rocky planets. Astrophys. J. 806, 180 (2015).
Auclair-Desrotour, P. & Heng, K. Atmospheric stability and collapse on tidally locked rocky planets. Astron. Astrophys. 638, A77 (2020).
Koll, D. D. B. & Abbot, D. S. Temperature structure and atmospheric circulation of dry tidally locked rocky exoplanets. Astrophys. J. 825, 99 (2016).
Hammond, M. & Lewis, N. T. The rotational and divergent components of atmospheric circulation on tidally locked planets. Proc. Natl Acad. Sci. USA 118, 2022705118 (2021).
Yang, J., Cowan, N. B. & Abbot, D. S. Stabilizing cloud feedback dramatically expands the habitable zone of tidally locked planets. Astrophys. J. Lett. 771, L45 (2013).
Yang, J., Liu, Y., Hu, Y. & Abbot, D. S. Water trapping on tidally locked terrestrial planets requires special conditions. Astrophys. J. Lett. 796, L22 (2014).
Yang, J. et al. Simulations of water vapor and clouds on rapidly rotating and tidally locked planets: a 3D model intercomparison. Astrophys. J. 875, 46 (2019).
Ding, F. & Wordsworth, R. D. Stabilization of dayside surface liquid water via tropopause cold trapping on arid slowly rotating tidally locked planets. Astrophys. J. Lett. 891, L18 (2020).
Carone, L., Keppens, R. & Decin, L. Connecting the dots—III. Nightside cooling and surface friction affect climates of tidally locked terrestrial planets. Mon. Not. R. Astron. Soc. 461, 1981–2002 (2016).
Lewis, N. T. et al. The influence of a substellar continent on the climate of a tidally locked exoplanet. Astrophys. J. 854, 171 (2018).
Turbet, M. et al. The habitability of Proxima Centauri b. II. Possible climates and observability. Astron. Astrophys. 596, A112 (2016).
Del Genio, A. D. et al. Habitable climate scenarios for Proxima Centauri b with a dynamic ocean. Astrobiology 19, 99–125 (2019).
Angelo, I. et al. Kepler-1649b: an exo-Venus in the solar neighborhood. Astron. J. 153, 162 (2017).
Kane, S. R., Ceja, A. Y., Way, M. J. & Quintana, E. V. Climate modeling of a potential exovenus. Astrophys. J. 869, 46 (2018).
Way, M. J. & Del Genio, A. D. Venusian habitable climate scenarios: modeling Venus through time and applications to slowly rotating Venus-like exoplanets. J. Geophys. Res. Planets 125, e06276 (2020).
Schubert, G. et al. Structure and circulation of the Venus atmosphere. J. Geophys. Res. 85, 8007–8025 (1980).
Crisp, D. Radiative forcing of the Venus mesosphere I. Solar fluxes and heating rates. Icarus 67, 484–514 (1986).
Horinouchi, T. et al. How waves and turbulence maintain the super-rotation of Venus’ atmosphere. Science 368, 405–409 (2020).
Imamura, T. et al. Superrotation in planetary atmospheres. Space Sci. Rev. 216, 87 (2020).
Kaspi, Y. et al. Comparison of the deep atmospheric dynamics of Jupiter and Saturn in light of the Juno and Cassini gravity measurements. Space Sci. Rev. 216, 84 (2020).
Read, P. L. & Lebonnois, S. Superrotation on Venus, on Titan, and elsewhere. Annu. Rev. Earth Planet. Sci. 46, 175–202 (2018).
Young, R. E. et al. Characteristics of gravity waves generated by surface topography on Venus: comparison with the VEGA balloon results. J. Atmos. Sci. 44, 2628–2639 (1987).
Young, R. E. et al. Characteristics of finite amplitude stationary gravity waves in the atmosphere of Venus. J. Atmos. Sci. 51, 1857–1875 (1994).
Peralta, J. et al. Stationary waves and slowly moving features in the night upper clouds of Venus. Nat. Astron. 1, 0187 (2017).
Fukuhara, T. et al. Large stationary gravity wave in the atmosphere of Venus. Nat. Geosci. 10, 85–88 (2017).
Bertaux, J.-L. et al. Influence of Venus topography on the zonal wind and UV albedo at cloud top level: the role of stationary gravity waves. J. Geophys. Res. Planets 121, 1087–1101 (2016).
Kouyama, T. et al. Topographical and local time dependence of large stationary gravity waves observed at the cloud top of Venus. Geophys. Res. Lett. 44, 12,098–12,105 (2017).
Navarro, T., Schubert, G. & Lebonnois, S. Atmospheric mountain wave generation on Venus and its influence on the solid planet’s rotation rate. Nat. Geosci. 11, 487–491 (2018).
Pepe, F., Ehrenreich, D. & Meyer, M. R. Instrumentation for the detection and characterization of exoplanets. Nature 513, 358–366 (2014).
Greene, T. P. et al. Characterizing transiting exoplanet atmospheres with JWST. Astrophys. J. 817, 17 (2016).
Morley, C. V., Kreidberg, L., Rustamkulov, Z., Robinson, T. & Fortney, J. J. Observing the atmospheres of known temperate earth-sized planets with JWST. Astrophys. J. 850, 121 (2017).
Batalha, N. E., Lewis, N. K., Line, M. R., Valenti, J. & Stevenson, K. Strategies for constraining the atmospheres of temperate terrestrial planets with JWST. Astrophys. J. Lett. 856, L34 (2018).
Lincowski, A. P., Lustig-Yaeger, J. & Meadows, V. S. Observing isotopologue bands in terrestrial exoplanet atmospheres with the James Webb Space Telescope: implications for identifying past atmospheric and ocean loss. Astron. J. 158, 26 (2019).
Lustig-Yaeger, J., Meadows, V. S. & Lincowski, A. P. The detectability and characterization of the TRAPPIST-1 exoplanet atmospheres with JWST. Astron. J. 158, 27 (2019).
Ehrenreich, D., Tinetti, G., Lecavelier Des Etangs, A., Vidal-Madjar, A. & Selsis, F. The transmission spectrum of Earth-size transiting planets. Astron. Astrophys. 448, 379–393 (2006).
Ehrenreich, D. et al. Transmission spectrum of Venus as a transiting exoplanet. Astron. Astrophys. 537, L2 (2012).
Barstow, J. K., Aigrain, S., Irwin, P. G. J., Kendrew, S. & Fletcher, L. N. Telling twins apart: exo-Earths and Venuses with transit spectroscopy. Mon. Not. R. Astron. Soc. 458, 2657–2666 (2016).
Kaltenegger, L. How to characterize habitable worlds and signs of life. Annu. Rev. Astron. Astrophys. 55, 433–485 (2017).
Fujii, Y. et al. Exoplanet biosignatures: observational prospects. Astrobiology 18, 739–778 (2018).
Lustig-Yaeger, J., Meadows, V. S. & Lincowski, A. P. A mirage of the cosmic shoreline: Venus-like clouds as a statistical false positive for exoplanet atmospheric erosion. Astrophys. J. Lett. 887, L11 (2019).
Ostberg, C. & Kane, S. R. Predicting the yield of potential Venus analogs from TESS and their potential for atmospheric characterization. Astron. J. 158, 195 (2019).
Seager, S. & Deming, D. Exoplanet atmospheres. Annu. Rev. Astron. Astrophys. 48, 631–672 (2010).
Hu, R., Ehlmann, B. L. & Seager, S. Theoretical spectra of terrestrial exoplanet surfaces. Astrophys. J. 752, 7 (2012).
Cowan, N. B. & Strait, T. E. Determining reflectance spectra of surfaces and clouds on exoplanets. Astrophys. J. Lett. 765, L17 (2013).
Madhusudhan, N. Exoplanetary atmospheres: key insights, challenges, and prospects. Annu. Rev. Astron. Astrophys. 57, 617–663 (2019).
Bezard, B., de Bergh, C., Crisp, D. & Maillard, J. P. The deep atmosphere of Venus revealed by high-resolution nightside spectra. Nature 345, 508–511 (1990).
Pollack, J. B. et al. Near-infrared light from Venus’ nightside: a spectroscopic analysis. Icarus 103, 1–42 (1993).
Meadows, V. S. & Crisp, D. Ground-based near-infrared observations of the Venus nightside: the thermal structure and water abundance near the surface. J. Geophys. Res. 101, 4595–4622 (1996).
Arney, G. et al. Spatially resolved measurements of H2O, HCl, CO, OCS, SO2, cloud opacity, and acid concentration in the Venus near-infrared spectral windows. J. Geophys. Res. Planets 119, 1860–1891 (2014).
Guzewich, S. D. et al. The impact of planetary rotation rate on the reflectance and thermal emission spectrum of terrestrial exoplanets around sunlike stars. Astrophys. J. 893, 140 (2020).
Stark, C. C. et al. Toward complete characterization: prospects for directly imaging transiting exoplanets. Astron. J. 159, 286 (2020).
Kopparapu, R. K. et al. Exoplanet classification and yield estimates for direct imaging missions. Astrophys. J. 856, 122 (2018).
Kasdin, N. J. et al. The Nancy Grace Roman Space Telescope Coronagraph Instrument (CGI) technology demonstration. Proc. SPIE 11443, 114431U (2020).
The LUVOIR Team. The LUVOIR Mission Concept Study Final Report. Preprint at https://arxiv.org/abs/1912.06219 (2019).
Gaudi, B. S. et al. The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report. Preprint at https://arxiv.org/abs/2001.06683 (2020).
Horner, J. et al. Solar System physics for exoplanet research. Publ. Astron. Soc. Pac. 132, 102001 (2020).
Abe, Y., Abe-Ouchi, A., Sleep, N. H. & Zahnle, K. J. Habitable zone limits for dry planets. Astrobiology 11, 443–460 (2011).
Leconte, J., Forget, F., Charnay, B., Wordsworth, R. & Pottier, A. Increased insolation threshold for runaway greenhouse processes on Earth-like planets. Nature 504, 268–271 (2013).
Wolf, E. T. & Toon, O. B. Delayed onset of runaway and moist greenhouse climates for Earth. Geophys. Res. Lett. 41, 167–172 (2014).
Acknowledgements
This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology under contract with NASA within the Exoplanet Exploration Program. The results reported herein benefited from collaborations and/or information exchange under NASA’s Nexus for Exoplanet System Science (NExSS) research coordination network, which is sponsored by NASA’s Science Mission Directorate.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing interests.
Peer review
Peer review information
Nature Astronomy thanks Jun Yang and Elizabeth Tasker for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kane, S.R. Atmospheric dynamics of a near tidally locked Earth-sized planet. Nat Astron 6, 420–427 (2022). https://doi.org/10.1038/s41550-022-01626-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41550-022-01626-x
This article is cited by
-
On the behaviour of spin–orbit connection of exoplanets
Nature Astronomy (2023)
-
Venus Evolution Through Time: Key Science Questions, Selected Mission Concepts and Future Investigations
Space Science Reviews (2023)