Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coupling between the accreting corona and the relativistic jet in the microquasar GRS 1915+105

A Publisher Correction to this article was published on 04 April 2022

This article has been updated

Abstract

Accreting black holes emit highly collimated radio jets expanding at speeds approaching light speed. Some of these jets appear to be expanding at superluminal speeds due to geometric effects. While magnetic fields are thought to be responsible for collimating the ejecta, the mechanism that accelerates the material in these jets remains unexplained. For the galactic black hole GRS 1915+105 with a superluminal radio jet, it has been proposed that thermal instabilities in the accretion disk lead to the ejection of the inner parts of the disk into the jet. Here we use X-ray and radio observations over a 10-year period to reveal a strong correlation between (i) the radio flux that comes from the jet and the flux of the iron emission line that comes from the disk and (ii) the temperature of the hard X-ray corona and the amplitude of a high-frequency variability component that comes from the innermost part of the accretion flow. At the same time, the radio flux and the flux of the iron line are strongly anti-correlated with the temperature of the X-ray corona and the amplitude of the high-frequency variability component. Our findings show that the energy that powers this black hole system can be directed in different proportions either mainly to the X-ray corona or to the jet. These facts, plus our modelling of the variability in this source, suggest that in GRS 1915+105 the X-ray corona turns into the jet.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hardness ratio versus QPO frequency of GRS 1915+105.
Fig. 2: Flux of the iron line versus total flux in the 2–25 keV range for GRS 1915+105.
Fig. 3: Schematic of the corona turning into the jet in GRS 1915+105.
Fig. 4: Time evolution of QPO frequency and radio flux for GRS 1915+105.

Similar content being viewed by others

Data availability

All the X-ray data used in this study are available from NASA’s High Energy Astrophysics Science Archive Research Center (https://heasarc.gsfc.nasa.gov/). The radio data used in this study are available at http://www.astro.rug.nl/~mariano/GRS_1915+105_Ryle_data_1995-2006.txt.

Code availability

The data reduction was done using HEADAS version 6.27, whereas the model fitting of energy, power and lag–energy spectra was done with XSPEC; both packages are available at the HEASARC website (https://heasarc.gsfc.nasa.gov/). The timing analysis was performed with the GHATS package developed by T.M.B. and is available upon request (http://astrosat.iucaa.in/~astrosat/GHATS_Package/Home.html). All figures were made in TOPCAT, a JAVA-based scientific plotting package developed by M. Taylor (http://www.star.bris.ac.uk/~mbt/topcat/).

Change history

References

  1. Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973).

    ADS  Google Scholar 

  2. Sunyaev, R. A. & Titarchuk, L. G. Comptonization of X-rays in plasma clouds. Typical radiation spectra. Astron. Astrophys. 86, 121–138 (1980).

    ADS  Google Scholar 

  3. Fabian, A. C., Rees, M. J., Stella, L. & White, N. E. X-ray fluorescence from the inner disc in Cygnus X-1. Mon. Not. R. Astron. Soc. 238, 729–736 (1989).

    Article  ADS  Google Scholar 

  4. Fabian, A. C. et al. Broad line emission from iron K- and L-shell transitions in the active galaxy 1H 0707-495. Nature 459, 540–542 (2009).

    Article  ADS  Google Scholar 

  5. Greiner, J., Morgan, E. H. & Remillard, R. A. Rossi X-Ray Timing Explorer observations of GRS 1915+105. Astrophys. J. Lett. 473, L107 (1996).

    Article  ADS  Google Scholar 

  6. Belloni, T., Klein-Wolt, M., Méndez, M., van der Klis, M. & van Paradijs, J. A model-independent analysis of the variability of GRS 1915+105. Astron. Astrophys. 355, 271–290 (2000).

    ADS  Google Scholar 

  7. Méndez, M. & van der Klis, M. The EXOSAT data on GX 339-4: further evidence for an ‘intermediate’ state. Astrophys. J. 479, 926–932 (1997).

    Article  ADS  Google Scholar 

  8. Eikenberry, S. S., Matthews, K., Morgan, E. H., Remillard, R. A. & Nelson, R. W. Evidence for a disk-jet interaction in the microquasar GRS 1915+105. Astrophys. J. Lett. 494, L61–L64 (1998).

    Article  ADS  Google Scholar 

  9. Mirabel, I. F. et al. Accretion instabilities and jet formation in GRS 1915+105. Astron. Astrophys. 330, L9–L12 (1998).

    ADS  Google Scholar 

  10. Fender, R. P., Spencer, R. E., Newell, S. J. & Tzioumis, A. K. High-resolution radio observations of the black hole candidate GX 339-4. Mon. Not. R. Astron. Soc. 286, L29–L32 (1997).

    Article  ADS  Google Scholar 

  11. Mirabel, I. F. & Rodríguez, L. F. A superluminal source in the Galaxy. Nature 371, 46–48 (1994).

    Article  ADS  Google Scholar 

  12. Fender, R. & Belloni, T. GRS 1915+105 and the disc-jet coupling in accreting black hole systems. Annu. Rev. Astron. Astrophys. 42, 317–364 (2004).

    Article  ADS  Google Scholar 

  13. Reid, M. J. et al. A parallax distance to the microquasar GRS 1915+105 and a revised estimate of its black hole mass. Astrophys. J. 796, 2 (2014).

    Article  ADS  Google Scholar 

  14. Pooley, G. G. & Fender, R. P. The variable radio emission from GRS 1915+105. Mon. Not. R. Astron. Soc. 292, 925–933 (1997).

    Article  ADS  Google Scholar 

  15. Belloni, T., Méndez, M., King, A. R., van der Klis, M. & van Paradijs, J. A unified model for the spectral variability in GRS 1915+105. Astrophys. J. Lett. 488, L109–L112 (1997).

    Article  ADS  Google Scholar 

  16. Casella, P., Belloni, T. & Stella, L. The ABC of low-frequency quasi-periodic oscillations in black hole candidates: analogies with Z sources. Astrophys. J. 629, 403–407 (2005).

    Article  ADS  Google Scholar 

  17. Zhang, L. et al. A systematic analysis of the phase lags associated with the type-C quasi-periodic oscillation in GRS 1915+105. Mon. Not. R. Astron. Soc. 494, 1375–1386 (2020).

    Article  ADS  Google Scholar 

  18. Trudolyubov, S. P. On the two types of steady hard X-ray states of GRS 1915+105. Astrophys. J. 558, 276–282 (2001).

    Article  ADS  Google Scholar 

  19. Muno, M. P., Morgan, E. H. & Remillard, R. A. Quasi-periodic oscillations and spectral states in GRS 1915+105. Astrophys. J. 527, 321–340 (1999).

    Article  ADS  Google Scholar 

  20. Fender, R. P. et al. MERLIN observations of relativistic ejections from GRS 1915+105. Mon. Not. R. Astron. Soc. 304, 865–876 (1999).

    Article  ADS  Google Scholar 

  21. Stella, L. & Vietri, M. Lense-Thirring precession and quasi-periodic cscillations in low-mass X-ray binaries. Astrophys. J. Lett. 492, L59–L62 (1998).

    Article  ADS  Google Scholar 

  22. Ingram, A., Done, C. & Fragile, P. C. Low-frequency quasi-periodic oscillations spectra and Lense-Thirring precession. Mon. Not. R. Astron. Soc. 397, L101–L105 (2009).

    Article  ADS  Google Scholar 

  23. Neilsen, J. & Lee, J. C. Accretion disk winds as the jet suppression mechanism in the microquasar GRS 1915+105. Nature 458, 481–484 (2009).

    Article  ADS  Google Scholar 

  24. Mizumoto, M., Ebisawa, K., Tsujimoto, M. & Inoue, H. Origin of the X-ray broad iron spectral feature in GRS 1915+105. Publ. Astron. Soc. Jpn 68, S16 (2016).

    Article  Google Scholar 

  25. Merloni, A. & Fabian, A. C. Accretion disc coronae as magnetic reservoirs. Mon. Not. R. Astron. Soc. 321, 549–552 (2001).

    Article  ADS  Google Scholar 

  26. Karpouzas, K. et al. The Comptonizing medium of the neutron star in 4U 1636 − 53 through its lower kilohertz quasi-periodic oscillations. Mon. Not. R. Astron. Soc. 492, 1399–1415 (2020).

    Article  ADS  Google Scholar 

  27. Karpouzas, K. et al. A variable corona for GRS 1915+105. Mon. Not. R. Astron. Soc. 503, 5522–5533 (2021).

    Article  ADS  Google Scholar 

  28. Malzac, J., Merloni, A. & Fabian, A. C. Jet–disc coupling through a common energy reservoir in the black hole XTE J1118+480. Mon. Not. R. Astron. Soc. 351, 253–264 (2004).

    Article  ADS  Google Scholar 

  29. Matt, G., Fabian, A. C. & Reynolds, C. S. Geometrical and chemical dependence of K-shell X-ray features. Mon. Not. R. Astron. Soc. 289, 175–184 (1997).

    Article  ADS  Google Scholar 

  30. Petrucci, P. O., Merloni, A., Fabian, A., Haardt, F. & Gallo, E. The effects of a Comptonizing corona on the appearance of the reflection components in accreting black hole spectra. Mon. Not. R. Astron. Soc. 328, 501–510 (2001).

    Article  ADS  Google Scholar 

  31. Miniutti, G. & Fabian, A. C. A light bending model for the X-ray temporal and spectral properties of accreting black holes. Mon. Not. R. Astron. Soc. 349, 1435–1448 (2004).

    Article  ADS  Google Scholar 

  32. Kylafis, N. D., Reig, P. & Papadakis, I. A quantitative explanation of the type-B QPOs in GX 339-4. Astron. Astrophys. 640, L16 (2020).

    Article  ADS  Google Scholar 

  33. Reig, P. & Kylafis, N. D. Illumination of the accretion disk in black hole binaries: an extended jet as the primary source of hard X-rays. Astron. Astrophys. 646, A112 (2021).

    Article  ADS  Google Scholar 

  34. Meier, D. L. Magnetically dominated accretion flows (MDAFS) and jet production in the lowhard state. Astrophys. Space Sci. 300, 55–65 (2005).

    Article  ADS  Google Scholar 

  35. Kara, E. et al. The corona contracts in a black-hole transient. Nature 565, 198–201 (2019).

    Article  ADS  Google Scholar 

  36. Wang, J. et al. Disk, corona, jet connection in the intermediate state of MAXI J1820+070 revealed by NICER spectral-timing analysis. Astrophys. J. Lett. 910, L3 (2021).

    Article  ADS  Google Scholar 

  37. Vadawale, S. V. et al. On the origin of the various types of radio emission in GRS 1915+105. Astrophys. J. 597, 1023–1035 (2003).

    Article  ADS  Google Scholar 

  38. Rodriguez, J., Corbel, S. & Tomsick, J. A. Spectral evolution of the microquasar XTE J1550−564 over its entire 2000 outburst. Astrophys. J. 595, 1032–1038 (2003).

    Article  ADS  Google Scholar 

  39. Fender, R. P., Belloni, T. M. & Gallo, E. Towards a unified model for black hole X-ray binary jets. Mon. Not. R. Astron. Soc. 355, 1105–1118 (2004).

    Article  ADS  Google Scholar 

  40. Levinson, A. & Blandford, R. On the jets associated with Galactic superluminal sources. Astrophys. J. Lett. 456, L29–L32 (1996).

    Article  ADS  Google Scholar 

  41. Giannios, D., Kylafis, N. D. & Psaltis, D. Spectra and time variability of Galactic black-hole X-ray sources in the low/hard state. Astron. Astrophys. 425, 163–169 (2004).

    Article  ADS  Google Scholar 

  42. Markoff, S., Nowak, M. A. & Wilms, J. Going with the flow: can the base of jets subsume the role of compact accretion disk coronae? Astrophys. J. 635, 1203–1216 (2005).

    Article  ADS  Google Scholar 

  43. Hannikainen, D. C., Hunstead, R. W., Campbell-Wilson, D. & Sood, R. K. MOST radio monitoring of GX 339−4. Astron. Astrophys. 337, 460–464 (1998).

    ADS  Google Scholar 

  44. Corbel, S., Nowak, M. A., Fender, R. P., Tzioumis, A. K. & Markoff, S. Radio/X-ray correlation in the low/hard state of GX 339−4. Astron. Astrophys. 400, 1007–1012 (2003).

    Article  ADS  Google Scholar 

  45. Gallo, E., Fender, R. P. & Pooley, G. G. A universal radio–X-ray correlation in low/hard state black hole binaries. Mon. Not. R. Astron. Soc. 344, 60–72 (2003).

    Article  ADS  Google Scholar 

  46. Coriat, M. et al. Radiatively efficient accreting black holes in the hard state: the case study of H1743−322. Mon. Not. R. Astron. Soc. 414, 677–690 (2011).

    Article  ADS  Google Scholar 

  47. Gallo, E., Miller, B. P. & Fender, R. Assessing luminosity correlations via cluster analysis: evidence for dual tracks in the radio/X-ray domain of black hole X-ray binaries. Mon. Not. R. Astron. Soc. 423, 590–599 (2012).

    Article  ADS  Google Scholar 

  48. Gallo, E., Degenaar, N. & van den Eijnden, J. Hard state neutron star and black hole X-ray binaries in the radio:X-ray luminosity plane. Mon. Not. R. Astron. Soc. 478, L132–L136 (2018).

    Article  ADS  Google Scholar 

  49. Merloni, A., Heinz, S. & di Matteo, T. A Fundamental Plane of black hole activity. Mon. Not. R. Astron. Soc. 345, 1057–1076 (2003).

    Article  ADS  Google Scholar 

  50. Bariuan, L. G. C., Snios, B., Sobolewska, M., Siemiginowska, A. & Schwartz, D. A. The fundamental planes of black hole activity for radio-loud and radio-quiet quasars. Preprint at https://arxiv.org/abs/2201.04666 (2022).

  51. Zhang, W., Jahoda, K., Swank, J. H., Morgan, E. H. & Giles, A. B. Dead-time modifications to fast Fourier transform power spectra. Astrophys. J. 449, 930–935 (1995).

    Article  ADS  Google Scholar 

  52. Belloni, T. & Hasinger, G. An atlas of aperiodic variability in HMXB. Astron. Astrophys. 230, 103–119 (1990).

    ADS  Google Scholar 

  53. Nowak, M. A. Are there three peaks in the power spectra of GX 339-4 and Cyg X-1? Mon. Not. R. Astron. Soc. 318, 361–367 (2000).

    Article  ADS  Google Scholar 

  54. Vaughan, B. A. & Nowak, M. A. X-ray variability coherence: how to compute it, what it means, and how it constrains models of GX 339−4 and Cygnus X-1. Astrophys. J. Lett. 474, L43–L46 (1997).

    Article  ADS  Google Scholar 

  55. Nowak, M. A., Vaughan, B. A., Wilms, J., Dove, J. B. & Begelman, M. C. Rossi X-Ray Timing Explorer observation of Cygnus X-1. II. Timing analysis. Astrophys. J. 510, 874–891 (1999).

    Article  ADS  Google Scholar 

  56. van den Eijnden, J., Ingram, A. & Uttley, P. Probing the origin of quasi-periodic oscillations: the short-time-scale evolution of phase lags in GRS 1915+105. Mon. Not. R. Astron. Soc. 458, 3655–3666 (2016).

    Article  ADS  Google Scholar 

  57. van der Klis, M. et al. The complex cross-spectra of Cygnus X-2 and GX 5-1. Astrophys. J. Lett. 319, L13 (1987).

    Article  ADS  Google Scholar 

  58. Wilms, J., Allen, A. & McCray, R. On the absorption of X-rays in the interstellar medium. Astrophys. J. 542, 914–924 (2000).

    Article  ADS  Google Scholar 

  59. Verner, D. A., Ferland, G. J., Korista, K. T. & Yakovlev, D. G. Atomic data for astrophysics. II. New analytic FITS for photoionization cross sections of atoms and ions. Astrophys. J. 465, 487–498 (1996).

    Article  ADS  Google Scholar 

  60. Miller, J. M. et al. NuSTAR spectroscopy of GRS 1915+105: disk reflection, spin, and connections to jets. Astrophys. J. Lett. 775, L45 (2013).

    Article  ADS  Google Scholar 

  61. Mitsuda, K. et al. Energy spectra of low-mass binary X-ray sources observed from Tenma. Publ. Astron. Soc. Jpn 36, 741–759 (1984).

    ADS  Google Scholar 

  62. Zdziarski, A. A., Johnson, W. N. & Magdziarz, P. Broad-band γ-ray and X-ray spectra of NGC 4151 and their implications for physical processes and geometry. Mon. Not. R. Astron. Soc. 283, 193–206 (1996).

    Article  ADS  Google Scholar 

  63. García, J. et al. Improved reflection models of black hole accretion disks: treating the angular distribution of X-rays. Astrophys. J. 782, 76 (2014).

    Article  ADS  Google Scholar 

  64. Dauser, T., García, J., Parker, M. L., Fabian, A. C. & Wilms, J. The role of the reflection fraction in constraining black hole spin. Mon. Not. R. Astron. Soc. 444, L100–L104 (2014).

    Article  ADS  Google Scholar 

  65. Dunn, R. J. H., Fender, R. P., Körding, E. G., Cabanac, C. & Belloni, T. Studying the X-ray hysteresis in GX 339-4: the disc and iron line over one decade. Mon. Not. R. Astron. Soc. 387, 545–563 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is part of the research programme Athena with project number 184.034.002, which is (partly) financed by the Dutch Research Council (NWO). F.G. is a researcher of CONICET, and acknowledges support by PIP 0113 (CONICET) and PICT-2017-2865 (ANPCyT). Y.Z. acknowledges support from a China Scholarship Council scholarship (201906100030). T.M.B. acknowledges financial contribution from agreement ASI-INAF n.2017-14-H.0 and from PRIN-INAF 2019 N.15, and thanks the Team Meeting at the International Space Science Institute (Bern) for fruitful discussions. D.A. acknowledges support from the Royal Society. We thank G. Pooley for making the radio data available. This research has made use of data and/or software provided by the High Energy Astrophysics Science Archive Research Center (HEASARC), which is a service of the Astrophysics Science Division at NASA/GSFC. This research made use of NASA’s Astrophysics Data System. We thank O. Blaes for discussions and ideas that helped us improve this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to interpretation of results and edited the manuscript. M.M. led the interpretation, obtained spectral parameters and wrote the manuscript. K.K. wrote the model that triggered this research, produced initial radio and timing plots, fitted r.m.s. and lag spectra and co-led the interpretation. F.G. produced initial three-dimensional radio, timing and spectral plots, fitted r.m.s. and lag spectra of the QPO and co-led the interpretation. M.M., K.K. and F.G. measured extra QPO frequencies. L.Z. obtained parameters of the QPO. Y.Z. obtained parameters of the high-frequency bump. T.M.B. had the idea to study the high-frequency bump in connection with the radio flux. D.A. discussed the results and contributed to the interpretation.

Corresponding author

Correspondence to Mariano Méndez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion and Figs. 1–7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Méndez, M., Karpouzas, K., García, F. et al. Coupling between the accreting corona and the relativistic jet in the microquasar GRS 1915+105. Nat Astron 6, 577–583 (2022). https://doi.org/10.1038/s41550-022-01617-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01617-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing