Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Titanium oxide and chemical inhomogeneity in the atmosphere of the exoplanet WASP-189 b

Subjects

Abstract

The temperature of an atmosphere decreases with increasing altitude, unless a shortwave absorber that causes a temperature inversion exists1. Ozone plays this role in the Earth’s atmosphere. In the atmospheres of highly irradiated exoplanets, the shortwave absorbers are predicted to be titanium oxide (TiO) and vanadium oxide (VO)2. Detections of TiO and VO have been claimed using both low-3,4,5,6 and high-7 spectral-resolution observations, but subsequent observations have failed to confirm these claims8,9,10 or overturned them11,12,13. Here we report the unambiguous detection of TiO in the ultra-hot Jupiter WASP-189 b14 using high-resolution transmission spectroscopy. This detection is based on applying the cross-correlation technique15 to many spectral lines of TiO from 460 to 690 nm. Moreover, we report detections of metals, including neutral and singly ionized iron and titanium, as well as chromium, magnesium, vanadium and manganese (Fe, Fe+, Ti, Ti+, Cr, Mg, V, Mn). The line positions of the detected species differ, which we interpret as a consequence of spatial gradients in their chemical abundances, such that they exist in different regions or dynamical regimes. This is direct observational evidence for the three-dimensional thermochemical stratification of an exoplanet atmosphere derived from high-resolution ground-based spectroscopy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic showing the contributions of the terminators throughout the course of the transit in the example of a toy-planet atmosphere with a hot dayside component, and a cooler nightside component with a clearly reduced scale height (day–night gradient).
Fig. 2: Expected cross-correlation functions and velocity–velocity diagrams for three toy models of the planet atmosphere.
Fig. 3: Overview of the detections of TiO, Ti, Ti+, Fe, Fe+, Cr, Mg, V and Mn.

Similar content being viewed by others

Data availability

Raw data as well as pipeline-reduced data from which the findings that are presented in this paper are derived are publicly available from the data archives of the European Southern Observatory (ESO) and the Telescopio Nazionale Galileo (TNG). Cross-correlation templates and models are available upon reasonable request. Precomputed opacity functions are publicly available via http://dace.unige.ch/opacity.

Code availability

The computer code for performing cross-correlations is publicly available at https://github.com/hoeijmakers/tayph/. Documentation, instructions and a data demonstration can be found at https://tayph.readthedocs.io.

References

  1. Hubeny, I., Burrows, A. & Sudarsky, D. A possible bifurcation in atmospheres of strongly irradiated stars and planets. Astrophys. J. 594, 1011–1018 (2003).

    Article  ADS  Google Scholar 

  2. Fortney, J. J., Lodders, K., Marley, M. S. & Freedman, R. S. A unified theory for the atmospheres of the hot and very hot Jupiters: two classes of irradiated atmospheres. Astrophys. J. 678, 1419 (2008).

    Article  ADS  Google Scholar 

  3. Désert, J. M. et al. Atmospheric composition and structure of HD 209458b (eds Pont, F. et al.) in Proc. IAU Symp., 524–527 (Cambridge Univ. Press, 2009).

  4. Sedaghati, E. et al. Detection of titanium oxide in the atmosphere of a hot Jupiter. Nature 549, 238–241 (2017).

    Article  ADS  Google Scholar 

  5. Evans, T. M. et al. An ultrahot gas-giant exoplanet with a stratosphere. Nature 548, 58–61 (2017).

    Article  ADS  Google Scholar 

  6. Evans, T. M. et al. An optical transmission spectrum for the ultrahot Jupiter WASP-121b measured with the Hubble Space Telescope. Astron. J. 156, 283 (2018).

    Article  ADS  Google Scholar 

  7. Nugroho, S. K. et al. High-resolution spectroscopic detection of TiO and a stratosphere in the day-side of WASP-33b. Astron. J. 154, 221 (2017).

    Article  ADS  Google Scholar 

  8. Hoeijmakers, H. et al. A search for TiO in the optical high-resolution transmission spectrum of HD 209458b: hindrance due to inaccuracies in the line database. Astron. Astrophys. 575, A20 (2015).

    Article  Google Scholar 

  9. Espinoza, N. et al. ACCESS: a featureless optical transmission spectrum for WASP-19b from Magellan/IMACS. Mon. Not. R. Astron. Soc. 482, 2065–2087 (2019).

    Article  ADS  Google Scholar 

  10. Sedaghati, E. et al. A spectral survey of WASP-19b with ESPRESSO. Mon. Not. R. Astro. Soc. 505, 435–458 (2021).

    Article  ADS  Google Scholar 

  11. Merritt, S. R. et al. Non-detection of TiO and VO in the atmosphere of WASP-121b using high-resolution spectroscopy. Astron. Astrophys. 636, A117 (2020).

    Article  Google Scholar 

  12. Herman, M. K., de Mooij, E. J., Jayawardhana, R. & Brogi, M. Search for TiO and optical nightside emission from the exoplanet WASP-33b. Astron. J. 160, 93 (2020).

    Article  ADS  Google Scholar 

  13. Serindag, D. B. et al. Is TiO emission present in the ultrahot Jupiter WASP-33b? A reassessment using the improved ExoMol Toto line list. Astron. Astrophys. 645, A90 (2021).

    Article  Google Scholar 

  14. Anderson, D. et al. WASP-189b: an ultrahot Jupiter transiting the bright A star HR 5599 in a polar orbit. Preprint at https://arxiv.org/abs/1809.04897 (2018).

  15. Snellen, I. A. G., de Kok, R. J., de Mooij, E. J. W. & Albrecht, S. The orbital motion, absolute mass and high-altitude winds of exoplanet HD209458b. Nature 465, 1049–1051 (2010).

    Article  ADS  Google Scholar 

  16. Lendl, M. et al. The hot dayside and asymmetric transit of WASP-189 b seen by CHEOPS. Astron. Astrophys. 643, A94 (2020).

    Article  Google Scholar 

  17. Hoeijmakers, H. J. et al. Atomic iron and titanium in the atmosphere of the exoplanet KELT-9b. Nature 560, 453–455 (2018).

    Article  ADS  Google Scholar 

  18. Casasayas-Barris, N. et al. Na i and Hα absorption features in the atmosphere of MASCARA-2b/KELT-20b. Astron. Astrophys. 616, A151 (2018).

    Article  Google Scholar 

  19. Hoeijmakers, H. J. et al. A spectral survey of an ultrahot Jupiter—detection of metals in the transmission spectrum of KELT-9 b. Astron. Astrophys. 627, A165 (2019).

    Article  Google Scholar 

  20. Casasayas-Barris, N. et al. Atmospheric characterization of the ultrahot Jupiter MASCARA-2b/KELT-20b—detection of Ca ii, Fe ii, Na i, and the Balmer series of H (Hα, Hβ, and Hγ) with high-dispersion transit spectroscopy. Astron. Astrophys. 628, A9 (2019).

    Article  Google Scholar 

  21. Cauley, P. W. et al. Atmospheric dynamics and the variable transit of KELT-9 b. Astron. J. 157, 69 (2019).

    Article  ADS  Google Scholar 

  22. Ehrenreich, D. et al. Nightside condensation of iron in an ultrahot giant exoplanet. Nature 580, 597–601 (2020).

    Article  ADS  Google Scholar 

  23. Gibson, N. P. et al. Detection of Fe i in the atmosphere of the ultrahot Jupiter WASP-121b, and a new likelihood-based approach for Doppler-resolved spectroscopy. Mon. Not. R. Astron. Soc. 493, 2215–2228 (2020).

    Article  ADS  Google Scholar 

  24. Hoeijmakers, H. J. et al. High-resolution transmission spectroscopy of MASCARA-2 b with EXPRES. Astron. Astrophys. 641, A120 (2020).

    Article  Google Scholar 

  25. Hoeijmakers, H. J. et al. Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS)—IV. A spectral inventory of atoms and molecules in the high-resolution transmission spectrum of WASP-121 b. Astron. Astrophys. 641, A123 (2020).

    Article  Google Scholar 

  26. Nugroho, S. K. et al. Searching for thermal inversion agents in the transmission spectrum of KELT-20b/MASCARA-2b: detection of neutral iron and ionised calcium H&K lines. Mon. Not. R. Astron. Soc. 496, 504–522 (2020).

    Article  ADS  Google Scholar 

  27. Nugroho, S. K. et al. Detection of Fe i emission in the dayside spectrum of WASP-33b. Astrophys. J. Lett. 898, L31 (2020).

    Article  ADS  Google Scholar 

  28. Pino, L. et al. Neutral iron emission lines from the dayside of KELT-9b: the GAPS program with HARPS-N at TNG XX. Astrophys. J. Lett. 894, L27 (2020).

    Article  ADS  Google Scholar 

  29. Stangret, M. et al. Detection of Fe i and Fe ii in the atmosphere of MASCARA-2b using a cross-correlation method. Astron. Astrophys. 638, A26 (2020).

    Article  Google Scholar 

  30. Yan, F. et al. A temperature inversion with atomic iron in the ultrahot dayside atmosphere of WASP-189b. Astron. Astrophys. 640, L5 (2020).

    Article  ADS  Google Scholar 

  31. Borsa, F. et al. Atmospheric Rossiter–McLaughlin effect and transmission spectroscopy of WASP-121b with ESPRESSO. Astron. Astrophys. 645, A24 (2021).

    Article  Google Scholar 

  32. Tabernero, H. M. et al. ESPRESSO high-resolution transmission spectroscopy of WASP-76 b. Astron. Astrophys. 646, A158 (2021).

    Article  Google Scholar 

  33. Smette, A. et al. Molecfit: a general tool for telluric absorption correction—I. Method and application to ESO instruments. Astron. Astrophys. 576, A77 (2015).

    Article  Google Scholar 

  34. Kausch, W. et al. Molecfit: a general tool for telluric absorption correction—II. Quantitative evaluation on ESO-VLT/X-Shooter spectra. Astron. Astrophys. 576, A78 (2015).

    Article  Google Scholar 

  35. Seager, S. & Sasselov, D. D. Theoretical transmission spectra during extrasolar giant planet transits. Astrophys. J. 537, 916–921 (2000).

    Article  ADS  Google Scholar 

  36. Brogi, M. et al. The signature of orbital motion from the dayside of the planet τ Boötis b. Nature 486, 502–504 (2012).

    Article  ADS  Google Scholar 

  37. Showman, A. P., Fortney, J. J., Lewis, N. K. & Shabram, M. Doppler signatures of the atmospheric circulation on hot Jupiters. Astrophys. J. 762, 24 (2013).

    Article  ADS  Google Scholar 

  38. Kempton, E. M. R., Perna, R. & Heng, K. High resolution transmission spectroscopy as a diagnostic for Jovian exoplanet atmospheres: constraints from theoretical models. Astrophys. J. 795, 24 (2014).

    Article  ADS  Google Scholar 

  39. Louden, T. & Wheatley, P. J. Spatially resolved eastward winds and rotation of HD 189733b. Astrophys. J. Lett. 814, L24 (2015).

    Article  ADS  Google Scholar 

  40. Brogi, M. et al. Rotation and winds of exoplanet HD 189733 b measured with high-dispersion transmission spectroscopy. Astrophys. J. 817, 106 (2016).

    Article  ADS  Google Scholar 

  41. Fortney, J. J., Cooper, C. S., Showman, A. P., Marley, M. S. & Freedman, R. S. The influence of atmospheric dynamics on the infrared spectra and light curves of hot Jupiters. Astrophys. J. 652, 746–757 (2006).

    Article  ADS  Google Scholar 

  42. Spiegel, D. S., Silverio, K. & Burrows, A. Can TiO explain thermal inversions in the upper atmospheres of irradiated giant planets? Astrophys. J. 699, 1487–1500 (2009).

    Article  ADS  Google Scholar 

  43. Stevenson, K. B. et al. Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy. Science 346, 838–841 (2014).

    Article  ADS  Google Scholar 

  44. Showman, A. P., Lewis, N. K. & Fortney, J. J. 3D atmospheric circulation of warm and hot Jupiters. Astrophys. J. 801, 95 (2015).

    Article  ADS  Google Scholar 

  45. Parmentier, V. et al. From thermal dissociation to condensation in the atmospheres of ultra hot Jupiters: WASP-121b in context. Astron. Astrophys. 617, A110 (2018).

    Article  Google Scholar 

  46. Pluriel, W., Zingales, T., Leconte, J. & Parmentier, V. Strong biases in retrieved atmospheric composition caused by day–night chemical heterogeneities. Astron. Astrophys. 636, A66 (2020).

    Article  ADS  Google Scholar 

  47. Wardenier, J. P., Parmentier, V., Lee, E. K. H., Line, M. & Gharib-Nezhad, E. Decomposing the iron cross-correlation signal of the ultra-hot Jupiter WASP-76b in transmission using 3D Monte-Carlo radiative transfer. Mon. Not. R. Astron. Soc. 506, 1258–1283 (2021).

    Article  ADS  Google Scholar 

  48. Fossati, L. et al. A data-driven approach to constraining the atmospheric temperature structure of the ultrahot Jupiter KELT-9b. Astron. Astrophys. 643, A131 (2020).

    Article  Google Scholar 

  49. Lothringer, J. D., Fu, G., Sing, D. K. & Barman, T. S. UV exoplanet transmission spectral features as probes of metals and rainout. Astrophys. J. Lett. 898, L14 (2020).

    Article  ADS  Google Scholar 

  50. Bourrier, V. et al. Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS)—III. Atmospheric structure of the misaligned ultrahot Jupiter WASP-121b. Astron. Astrophys. 635, A205 (2020).

    Article  Google Scholar 

  51. Lodders, K. Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003).

    Article  ADS  Google Scholar 

  52. Mendonça, J. M., Tsai, S.-M., Malik, M., Grimm, S. L. & Heng, K. Three-dimensional circulation driving chemical disequilibrium in WASP-43b. Astrophys. J. 869, 107 (2018).

    Article  ADS  Google Scholar 

  53. Ahlers, J. P. et al. KELT-9 b’s asymmetric TESS transit caused by rapid stellar rotation and spin–orbit misalignment. Astron. J. 160, 4 (2020).

    Article  ADS  Google Scholar 

  54. Changeat, Q. & Edwards, B. The Hubble WFC3 emission spectrum of the extremely hot Jupiter KELT-9b. Astrophys. J. Lett. 907, L22 (2021).

    Article  ADS  Google Scholar 

  55. Chen, G., Palle, E., Parviainen, H., Murgas, F. & Yan, F. Evidence for TiO in the atmosphere of the hot Jupiter HAT-P-65 b. Astrophys. J. Lett. 913, 14 (2021).

    Article  Google Scholar 

  56. Astropy Collaboration et al. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

  57. Astropy Collaboration et al. The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).

  58. Lendl, M. et al. WASP-42 b and WASP-49 b: two new transiting sub-Jupiters. Astron. Astrophys. 544, A72 (2012).

    Article  Google Scholar 

  59. Mandel, K. & Agol, E. Analytic light curves for planetary transit searches. Astrophys. J. Lett. 580, L171–L175 (2002).

    Article  ADS  Google Scholar 

  60. Lendl, M. et al. TOI-222: a single-transit TESS candidate revealed to be a 34-d eclipsing binary with CORALIE, EulerCam, and NGTS. Mon. Not. R. Astron. Soc. 492, 1761–1769 (2020).

    Article  ADS  Google Scholar 

  61. McKemmish, L. K. et al. ExoMol molecular line lists—XXXIII. The spectrum of titanium oxide. Mon. Not. R. Astron. Soc. 488, 2836–2854 (2019).

    Article  ADS  Google Scholar 

  62. Gaudi, B. S. et al. A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host. Nature 546, 514–518 (2017).

    Article  ADS  Google Scholar 

  63. Cegla, H. M. et al. Modeling the Rossiter–McLaughlin effect: impact of the convective center-to-limb variations in the stellar photosphere. Astrophys. J. 819, 67 (2016).

    Article  ADS  Google Scholar 

  64. Stock, J. W., Kitzmann, D., Patzer, A. B. C. & Sedlmayr, E. FastChem: a computer program for efficient complex chemical equilibrium calculations in the neutral/ionized gas phase with applications to stellar and planetary atmospheres. Mon. Not. R. Astron. Soc. 479, 865–874 (2018).

    ADS  Google Scholar 

  65. Gaidos, E., Kitzmann, D. & Heng, K. Exoplanet characterization by multi-observatory transit photometry with TESS and CHEOPS. Mon. Not. R. Astron. Soc. 468, 3418–3427 (2017).

    Article  ADS  Google Scholar 

  66. Grimm, S. L. & Heng, K. HELIOS-K: an ultrafast, open-source opacity calculator for radiative transfer. Astrophys. J. 808, 182 (2015).

    Article  ADS  Google Scholar 

  67. Grimm, S. L. et al. HELIOS-K 2.0 opacity calculator and open-source opacity database for exoplanetary atmospheres. Astrophys. J. Suppl. Ser. 253, 30 (2021).

    Article  ADS  Google Scholar 

  68. Li, G. et al. Rovibrational line lists for nine isotopologues of the CO molecule in the X 1Σ+ ground electronic state. Astrophys. J. Suppl. Ser. 216, 15 (2015).

    Article  ADS  Google Scholar 

  69. Ryabchikova, T. et al. A major upgrade of the VALD database. Phys. Scr. 90, 054005 (2015).

    Article  ADS  Google Scholar 

  70. Tennyson, J. et al. The ExoMol database: molecular line lists for exoplanet and other hot atmospheres. J. Mol. Spectrosc. 327, 73–94 (2016).

    Article  ADS  Google Scholar 

  71. Polyansky, O. L. et al. ExoMol molecular line lists XXX: a complete high-accuracy line list for water. Mon. Not. R. Astron. Soc. 480, 2597–2608 (2018).

    Article  ADS  Google Scholar 

  72. Valenti, J. A. & Piskunov, N. Spectroscopy Made Easy: a new tool for fitting observations with synthetic spectra. Astron. Astrophys. Suppl. 118, 595–603 (1996).

    Article  ADS  Google Scholar 

  73. Piskunov, N. & Valenti, J. A. Spectroscopy made easy: evolution. Astron. Astrophys. 597, A16 (2017).

    Article  ADS  Google Scholar 

  74. Gustafsson, B. et al. A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties. Astron. Astrophys. 486, 951–970 (2008).

    Article  ADS  Google Scholar 

  75. Seidel, J. et al. Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS)—II. A broadened sodium feature on the ultrahot giant WASP-76b. Astron. Astrophys. 623, A166 (2019).

    Article  Google Scholar 

  76. Seidel, J. V. et al. Wind of change: retrieving exoplanet atmospheric winds from high-resolution spectroscopy. Astron. Astrophys. 633, A86 (2020).

    Article  Google Scholar 

  77. Redfield, S., Endl, M., Cochran, W. D. & Koesterke, L. Sodium absorption from the exoplanetary atmosphere of HD 189733b detected in the optical transmission spectrum. Astrophys. J. Lett. 673, L87 (2008).

    Article  ADS  Google Scholar 

  78. Seidel, J. V. et al. Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS)—VI. Non-detection of sodium with HARPS on the bloated super-Neptune WASP-127b. Astron. Astrophys. 643, A45 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge partial financial support from the PlanetS National Centre of Competence in Research (NCCR) supported by the Swiss National Science Foundation (SNSF), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (projects Four Aces, EXOKLEIN, Spice Dune and Exo-Atmos with grant agreement numbers 724427 (D.E., J.V.S., H.J.H.), 771620 (K.H., C.F.), 947634 (V.B.) and 679633 (L.P.), respectively), UKRI Future Leaders Fellow Grant (MR/S035214/1) (H.M.C.), Spanish State Research Agency (AEI) Projects PID2019-107061GB-C61 (D.B.) and MDM-2017-0737 Unidad de Excelencia ‘María de Maeztu’—Centro de Astrobiología (CSIC/INTA) (D.B.), the Märta and Eric Holmberg Endowment (B.P.) and FRQNT (R.A). R.A. is a Trottier Postdoctoral Fellow and acknowledges support from the Trottier Family Foundation. The analysis presented in this work has made use of the VALD database, operated at Uppsala University, the Institute of Astronomy RAS in Moscow and the University of Vienna; Ian Crossfields’ Astro-Python Code library and Astropy56,57. C.F. acknowledges a University of Bern International 2021 PhD Fellowship. K.H. acknowledges a Honorary Professorship from the University of Warwick, as well as an imminent chair professorship from the Ludwig Maximilian University in Munich. B.P., H.J.H., D.K., E.S., N.W.B., B.T., C.F., M.H., B.M.M., L.P., S.G. and K.H. are part of the Mantis network.

Author information

Authors and Affiliations

Authors

Contributions

B.P. performed the data analysis (including applying computer code originally written by H.J.H.), produced all of the figures except Extended Data Figs. 2 and 8, co-led the scientific vision and co-led the writing of the manuscript. H.J.H. provided the computer code that was the basis and starting point for the data analysis, mentored B.P. on data analysis techniques, co-led the scientific vision and co-led the writing of the manuscript. D.K. performed radiative transfer calculations used to construct the cross-correlation templates and model spectra. E.S. performed FastChem calculations and produced Extended Data Fig. 8. J.V.S. investigated the fidelity of specific spectral lines, performed supporting EulerCam observations and provided the code, expertise and results to produce Supplementary Figs. 6 and 7. M.L. analysed the EulerCam data and produced Extended Data Fig. 2. N.W.B. cowrote the manuscript. B.T. constructed a model of the stellar spectrum and provided technical support throughout the analysis procedure. H.J.H., D.R.A. and D.B. performed HARPS observations. K.K. performed supporting EulerCam observations. A.G.-M. proofread the manuscript. S.G. provided guidance on opacities. H.M.C., M.H., B.M.M. and L.P. provided substantial feedback on the manuscript. H.J.H., D.K., J.V.S., R.A., V.B., H.M.C., D.E., C.F., C.L., S.G., M.O. and K.H. were all coinvestigators on the ESO proposal for open time in observing period 103 that led to the procurement of the data. K.H. co-led the scientific vision, cowrote the manuscript, guided its narrative and formulation and assisted with formatting.

Corresponding author

Correspondence to Bibiana Prinoth.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Illustration of Doppler shadow subtraction and detrending of the cross- correlation function for the time series observed on April 14, 2019, with the Fe template at 3,000 K (see Methods).

Top panel: Raw two-dimensional cross-correlation function. During the transit, the Doppler shadow emerges as the positive near-vertical structure. Time of first, second, third and fourth contact as predicted using the ephemeris of Lendl et al. (2020)16 are indicated as dashed lines. Middle panel: Best-fit model of the Doppler shadow. Bottom panel: Residuals after subtracting the best-fit model from the raw cross-correlation function (top panel) and application of a detrending algorithm in the vertical direction. The absorption signature of the planet atmosphere is visible as the slanted feature, Doppler-shifted to the instantaneous radial velocity of the planet. The residual of the Doppler shadow at the end of the transit is masked during further analysis.

Extended Data Fig. 2 Phase-folded light-curve as observed with EulerCam on the nights of 2019-04-14 and 2019-04-24.

No astrophysical sources of variability are detected.

Extended Data Fig. 3 Three Fe lines in the spectrum of WASP-189.

The black lines correspond to the observed spectrum, the red dashed lines correspond to the best fit using a metallicity of [Fe/H] = 0.24. The blue shaded regions indicate the fit with ± 0.15 metallicity uncertainty.

Extended Data Fig. 4 Summary of stellar and planetary parameters of the WASP-189 system adopted in this study.

a Lendl et al. 202016, b: Anderson et al. 201814 (HARPS-MCMC), c: fixed parameter.

Extended Data Fig. 5 Signals of Cr+, Sc+, Na, Ni and Ca classified as tentative.

All of these species have previously been observed in other ultra-hot Jupiters19,25. The shaded region indicates the expected 1σ uncertainty. Dashed lines show expected signal strengths, obtained by injecting and recovering the signatures of model spectra, assuming isothermal atmospheres at 2,000 K (red) and 3,000 K (orange) respectively.

Extended Data Fig. 6 Transmission spectrum of WASP-189b at the wavelength of the Na D-doublet.

The lines are fit assuming a Gaussian line-shape, resulting in an average line depth of 15.3 ± 3.1 × 104, equivalent to 4.9σ.

Extended Data Fig. 7 Two injected models of the transmission spectrum of WASP-189 b at 2,500 K (purple) and 3,000 K (blue).

We assumed chemical equilibrium and solar metallicity. The models are sampled at their native resolution as set by intrinsic line broadening, and not additionally broadened to match e.g. the planetary rotation or the instrumental resolving power, although such broadening terms are taken into account when injecting these templates into the data. The inset plot shows the wavelength region between 495.4 and 495.8 nm, where a molecular band head of TiO is visible.

Extended Data Fig. 8 Model of the abundances of key selected species as a function of pressure (inverse altitude) at a temperature of 2,500 K, assuming thermo-chemical equilibrium and solar metallicity, computed with FastChem66.

Solid lines correspond to atomic species, dashed lines to ionised species and the dotted line to TiO.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2 and Figs. 1–10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prinoth, B., Hoeijmakers, H.J., Kitzmann, D. et al. Titanium oxide and chemical inhomogeneity in the atmosphere of the exoplanet WASP-189 b. Nat Astron 6, 449–457 (2022). https://doi.org/10.1038/s41550-021-01581-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01581-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing