Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Detecting fundamental fields with LISA observations of gravitational waves from extreme mass-ratio inspirals

Abstract

The Laser Interferometer Space Antenna1, LISA, will detect gravitational wave signals from extreme mass-ratio inspirals2, where a stellar mass compact object orbits a supermassive black hole and eventually plunges into it. Here we report on LISA’s capability to detect whether the smaller compact object in an extreme mass-ratio inspiral is endowed with a scalar field3,4, and to measure its scalar charge—a dimensionless quantity that acts as a measure of how much scalar field the object carries. By direct comparison of signals, we show that LISA will be able to detect and measure the scalar charge with an accuracy of the order of per cent, which is an unprecedented level of precision. This result is independent of the origin of the scalar field and of the structure and other properties of the small compact object, so it can be seen as a generic assessment of LISA’s capabilities to detect new fundamental fields.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Faithfulness between the GW plus polarization computed with and without the scalar charge, as a function of the latter and for different signal durations.
Fig. 2: Corner plot for the probability distribution of the masses, primary spin and secondary charge, inferred after one year of observation with LISA.
Fig. 3: Uncertainties on the scalar charge for prototype EMRIs observed with different SNRs after one year of observation by LISA.
Fig. 4: Probability distribution of the dimensionful coupling constant of shift-symmetric Gauss–Bonnet gravity inferred from constraints made by LISA.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and the other findings of this study are available from the corresponding author upon request.

Code availability

The codes used to create the plots within this paper and support the other findings of this study are available from the corresponding author upon request. Flux calculations have been performed using the numerical routines of the Black Hole Perturbation Toolkit (http://bhptoolkit.org).

References

  1. Amaro-Seoane, P. et al. Laser Interferometer Space Antenna. Preprint at https://arxiv.org/abs/1702.00786 (2017).

  2. Babak, S. et al. Science with the space-based interferometer LISA. V: extreme mass-ratio inspirals. Phys. Rev. D 95, 103012 (2017).

    Article  ADS  Google Scholar 

  3. Berti, E. et al. Testing general relativity with present and future astrophysical observations. Class. Quantum Gravity 32, 243001 (2015).

    Article  ADS  Google Scholar 

  4. Barausse, E. et al. Prospects for fundamental physics with LISA. Gen. Relativ. Gravit. 52, 81 (2020).

    Article  ADS  Google Scholar 

  5. Copeland, E. J., Sami, M. & Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753–1936 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Essig, R. et al. Working group report: new light weakly coupled particles. In Proc. Community Summer Study 2013: Snowmass on the Mississippi (eds Bernstein, R. H. et al.) 1311.0029 (2013).

  7. Hui, L., Ostriker, J. P., Tremaine, S. & Witten, E. Ultralight scalars as cosmological dark matter. Phys. Rev. D 95, 043541 (2017).

    Article  ADS  Google Scholar 

  8. Barack, L. et al. Black holes, gravitational waves and fundamental physics: a roadmap. Class. Quantum Gravity 36, 143001 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  9. Damour, T. & Esposito-Farese, G. Nonperturbative strong field effects in tensor—scalar theories of gravitation. Phys. Rev. Lett. 70, 2220–2223 (1993).

    Article  ADS  Google Scholar 

  10. Kanti, P., Mavromatos, N. E., Rizos, J., Tamvakis, K. & Winstanley, E. Dilatonic black holes in higher curvature string gravity. Phys. Rev. D 54, 5049–5058 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  11. Yunes, N. & Stein, L. C. Non-spinning black holes in alternative theories of gravity. Phys. Rev. D 83, 104002 (2011).

    Article  ADS  Google Scholar 

  12. Sotiriou, T. P. & Zhou, S.-Y. Black hole hair in generalized scalar–tensor gravity. Phys. Rev. Lett. 112, 251102 (2014).

    Article  ADS  Google Scholar 

  13. Zel'dovich, Y. B. Generation of waves by a rotating body. JETP Lett. 14, 180 (1971).

    ADS  Google Scholar 

  14. Brito, R., Cardoso, V. & Pani, P. Superradiance: New Frontiers in Black Hole Physics Vol. 971 (Springer, 2020).

  15. Arvanitaki, A., Dimopoulos, S., Dubovsky, S., Kaloper, N. & March-Russell, J. String axiverse. Phys. Rev. D 81, 123530 (2010).

    Article  ADS  Google Scholar 

  16. Cardoso, V., Chakrabarti, S., Pani, P., Berti, E. & Gualtieri, L. Floating and sinking: the imprint of massive scalars around rotating black holes. Phys. Rev. Lett. 107, 241101 (2011).

    Article  ADS  Google Scholar 

  17. Silva, H. O., Sakstein, J., Gualtieri, L., Sotiriou, T. P. & Berti, E. Spontaneous scalarization of black holes and compact stars from a Gauss–Bonnet coupling. Phys. Rev. Lett. 120, 131104 (2018).

    Article  ADS  Google Scholar 

  18. Doneva, D. D. & Yazadjiev, S. S. New Gauss–Bonnet black holes with curvature-induced scalarization in extended scalar–tensor theories. Phys. Rev. Lett. 120, 131103 (2018).

    Article  ADS  MATH  Google Scholar 

  19. Maselli, A., Franchini, N., Gualtieri, L. & Sotiriou, T. P. Detecting scalar fields with extreme mass ratio inspirals. Phys. Rev. Lett. 125, 141101 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  20. Flanagan, E. E. & Hughes, S. A. Measuring gravitational waves from binary black hole coalescences: 2. the waves’ information and its extraction, with and without templates. Phys. Rev. D 57, 4566–4587 (1998).

    Article  ADS  Google Scholar 

  21. Lindblom, L., Owen, B. J. & Brown, D. A. Model waveform accuracy standards for gravitational wave data analysis. Phys. Rev. D 78, 124020 (2008).

    Article  ADS  Google Scholar 

  22. Chatziioannou, K., Klein, A., Yunes, N. & Cornish, N. Constructing gravitational waves from generic spin-precessing compact binary inspirals. Phys. Rev. D 95, 104004 (2017).

    Article  ADS  Google Scholar 

  23. Julié, F.-L. & Berti, E. Post-Newtonian dynamics and black hole thermodynamics in Einstein-scalar-Gauss–Bonnet gravity. Phys. Rev. D 100, 104061 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  24. Warburton, N. & Barack, L. Self force on a scalar charge in Kerr spacetime: eccentric equatorial orbits. Phys. Rev. D 83, 124038 (2011).

    Article  ADS  Google Scholar 

  25. Warburton, N. Self force on a scalar charge in Kerr spacetime: inclined circular orbits. Phys. Rev. D 91, 024045 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  26. Nasipak, Z., Osburn, T. & Evans, C. R. Repeated faint quasinormal bursts in extreme-mass-ratio inspiral waveforms: evidence from frequency-domain scalar self-force calculations on generic Kerr orbits. Phys. Rev. D 100, 064008 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  27. Cardoso, V. & Maselli, A. Constraints on the astrophysical environment of binaries with gravitational-wave observations. Astron. Astrophys. 644, A147 (2020).

    Article  ADS  Google Scholar 

  28. Katz, M. L., Chua, A. J. K., Speri, L., Warburton, N. & Hughes, S. A. Fast extreme-mass-ratio-inspiral waveforms: new tools for millihertz gravitational-wave data analysis. Phys. Rev. D 104, 064047 (2021).

    Article  ADS  Google Scholar 

  29. Baghi, Q. et al. Gravitational-wave parameter estimation with gaps in LISA: a Bayesian data augmentation method. Phys. Rev. D 100, 022003 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  30. Chase, J. E. Event horizons in static scalar-vacuum space-times. Commun. Math. Phys. 19, 276–288 (1970).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Bekenstein, J. D. Novel ‘no-scalar-hair’’ theorem for black holes. Phys. Rev. D 51, R6608 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  32. Hawking, S. W. Black holes in the Brans–Dicke theory of gravitation. Commun. Math. Phys. 25, 167–171 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  33. Sotiriou, T. P. & Faraoni, V. Black holes in scalar–tensor gravity. Phys. Rev. Lett. 108, 081103 (2012).

    Article  ADS  Google Scholar 

  34. Hui, L. & Nicolis, A. No-hair theorem for the galileon. Phys. Rev. Lett. 110, 241104 (2013).

    Article  ADS  Google Scholar 

  35. Cardoso, V. & Gualtieri, L. Testing the black hole ‘no-hair’ hypothesis. Class. Quantum Gravity 33, 174001 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Sotiriou, T. P. & Zhou, S.-Y. Black hole hair in generalized scalar–tensor gravity: an explicit example. Phys. Rev. D 90, 124063 (2014).

    Article  ADS  Google Scholar 

  37. Yunes, N., Pani, P. & Cardoso, V. Gravitational waves from quasicircular extreme mass-ratio inspirals as probes of scalar–tensor theories. Phys. Rev. D 85, 102003 (2012).

    Article  ADS  Google Scholar 

  38. Hannuksela, O. A., Wong, K. W. K., Brito, R., Berti, E. & Li, T. G. F. Probing the existence of ultralight bosons with a single gravitational-wave measurement. Nat. Astron. 3, 447–451 (2019).

    Article  ADS  Google Scholar 

  39. Annulli, L., Cardoso, V. & Vicente, R. Stirred and shaken: dynamical behavior of boson stars and dark matter cores. Phys. Lett. B 811, 135944 (2020).

    Article  MathSciNet  Google Scholar 

  40. Eardley, D. M. Observable effects of a scalar gravitational field in a binary pulsar. Astrophys. J. Lett. 196, L59–L62 (1975).

    Article  ADS  Google Scholar 

  41. Damour, T. & Esposito-Farese, G. Tensor multiscalar theories of gravitation. Class. Quantum Gravity 9, 2093–2176 (1992).

    Article  ADS  MATH  Google Scholar 

  42. Julié, F.-L. Reducing the two-body problem in scalar–tensor theories to the motion of a test particle : a scalar–tensor effective-one-body approach. Phys. Rev. D 97, 024047 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  43. Julié, F.-L. On the motion of hairy black holes in Einstein–Maxwell-dilaton theories. J Cosmol. Astropart. Phys. 01, 026 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  44. Steinhoff, J. & Puetzfeld, D. Influence of internal structure on the motion of test bodies in extreme mass ratio situations. Phys. Rev. D 86, 044033 (2012).

    Article  ADS  Google Scholar 

  45. Teukolsky, S. A. Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations. Astrophys. J. 185, 635–647 (1973).

    Article  ADS  Google Scholar 

  46. Hawking, S. W. & Hartle, J. B. Energy and angular momentum flow into a black hole. Commun. Math. Phys. 27, 283–290 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  47. Hughes, S. A. The evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational wave emission. Phys. Rev. D 61, 084004 (2000); erratum 63, 049902 (2001); erratum 65, 069902 (2002); erratum 67, 089901 (2003); erratum 78, 109902 (2008); erratum 90, 109904 (2014).

  48. Gralla, S. E., Friedman, J. L. & Wiseman, A. G. Numerical radiation reaction for a scalar charge in Kerr circular orbit. Preprint at http://arxiv.org/abs/gr-qc/0502123v1 (2005).

  49. Warburton, N. & Barack, L. Self force on a scalar charge in Kerr spacetime: circular equatorial orbits. Phys. Rev. D 81, 084039 (2010).

    Article  ADS  Google Scholar 

  50. Misner, C. W., Thorne, K. S. & Wheeler, J. A. Gravitation (W. H. Freeman, 1973).

    Google Scholar 

  51. Bonga, B., Yang, H. & Hughes, S. A. Tidal resonance in extreme mass-ratio inspirals. Phys. Rev. Lett. 123, 101103 (2019).

    Article  ADS  Google Scholar 

  52. Barack, L. & Cutler, C. LISA capture sources: approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy. Phys. Rev. D 69, 082005 (2004).

    Article  ADS  Google Scholar 

  53. Huerta, E. A. & Gair, J. R. Importance of including small body spin effects in the modelling of extreme and intermediate mass-ratio inspirals. Phys. Rev. D 84, 064023 (2011).

    Article  ADS  Google Scholar 

  54. Canizares, P., Gair, J. R. & Sopuerta, C. F. Testing Chern–Simons modified gravity with gravitational-wave detections of extreme-mass-ratio binaries. Phys. Rev. D 86, 044010 (2012).

    Article  ADS  Google Scholar 

  55. Babak, S., Fang, H., Gair, J. R., Glampedakis, K. & Hughes, S. A.‘Kludge’ gravitational waveforms for a test-body orbiting a Kerr black hole. Phys. Rev. D 75, 024005 (2007); erratum 77, 04990 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  56. Apostolatos, T. A., Cutler, C., Sussman, G. J. & Thorne, K. S. Spin induced orbital precession and its modulation of the gravitational wave forms from merging binaries. Phys. Rev. D 49, 6274–6297 (1994).

    Article  ADS  Google Scholar 

  57. Cutler, C. Angular resolution of the LISA gravitational wave detector. Phys. Rev. D 57, 7089–7102 (1998).

    Article  ADS  Google Scholar 

  58. Huerta, E. A., Gair, J. R. & Brown, D. A. Importance of including small body spin effects in the modelling of intermediate mass-ratio inspirals. II. Accurate parameter extraction of strong sources using higher-order spin effects. Phys. Rev. D 85, 064023 (2012).

    Article  ADS  Google Scholar 

  59. Piovano, G. A., Brito, R., Maselli, A. & Pani, P. Assessing the detectability of the secondary spin in extreme mass-ratio inspirals with fully-relativistic numerical waveforms. Phys. Rev. D 104, 124019 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  60. Ori, A. & Thorne, K. S. The transition from inspiral to plunge for a compact body in a circular equatorial orbit around a massive, spinning black hole. Phys. Rev. D 62, 124022 (2000).

    Article  ADS  Google Scholar 

  61. Robson, T., Cornish, N. J. & Liu, C. The construction and use of LISA sensitivity curves. Class. Quantum Gravity 36, 105011 (2019).

    Article  ADS  Google Scholar 

  62. Poisson, E. & Will, C. M. Gravitational waves from inspiraling compact binaries: parameter estimation using second postNewtonian wave forms. Phys. Rev. D 52, 848–855 (1995).

    Article  ADS  Google Scholar 

  63. Vallisneri, M. Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects. Phys. Rev. D 77, 042001 (2008).

    Article  ADS  Google Scholar 

  64. Milne-Thomson, L. M. The Calculus of Finite Differences Vol. 15 (Cambridge Univ. Press, 1936).

  65. Gair, J. R., Vallisneri, M., Larson, S. L. & Baker, J. G. Testing general relativity with low-frequency, space-based gravitational-wave detectors. Living Rev. Relativ. 16, 7 (2013).

    Article  ADS  Google Scholar 

  66. Perkins, S. E., Nair, R., Silva, H. O. & Yunes, N. Improved gravitational-wave constraints on higher-order curvature theories of gravity. Phys. Rev. D 104, 024060 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  67. Barausse, E., Yunes, N. & Chamberlain, K. Theory-agnostic constraints on black-hole dipole radiation with multiband gravitational-wave astrophysics. Phys. Rev. Lett. 116, 241104 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank S. Bhagwat, J. Harms, C. Pacilio, G. Piovano, L. Speri and N. Warburton for useful discussions and having carefully read the manuscript. A.M. acknowledges support from the Amaldi Research Center funded by the MIUR programme ‘Dipartimento di Eccellenza’ (CUP: B81I18001170001). N.F. acknowledges financial support provided under the European Union’s H2020 ERC Consolidator Grant ‘GRavity from Astrophysical to Microscopic Scales’ grant agreement No. GRAMS-815673. P.P. acknowledges financial support provided under the European Union’s H2020 ERC Starting Grant agreement No. DarkGRA–757480. We acknowledge financial support provided under the European Union’s H2020 MSCA-RISE Grant GRU, grant agreement No. 101007855. T.P.S. acknowledges partial support from the STFC Consolidated Grants No. ST/T000732/1 and No. ST/V005596/1. We also acknowledge support under the MIUR PRIN and FARE programmes (GW-NEXT, CUP: B84I20000100001). We also acknowledge networking support by the COST Action GW-verse Grant No. CA16104. All computations were performed on the Vera cluster of the Amaldi Research Center.

Author information

Authors and Affiliations

Authors

Contributions

A.M. and T.P.S. conceived the idea of probing the detectability of scalar charge by LISA with the approach developed in this manuscript. A.M. led the waveform modelling and statistical analysis and contributed to all aspects of the project. N.F. contributed significantly to the numerical calculations, the error analysis and the interpretation of the results. L.G. and T.P.S. made a major contribution to the development of the theoretical framework. S.B. made an important contribution to the computation of gravitational and scalar fluxes. L.G., T.P.S. and P.P. contributed strongly to the interpretation of the results and to overcoming technical difficulties in the analysis.

Corresponding author

Correspondence to Andrea Maselli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Alvin Chua, Kostas Tzanavaris and Katy Clough for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Further details on the waveform generation and discussion of the numerical procedure adopted for the EMRI parameter estimation and the accuracy of the calculations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maselli, A., Franchini, N., Gualtieri, L. et al. Detecting fundamental fields with LISA observations of gravitational waves from extreme mass-ratio inspirals. Nat Astron 6, 464–470 (2022). https://doi.org/10.1038/s41550-021-01589-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01589-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing