Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stringent axion constraints with Event Horizon Telescope polarimetric measurements of M87

Abstract

The hitherto unprecedented angular resolution of the Event Horizon Telescope has created exciting opportunities in the search for new physics. Recently, the linear polarization of radiation emitted near the supermassive black hole M87 was measured on four separate days, precisely enabling tests of the existence of a dense axion cloud produced by a spinning black hole. The presence of an axion cloud leads to a frequency-independent oscillation in the electric vector position angle of this linear polarization. For the nearly face-on M87, this oscillation in the electric vector position angle appears as a propagating wave along the photon ring. In this paper, we leverage the azimuthal distribution of electric vector position angle measured by the Event Horizon Telescope to study the axion–photon coupling. We propose a novel differential analysis procedure to reduce the astrophysical background, and derive stringent constraints on the existence of axions in the previously unexplored mass window of ~(10−21–10−20) eV.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of ipole.
Fig. 2: The relative phase δ(φ)/2π and amplitude \({{{\mathcal{A}}}}(\varphi )/{g}_{{\mathrm{a}}\upgamma }{a}_{\max }\) of the 〈χ(φ)〉 variation.
Fig. 3: Washout effect on the oscillation amplitude of the EVPA as a function of Sr normalized by 2πλc.
Fig. 4: The 95% credible level upper limit (green) on the axion–photon coupling, characterized by c ≡ 2πgfa, derived from the EHT polarimetric observations of SMBH M87.

Similar content being viewed by others

Data availability

The polarimetric measurement data used in this paper are drawn from the publicly available publication of the EHT collaboration5. The data that support the plots within this paper and other findings of this study can be found at https://github.com/XueXiao-Physics/Axion_EHT_2021.

Code availability

The simulation codes used in this study are a modified version of the publicly available code ipole33,34 (https://github.com/moscibrodzka/ipole). The data analysis codes can be found at https://github.com/XueXiao-Physics/Axion_EHT_2021.

References

  1. Event Horizon Telescope Collaborationet al. First M87 Event Horizon Telescope results. I. The shadow of the supermassive black hole. Astrophys. J. Lett. 875, L1 (2019).

    Article  ADS  Google Scholar 

  2. Event Horizon Telescope Collaborationet al. First M87 Event Horizon Telescope results. IV. Imaging the central supermassive black hole. Astrophys. J. Lett. 875, L4 (2019).

    Article  ADS  Google Scholar 

  3. Event Horizon Telescope Collaborationet al. First M87 Event Horizon Telescope results. VI. The shadow and mass of the central black hole. Astrophys. J. Lett. 875, L6 (2019).

    Article  ADS  Google Scholar 

  4. Event Horizon Telescope Collaborationet al. First M87 Event Horizon Telescope results. V. Physical origin of the asymmetric ring. Astrophys. J. Lett. 875, L5 (2019).

    Article  ADS  Google Scholar 

  5. Event Horizon Telescope Collaborationet al. First M87 Event Horizon Telescope results. VII. Polarization of the ring. Astrophys. J. Lett. 910, L12 (2021).

    Article  ADS  Google Scholar 

  6. Event Horizon Telescope Collaborationet al. First M87 Event Horizon Telescope results. VIII. Magnetic field structure near the event horizon. Astrophys. J. Lett. 910, L13 (2021).

    Article  ADS  Google Scholar 

  7. Peccei, R. D. & Quinn, H. R. CP conservation in the presence of instantons. Phys. Rev. Lett. 38, 1440–1443 (1977).

    Article  ADS  Google Scholar 

  8. Peccei, R. D. & Quinn, H. R. Constraints imposed by CP conservation in the presence of instantons. Phys. Rev. D 16, 1791–1797 (1977).

    Article  ADS  Google Scholar 

  9. Weinberg, S. A new light boson? Phys. Rev. Lett. 40, 223–226 (1978).

    Article  ADS  Google Scholar 

  10. Wilczek, F. Problem of strong P and T invariance in the presence of instantons. Phys. Rev. Lett. 40, 279–282 (1978).

    Article  ADS  Google Scholar 

  11. Arvanitaki, A., Dimopoulos, S., Dubovsky, S., Kaloper, N. & March-Russell, J. String axiverse. Phys. Rev. D 81, 123530 (2010).

    Article  ADS  Google Scholar 

  12. Preskill, J., Wise, M. B. & Wilczek, F. Cosmology of the invisible axion. Phys. Lett. B 120, 127–132 (1983).

    Article  ADS  Google Scholar 

  13. Abbott, L. F. & Sikivie, P. A cosmological bound on the invisible axion. Phys. Lett. B 120, 133–136 (1983).

    Article  ADS  Google Scholar 

  14. Dine, M. & Fischler, W. The not so harmless axion. Phys. Lett. B 120, 137–141 (1983).

    Article  ADS  Google Scholar 

  15. Chen, Y., Shu, J., Xue, X., Yuan, Q. & Zhao, Y. Probing axions with Event Horizon Telescope polarimetric measurements. Phys. Rev. Lett. 124, 061102 (2020).

    Article  ADS  Google Scholar 

  16. Penrose, R. & Floyd, R. M. Extraction of rotational energy from a black hole. Nature 229, 177–179 (1971).

    ADS  Google Scholar 

  17. Zel’Dovich, Y. B. Generation of waves by a rotating body. J. Exp. Theor. Phys. Lett. 14, 180–181 (1971).

    Google Scholar 

  18. Press, W. H. & Teukolsky, S. A. Floating orbits, superradiant scattering and the black-hole bomb. Nature 238, 211–212 (1972).

    Article  ADS  Google Scholar 

  19. Carroll, S. M., Field, G. B. & Jackiw, R. Limits on a Lorentz and parity violating modification of electrodynamics. Phys. Rev. D 41, 1231 (1990).

    Article  ADS  Google Scholar 

  20. Harari, D. & Sikivie, P. Effects of a Nambu–Goldstone boson on the polarization of radio galaxies and the cosmic microwave background. Phys. Lett. B 289, 67–72 (1992).

    Article  ADS  Google Scholar 

  21. Yoshino, H. & Kodama, H. Bosenova collapse of axion cloud around a rotating black hole. Prog. Theor. Phys. 128, 153–190 (2012).

    Article  ADS  MATH  Google Scholar 

  22. Yoshino, H. & Kodama, H. Gravitational radiation from an axion cloud around a black hole: superradiant phase. Prog. Theor. Exp. Phys. 2014, 043E02 (2014).

    Article  MATH  Google Scholar 

  23. Yoshino, H. & Kodama, H. The bosenova and axiverse. Class. Quantum Gravity 32, 214001 (2015).

    Article  ADS  MATH  Google Scholar 

  24. Baryakhtar, M., Galanis, M., Lasenby, R. & Simon, O. Black hole superradiance of self-interacting scalar fields. Phys. Rev. D 103, 095019 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  25. Arvanitaki, A. & Dubovsky, S. Exploring the string axiverse with precision black hole physics. Phys. Rev. D 83, 044026 (2011).

    Article  ADS  Google Scholar 

  26. Dolan, S. R. Instability of the massive Klein–Gordon field on the Kerr spacetime. Phys. Rev. D 76, 084001 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  27. Schwarz, D. J., Goswami, J. & Basu, A. Geometric optics in the presence of axionlike particles in curved spacetime. Phys. Rev. D 103, L081306 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  28. Pu, H.-Y. & Broderick, A. E. Probing the innermost accretion flow geometry of Sgr A with Event Horizon Telescope. Astrophys. J. 863, 148 (2018).

    Article  ADS  Google Scholar 

  29. Igumenshchev, I. V., Narayan, R. & Abramowicz, M. A. Three-dimensional MHD simulations of radiatively inefficient accretion flows. Astrophys. J. 592, 1042–1059 (2003).

    Article  ADS  Google Scholar 

  30. Narayan, R., Igumenshchev, I. V. & Abramowicz, M. A. Magnetically arrested disk: an energetically efficient accretion flow. Publ. Astron. Soc. Jpn. 55, L69 (2003).

    Article  ADS  Google Scholar 

  31. McKinney, J. C., Tchekhovskoy, A. & Blandford, R. D. General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes. Mon. Not. R. Astron. Soc. 423, 3083–3117 (2012).

    Article  ADS  Google Scholar 

  32. Tchekhovskoy, A. in The Formation and Disruption of Black Hole Jets (eds Contopoulos, I. et al.) 45 (Astrophysics and Space Science Library Vol. 414, Springer, 2015).

  33. Moscibrodzka, M. & Gammie, C. F. ipole—semi-analytic scheme for relativistic polarized radiative transport. Mon. Not. R. Astron. Soc. 475, 43–54 (2018).

    Article  ADS  Google Scholar 

  34. Noble, S. C., Leung, P. K., Gammie, C. F. & Book, L. G. Simulating the emission and outflows from accretion disks. Class. Quantum Gravity 24, S259–S274 (2007).

    Article  ADS  MATH  Google Scholar 

  35. Tamburini, F., Thidé, B. & Valle, M. D. Measurement of the spin of the M87 black hole from its observed twisted light. Mon. Not. R. Astron. Soc. 492, L22–L27 (2020).

    Article  ADS  Google Scholar 

  36. Feng, J. & Wu, Q. Constraint on the black-hole spin of M87 from the accretion-jet model. Mon. Not. R. Astron. Soc. 470, 612–616 (2017).

    Article  ADS  Google Scholar 

  37. Davoudiasl, H. & Denton, P. B. Ultralight boson dark matter and Event Horizon Telescope observations of M87. Phys. Rev. Lett. 123, 021102 (2019).

    Article  ADS  Google Scholar 

  38. Anastassopoulos, V. et al. New CAST limit on the axion–photon interaction. Nat. Phys. 13, 584–590 (2017).

    Article  Google Scholar 

  39. Payez, A. et al. Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles. J. Cosmol. Astropart. Phys. 02, 006 (2015).

    Article  ADS  Google Scholar 

  40. Dessert, C., Foster, J. W. & Safdi, B. R. X-ray searches for axions from super star clusters. Phys. Rev. Lett. 125, 261102 (2020).

    Article  ADS  Google Scholar 

  41. Marsh, M. C. D. et al. A new bound on axion-like particles. J. Cosmol. Astropart. Phys. 12, 036 (2017).

    Article  ADS  Google Scholar 

  42. Reynolds, C. S. et al. Astrophysical limits on very light axion-like particles from Chandra grating spectroscopy of NGC 1275. Astrophys. J. 890, 59 (2020).

    Article  ADS  Google Scholar 

  43. Kaplan, D. E. & Rattazzi, R. Large field excursions and approximate discrete symmetries from a clockwork axion. Phys. Rev. D 93, 085007 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  44. Farina, M., Pappadopulo, D., Rompineve, F. & Tesi, A. The photo-philic QCD axion. J. High Energy Phys. 01, 095 (2017).

    Article  ADS  Google Scholar 

  45. Raymond, A. W. et al. Evaluation of new submillimeter VLBI sites for the Event Horizon Telescope. Astrophys. J. Suppl. 253, 5 (2021).

    Article  ADS  Google Scholar 

  46. Damour, T., Deruelle, N. & Ruffini, R. On quantum resonances in stationary geometries. Lett. Nuovo Cim. 15, 257–262 (1976).

    Article  ADS  Google Scholar 

  47. Zouros, T. J. M. & Eardley, D. M. Instabilities of massive scalar perturbations of a rotating black hole. Ann. Phys. (N. Y.) 118, 139–155 (1979).

    Article  ADS  Google Scholar 

  48. Detweiler, S. L. Klein–Gordon equation and rotating black holes. Phys. Rev. D 22, 2323–2326 (1980).

    Article  ADS  Google Scholar 

  49. Strafuss, M. J. & Khanna, G. Massive scalar field instability in Kerr spacetime. Phys. Rev. D 71, 024034 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  50. Brito, R., Cardoso, V. & Pani, P. Superradiance: New Frontiers in Black Hole Physics (Lecture Notes in Physics Vol. 906, Springer, 2015).

  51. Cruz-Osorio, A. et al. State-of-the-art energetic and morphological modelling of the launching site of the M87 jet. Nat. Astron. 6, 103–108 (2022).

  52. Amorim, A. et al. Scalar field effects on the orbit of S2 star. Mon. Not. R. Astron. Soc. 489, 4606–4621 (2019).

    Article  ADS  Google Scholar 

  53. Arvanitaki, A., Baryakhtar, M. & Huang, X. Discovering the QCD axion with black holes and gravitational waves. Phys. Rev. D 91, 084011 (2015).

    Article  ADS  Google Scholar 

  54. Brito, R., Cardoso, V. & Pani, P. Black holes as particle detectors: evolution of superradiant instabilities. Class. Quantum Gravity 32, 134001 (2015).

    Article  ADS  MATH  Google Scholar 

  55. Ünal, C., Pacucci, F. & Loeb, A. Properties of ultralight bosons from heavy quasar spins via superradiance. J. Cosmol. Astropart. Phys. 05, 007 (2021).

    Article  ADS  Google Scholar 

  56. Omiya, H., Takahashi, T. & Tanaka, T. Renormalization group analysis of superradiant growth of self-interacting axion cloud. Prog. Theor. Exp. Phys. 2021, 043E02 (2021).

    Article  MATH  Google Scholar 

  57. Narayan, R., Kato, S. & Honma, F. Global structure and dynamics of advection-dominated accretion flows around black holes. Astrophys. J. 476, 49–60 (1997).

    Article  ADS  Google Scholar 

  58. Yuan, F. & Narayan, R. Hot accretion flows around black holes. Annu. Rev. Astron. Astrophys. 52, 529–588 (2014).

    Article  ADS  Google Scholar 

  59. Prieto, M. A., Fernandez-Ontiveros, J. A., Markoff, S., Espada, D. & Gonzalez-Martin, O. The central parsecs of M87: jet emission and an elusive accretion disc. Mon. Not. R. Astron. Soc. 457, 3801–3816 (2016).

    Article  ADS  Google Scholar 

  60. Trippe, S. Polarization and polarimetry. J. Korean Astron. Soc. 47, 15–39 (2014).

    Article  ADS  Google Scholar 

  61. Plascencia, A. D. & Urbano, A. Black hole superradiance and polarization-dependent bending of light. J. Cosmol. Astropart. Phys. 04, 059 (2018).

    Article  ADS  Google Scholar 

  62. Ivanov, M. M. et al. Constraining the photon coupling of ultra-light dark-matter axion-like particles by polarization variations of parsec-scale jets in active galaxies. J. Cosmol. Astropart. Phys. 02, 059 (2019).

    Article  ADS  Google Scholar 

  63. Fujita, T., Tazaki, R. & Toma, K. Hunting axion dark matter with protoplanetary disk polarimetry. Phys. Rev. Lett. 122, 191101 (2019).

    Article  ADS  Google Scholar 

  64. Liu, T., Smoot, G. & Zhao, Y. Detecting axionlike dark matter with linearly polarized pulsar light. Phys. Rev. D 101, 063012 (2020).

    Article  ADS  Google Scholar 

  65. Fedderke, M. A., Graham, P. W. & Rajendran, S. Axion dark matter detection with CMB polarization. Phys. Rev. D 100, 015040 (2019).

    Article  ADS  Google Scholar 

  66. Caputo, A. et al. Constraints on millicharged dark matter and axionlike particles from timing of radio waves. Phys. Rev. D 100, 063515 (2019).

    Article  ADS  Google Scholar 

  67. Yuan, G.-W. et al. Testing the ALP–photon coupling with polarization measurements of Sagittarius A. J. Cosmol. Astropart. Phys. 03, 018 (2021).

    Article  ADS  Google Scholar 

  68. Johannsen, T. & Psaltis, D. Testing the no-hair theorem with observations in the electromagnetic spectrum: II. Black-hole images. Astrophys. J. 718, 446–454 (2010).

    Article  ADS  Google Scholar 

  69. Gralla, S. E., Holz, D. E. & Wald, R. M. Black hole shadows, photon rings, and lensing rings. Phys. Rev. D 100, 024018 (2019).

    Article  ADS  Google Scholar 

  70. Johnson, M. D. et al. Universal interferometric signatures of a black hole’s photon ring. Sci. Adv. 6, eaaz1310 (2020).

    Article  ADS  Google Scholar 

  71. Gralla, S. E. & Lupsasca, A. Lensing by Kerr black holes. Phys. Rev. D 101, 044031 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  72. Jiménez-Rosales, A. et al. Relative depolarization of the black hole photon ring in GRMHD models of Sgr A and M87. Mon. Not. R. Astron. Soc. 503, 4563–4575 (2021).

    Article  ADS  Google Scholar 

  73. Marti-Vidal, I., Mus, A., Janssen, M., de Vicente, P. & Gonzalez, J. Polarization calibration techniques for the new-generation VLBI. Astron. Astrophys. 646, A52 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to N. Houston, S. Liebersbach and D. Psaltis for careful reading and useful comments on the manuscript, and C. Li, Y.-F. Yuan, S.-S. Zhao and Z. Zhou for useful discussions. Y.C. is supported by the China Postdoctoral Science Foundation under grants 2020T130661 and 2020M680688, by the International Postdoctoral Exchange Fellowship Program and by the National Natural Science Foundation of China (NSFC) under grant 12047557. R.-S.L. is supported by the Max Planck Partner Group of the MPG and the Chinese Academy of Sciences (CAS), the NSFC under grant 11933007, the Research Program of Fundamental and Frontier Sciences of CAS under grant ZDBS-LY-SLH011 and the Shanghai Pilot Program for Basic Research—Chinese Academy of Science, Shanghai Branch (JCYJ-SHFY-2021-013). Y.M. is supported by the ERC Synergy Grant ‘BlackHoleCam: Imaging the Event Horizon of Black Holes’ under grant 610058. J.S. is supported by the NSFC under grants 12025507, 11690022 and 11947302, by the Strategic Priority Research Program and Key Research Program of Frontier Science of CAS under grants XDB21010200, XDB23010000 and ZDBS-LY-7003 and by the CAS project for Young Scientists in Basic Research YSBR-006. Q.Y. is supported by the NSFC under grants 11722328 and 11851305, by the Key Research Program of CAS under grant XDPB15 and by the Program for Innovative Talents and Entrepreneur in Jiangsu. Y.Z. is supported by the US Department of Energy under award DESC0009959. Y.C. would like to thank the SHAO and TDLI for their kind hospitality. Y.Z. would like to thank the ITP-CAS for their kind hospitality.

Author information

Authors and Affiliations

Authors

Contributions

J.S., Q.Y. and Y.Z. initiated this study, Y.C., X.X. and Y.Z. developed the method, X.X., Y.L. and Y.C. analysed the data with important contributions from Y.M. and R.-S.L., Y.M. offered guidance on accretion flow models and Y.C. and Y.Z. wrote the initial draft, with contributions from Q.Y. and J.S. All authors have reviewed, discussed and commented on the modelling, data analysis and manuscript.

Corresponding authors

Correspondence to Yifan Chen, Yosuke Mizuno, Jing Shu, Qiang Yuan or Yue Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Liu, Y., Lu, RS. et al. Stringent axion constraints with Event Horizon Telescope polarimetric measurements of M87. Nat Astron 6, 592–598 (2022). https://doi.org/10.1038/s41550-022-01620-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01620-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing