Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Galaxies lacking dark matter produced by close encounters in a cosmological simulation

Abstract

The standard cold dark matter plus cosmological constant model predicts that galaxies form within dark-matter haloes, and that low-mass galaxies are more dark-matter dominated than massive ones. The unexpected discovery of two low-mass galaxies lacking dark matter immediately provoked concerns about the standard cosmology and ignited explorations of alternatives, including self-interacting dark matter and modified gravity. Apprehension grew after several cosmological simulations using the conventional model failed to form adequate numerical analogues with comparable internal characteristics (stellar masses, sizes, velocity dispersions and morphologies). Here we show that the standard paradigm naturally produces galaxies lacking dark matter with internal characteristics in agreement with observations. Using a state-of-the-art cosmological simulation and a meticulous galaxy-identification technique, we find that extreme close encounters with massive neighbours can be responsible for this. We predict that ~30% of massive central galaxies (with at least 1011 solar masses in stars) harbour at least one dark-matter-deficient satellite (with 108–109 solar masses in stars). This distinctive class of galaxies provides an additional layer in our understanding of the role of interactions in shaping galactic properties. Future observations surveying galaxies in the aforementioned regime will provide a crucial test of this scenario.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Galaxies lacking dark matter.
Fig. 2: Fraction of mass in dark matter in simulated and observed galaxies.
Fig. 3: Comparison of internal properties in simulated and observed galaxies.
Fig. 4: Conditions for creating a galaxy lacking dark matter.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request, contingent on approval by the FIRE Collaboration on a case-by-case basis.

Code availability

The codes we used are available as follows: GIZMO, https://bitbucket.org/phopkins/gizmo-public/src/master; yt, https://yt-project.org; AHF, http://popia.ft.uam.es/AHF/Download.html; FIRE Studio, https://github.com/agurvich/FIRE_studio; WebPlotDigitizer, https://apps.automeris.io/wpd.The Python scripts used to create the Figs. 14 and Supplementary Figs. 19 are available from the corresponding author on reasonable request, contingent on approval by the FIRE Collaboration on a case-by-case basis.

References

  1. Zwicky, E. Die rotverschiebung von extragalaktischen nebeln. Helv. Phys. Acta 6, 110–127 (1933).

    ADS  MATH  Google Scholar 

  2. Rubin, B. C. & Ford, W. K. Jr Rotation of the Andromeda Nebula from a spectroscopic survey of emission regions. Astrophys. J. 159, 379 (1970).

    ADS  Article  Google Scholar 

  3. White, S. D. M. & Rees, M. J. Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering. Mon. Not. R. Astron. Soc. 183, 341–358 (1978).

    ADS  Article  Google Scholar 

  4. Behroozi, P. S., Wechsler, R. H. & Conroy, C. The average star formation histories of galaxies in dark matter halos from z=0-8. Astrophys. J. 770, 57 (2013).

    ADS  Article  Google Scholar 

  5. Tollerud, E. et al. From galaxy clusters to ultra-faint dwarf spheroidals: a fundamental curve connecting dispersion-supported galaxies to their dark matter halos. Astrophys. J. 726, 23 (2011).

    Article  Google Scholar 

  6. van Dokkum, P. et al. A galaxy lacking dark matter. Nature 555, 629–632 (2018).

    ADS  Article  Google Scholar 

  7. van Dokkum, P. et al. A second galaxy missing dark matter in the NGC 1052 group. Astrophys. J. Lett. 874, 1 (2019).

    Article  Google Scholar 

  8. Haslbauer, M., Banik, I., Kroupa, P. & Grishunin, K. The ultra-diffuse dwarf galaxies NGC 1052-DF2 and 1052-DF4 are in conflict with standard cosmology. Mon. Not. R. Astron. Soc. 489, 2634–2651 (2019).

    ADS  Article  Google Scholar 

  9. Yu, H., Ratra, B. & Wang, F.-J. Dark matter deficient galaxies in the Illustris flat-Λ CDM model structure formation simulation. Preprint at https://arxiv.org/abs/1809.05938 (2018).

  10. Jing, Y. et al. Dark-matter-deficient galaxies in hydrodynamical simulations. Mon. Not. R. Astron. Soc. 488, 3298–3307 (2009).

    ADS  Article  Google Scholar 

  11. Haslbauer, M. et al. Galaxies lacking dark matter in the Illustris simulation. Astron. Astrophys. 626, A47 (2019).

    Article  Google Scholar 

  12. Carleton, T. et al. The formation of ultra diffuse galaxies in cored dark matter haloes through tidal stripping and heating. Mon. Not. R. Astron. Soc. 485, 382–395 (2019).

    ADS  Article  Google Scholar 

  13. Sales, L. V. et al. The formation of ultradiffuse galaxies in clusters. Mon. Not. R. Astron. Soc. 494, 1848–1858 (2020).

    ADS  Article  Google Scholar 

  14. Saulder, C. et al. Isolated dark-matter-deprived galaxies in hydrodynamical simulations: real objects or artifacts? Mon. Not. R. Astron. Soc. 491, 1278–1286 (2020).

    ADS  Google Scholar 

  15. Shin, E. et al. Dark matter deficient galaxies produced via high-velocity galaxy collisions in high-resolution numerical simulations. Astrophys. J. 899, 25 (2020).

    ADS  Article  Google Scholar 

  16. Applebaum, E. et al. Ultrafaint dwarfs in a Milky Way context: introducing the Mint condition DC Justice League simulations. Astrophys. J. 909, 96 (2021).

    Article  Google Scholar 

  17. Jackson, R. A. et al. Dark matter-deficient dwarf galaxies form via tidal stripping of dark matter in interactions with massive companions. Mon. Not. R. Astron. Soc. 502, 1785–1796 (2021).

    ADS  Article  Google Scholar 

  18. Wright, A. C. The formation of isolated ultradiffuse galaxies in ROMULUS25. Mon. Not. R. Astron. Soc. 502, 5370–5389 (2021).

    ADS  Article  Google Scholar 

  19. Ogiya, G. Tidal stripping as a possible origin of the ultra diffuse galaxy lacking dark matter. Mon. Not. R. Astron. Soc. 480, L106–L110 (2018).

    ADS  Article  Google Scholar 

  20. Huo, R. Refracting into ultra-diffuse galaxy NGC 1052-DF2 by passing near the centre of NGC 1052. Mon. Not. R. Astron. Soc. 495, L144–L148 (2020).

    ADS  Article  Google Scholar 

  21. Nusser, A. A scenario for ultradiffuse satellite galaxies with low velocity dispersions: the case of [KKS 2000]04. Astrophys. J. 893, 66 (2020).

  22. Yang, D., Yu, H.-B. & An, H. Self-interacting dark matter and the origin of ultradiffuse galaxies NGC1052-DF2 and -DF4. Phys. Rev. Lett. 125, 111105 (2020).

    ADS  Article  Google Scholar 

  23. Macciò, A. V. et al. Creating a galaxy lacking dark matter in a dark matter-dominated universe. Mon. Not. R. Astron. Soc. 501, 693–700 (2021).

    ADS  Article  Google Scholar 

  24. Hopkins, P. F. et al. FIRE-2 simulations: physics versus numerics in galaxy formation. Mon. Not. R. Astron. Soc. 480, 800–863 (2018).

    ADS  Article  Google Scholar 

  25. Faucher-Giguére, C.-A. Recent progress in simulating galaxy formation from the largest to the smallest scales. Nat. Astron. 2, 368–373 (2018).

    ADS  Article  Google Scholar 

  26. Kroupa, P. et al. Does the galaxy NGC1052-DF2 falsify Milgromian dynamics?. Nature 561, E4–E5 (2018).

    Article  Google Scholar 

  27. Moffat, J. W. & Toth, V. T. NGC 1052-DF2 and modified gravity (MOG) without dark matter. Mon. Not. R. Astron. Soc. 482, L1–L3 (2019).

    ADS  Article  Google Scholar 

  28. Khalifeh, A. R. & Jimenez, R. Dwarf galaxies without dark matter: constraints on modified gravity. Mon. Not. R. Astron. Soc. 501, 254–260 (2021).

    ADS  Article  Google Scholar 

  29. Famaey, B., McGaugh, S. & Milgrom, M. MOND and the dynamics of NGC 1052-DF2. Mon. Not. R. Astron. Soc. 480, 473–476 (2018).

    ADS  Article  Google Scholar 

  30. Haghi, H. et al. A new formulation of the external field effect in MOND and numerical simulations of ultra-diffuse dwarf galaxies – application to NGC 1052-DF2 and NGC 1052-DF4. Mon. Not. R. Astron. Soc. 487, 2442–2454 (2019).

    ADS  Article  Google Scholar 

  31. Shen, Z. et al. A tip of the red giant branch distance of 22.1 ± 1.2 Mpc to the dark matter deficient galaxy NGC 1052-DF2 from 40 orbits of Hubble Space Telescope imaging. Astrophys. J. Lett. 914, L12 (2021).

  32. Danieli, S. et al. A tip of the red giant branch distance to the dark matter deficient galaxy NGC 1052-DF4 from Deep Hubble Space Telescope data. Astrophys. J. Lett. 895, L4 (2020).

  33. Forbes, D. A. et al. The SLUGGS Survey: stellar masses and effective radii of early-type galaxies from Spitzer Space Telescope 3.6 μm imaging. Mon. Not. R. Astron. Soc. 464, 4611–4623 (2017).

    ADS  Article  Google Scholar 

  34. Zahid, H. J., Sohn, J. & Geller, M. J. Stellar velocity dispersion: linking quiescent galaxies to their dark matter haloes. Astrophys. J. 859, 96 (2018).

  35. Danieli, S. et al. Still missing dark matter: KCWI high-resolution stellar kinematics of NGC1052-DF2. Astrophys. J. Lett. 874, L12 (2019).

  36. Mancera Piña, P. et al. Off the baryonic Tully-Fisher relation: a population of baryon-dominated ultra-diffuse galaxies. Astrophys. J. 883, L33 (2019).

    ADS  Article  Google Scholar 

  37. Guo, Q. et al. Further evidence for a population of dark-matter-deficient dwarf galaxies. Nat. Astron. 4, 246–251 (2020).

    ADS  Article  Google Scholar 

  38. Mancera Piña, P. et al. No need for dark matter: resolved kinematics of the ultra-diffuse galaxy AGC 114905. Preprint at https://arxiv.org/abs/2112.00017 (2021).

  39. Wolf, J. et al. Accurate masses for dispersion-supported galaxies. Mon. Not. R. Astron. Soc. 406, 1220–1237 (2010).

    ADS  Google Scholar 

  40. Sérsic, J. L. Influence of the atmospheric and instrumental dispersion on the brightness distribution in a galaxy. Bol. Asoc.Argent. Astron. 6, 41–43 (1963).

    ADS  Google Scholar 

  41. Sardone, A. et al. Constraints on the HI mass of NGC 1052-DF2. Astrophys. J. 871, 31 (2019).

  42. Peñarrubia, J. et al. The impact of dark matter cusps and cores on the satellite galaxy population around spiral galaxies. Mon. Not. R. Astron. Soc. 406, 1290–1305 (2010).

    ADS  Google Scholar 

  43. Bryan, S. E. Influence of baryons on the orbital structure of dark matter haloes. Mon. Not. R. Astron. Soc. 422, 1863–1879 (2013).

    ADS  Article  Google Scholar 

  44. Valluri, M. et al. Probing the shape and history of the Milky Way halo with orbital spectral analysis. Mon. Not. R. Astron. Soc. 419, 1951–1969 (2013).

    ADS  Article  Google Scholar 

  45. Zhu, Q. et al. Baryonic impact on the dark matter orbital properties of Milky Way-sized haloes. Mon. Not. R. Astron. Soc. 466, 3876–3886 (2017).

    ADS  Article  Google Scholar 

  46. Mowla, L., van der Wel, A., van Dokkum, P. & Miller, T. B. A mass-dependent slope of the galaxy size-mass relation out to z ~ 3: further evidence for a direct relation between median galaxy size and median halo mass. Astrophys. J. Lett. 872, L13 (2019).

    ADS  Article  Google Scholar 

  47. Wetzel, A. R. et al. Galaxy evolution near groups and clusters: ejected satellites and the spatial extent of environmental quenching. Mon. Not. R. Astron. Soc. 439, 2687–2700 (2014).

    ADS  Article  Google Scholar 

  48. Shen, Z. et al. A complex luminosity function for the anomalous globular clusters in NGC 1052-DF2 and NGC 1052-DF4. Astrophys. J. 909, 179 (2021).

  49. Kim, J. H. et al. Formation of globular cluster candidates in merging proto-galaxies at high redshift: a view from the FIRE cosmological simulations. Mon. Not. R. Astron. Soc. 474, 4232–4244 (2018).

    ADS  Article  Google Scholar 

  50. Ma, X. et al. Self-consistent proto-globular cluster formation in cosmological simulations of high-redshift galaxies. Mon. Not. R. Astron. Soc. 493, 4315–4332 (2020).

    ADS  Article  Google Scholar 

  51. Fensch, J. et al. The ultra-diffuse galaxy NGC 1052-DF2 with MUSE II. The population of DF2: stars, clusters, and planetary nebulae. Astron. Astrophys. 625, A77 (2019).

    Article  Google Scholar 

  52. Knollmann, S. R. & Knebe, A. AHF: AMIGA’s Halo Finder. Astrophys. J. Suppl. Ser. 182, 608–624 (2009).

    ADS  Article  Google Scholar 

  53. Knebe, A. et al. Haloes gone MAD: the Halo-Finder Comparison Project. Mon. Not. R. Astron. Soc. 415, 2293–2318 (2011).

    ADS  Article  Google Scholar 

  54. Bryan, G. L. & Norman, M. L. Statistical properties of X-ray clusters: analytic and numerical comparisons. Astrophys. J. 495, 80 (1998).

    ADS  Article  Google Scholar 

  55. Turk, M. J. et al. yt: a multi-code analysis toolkit for astrophysical simulation data. Astrophys. J. Suppl. Ser. 192, 96 (2011).

  56. Elmegreen, B. G., Kaufman, M. & Thomasson, M. An interaction model for the formation of dwarf galaxies and 108 Msun clouds in Spiral Disks. Astrophys. J. 412, 90 (1993).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

Sabbatical leave support from Pomona College and the Harry and Grace Steele Foundation (J.M.). NASA Hubble Fellowship grant number HST-HF2-51454.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract number NAS5-26555 (S.D.). NSF grant number AST-1910346 (J.S.B., F.J.M. and S.Y.). Swiss National Science Foundation grant numbers PP00P2_157591, PP00P2_194814 and 200021_188552; Swiss National Supercomputing (CSCS) project IDs s697 and s698 (R.F.). NSF Research Grant numbers 1911233 and 20009234, NSF CAREER grant number 1455342, NASA grant numbers 80NSSC18K0562 and HST-AR-15800.001-A (P.F.H.). NASA grant number 80NSSSC20K1469 (A.L.). Gary McCue postdoctoral fellowship through the Center for Cosmology at UC Irvine (Z.H.). National Science Foundation Graduate Research Fellowship under grant number DGE-1839285 (C.K.). NSF CAREER grant number 2045928; NASA ATP grant numbers 80NSSC18K1097 and 80NSSC20K0513; HST grant numbers AR-15809 and GO-15902 from STScI; Scialog Award from the Heising-Simons Foundation; Hellman Fellowship (A.W.). NSF grant number AST-2009687 and by the Flatiron Institute, which is supported by the Simons Foundation (D.A.-A.). NSF CAREER award number AST-1752913, NSF grant number AST-1910346, NASA grant numbers NNX17AG29G and HST-AR-15006, HST-AR-15809, HST-GO-15658, HST-GO-15901, HST-GO-15902, HST-AR-16159 and HST-GO-16226 from STScI (M.B.-K.). Simons Investigator Award from the Simons Foundation; NSF grant number AST-1715070 (E.Q.). NSF through grant numbers AST-1715216 and CAREER award AST-1652522; by NASA through grant number 17-ATP17-0067; by STScI through grant number HST-AR-16124.001-A; and by the Research Corporation for Science Advancement through a Cottrell Scholar Award and a Scialog Award (C.-A.F.-G.). NSF grant number AST-1715101 (D.K.). Numerical calculations were run on the Caltech compute cluster “Wheeler,” allocations FTA-HopkinsAST20016 supported by the NSF and TACC and NASA HEC SMD-16-7592. We acknowledge PRACE for awarding us access to MareNostrum at the Barcelona Supercomputing Center (BSC), Spain. This research was partly carried out via the Frontera computing project at the Texas Advanced Computing Center. Frontera is made possible by National Science Foundation award number OAC-1818253. We acknowledge access to Piz Daint at the Swiss National Supercomputing Centre, Switzerland under the University of Zurich’s share with the project ID uzh18. Additional computing support was provided by S3IT resources at the University of Zurich. We thank Y. Jing for patiently answering every question we had regarding their 2019 paper, and for sharing the data we requested. We also thank P. van Dokkum, J. Hudgings, D. Whitaker, D. Tanenbaum and R. Gaines for comments on an earlier draft, and C. Hayward for data-transfer support. J.M. thanks J.S.B., P.F.H., P. Torrey and L. Hernquist for sabbatical-leave hospitality. J.M. (an astronomer of Indigenous ancestry, non-Cherokee) thanks D. Ingram (a Cherokee physicist) for sharing knowledge about the Cherokee Nation and cultural appropriation. This work was conducted on Tongva-Gabrielino land.

Author information

Authors and Affiliations

Authors

Contributions

J.M. conducted the analysis and designed the manuscript, with substantial input from S.D. and J.S.B. S.D. collected observational data from the literature and verified the theory–observations comparisons. R.F. ran the cosmological simulation used in this work. O.Ç. generated the halo catalogues and merger trees. A.G. provided support for the creation of mock images. A.L. and C.B.H. provided support with yt. C.K. calculated g-band effective radii, Sérsic indices and surface brightness contours. C.K. and F.J.M. calculated stellar ages, metallicities and colours; and S.D. conducted the observational comparison. J.S.B., R.F., O.Ç. and F.J.M. worked on the discussion of numerical stripping, with substantial input from F.J. Z.H. contributed to the literature comparison. All authors contributed to the final creation of the manuscript and figures.

Corresponding author

Correspondence to Jorge Moreno.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, Tables 1–4 and Discussion.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moreno, J., Danieli, S., Bullock, J.S. et al. Galaxies lacking dark matter produced by close encounters in a cosmological simulation. Nat Astron 6, 496–502 (2022). https://doi.org/10.1038/s41550-021-01598-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01598-4

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing