Abstract
Pulsars are factories of relativistic electrons and positrons that propagate away from the pulsar, eventually permeating our Galaxy. The acceleration and propagation of these cosmic particles are a matter of intense debate. In the last few years, we have had the opportunity to directly observe the injection of these particles into the interstellar medium through the discovery of gamma-ray haloes around pulsars. This new type of gamma-ray source is produced by electrons and positrons diffusing out of the pulsar wind nebula and scattering ambient photon fields to produce gamma rays. This correspondingly new field of study comes with a number of observations and constraints at different wavelengths and a variety of theoretical models that can explain the properties of these haloes. We examine the characteristics of the propagation of cosmic rays inferred from the observations of gamma-ray haloes and their local and global implications for particle transport within the Galaxy. We also discuss the prospects for observations of these sources with facilities such as the Large High Altitude Air Shower Observatory, the Cherenkov Telescope Array or the Southern Wide-field Gamma-ray Observatory in the near future.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Weekes, T. C. et al. Observation of TeV gamma rays from the Crab nebula using the atmospheric Cerenkov imaging technique. Astrophys. J. 342, 379–395 (1989).
Hester, J. J. The Crab nebula: an astrophysical chimera. Annu. Rev. Astron. Astrophys. 46, 127–155 (2008).
Bühler, R. & Blandford, R. The surprising Crab pulsar and its nebula: a review. Rep. Prog. Phys. 77, 066901 (2014).
Gaensler, B. M. & Slane, P. O. The evolution and structure of pulsar wind nebulae. Annu. Rev. Astron. Astrophys. 44, 17–47 (2006).
Porth, O., Komissarov, S. S. & Keppens, R. Solution to the sigma problem of pulsar wind nebulae. Mon. Not. R. Astron. Soc. 431, L48–L52 (2013).
Reynolds, S. P. Magnetohydrodynamic models for the structure of pulsar-wind nebulae. Preprint at https://arxiv.org/abs/astro-ph/0308483 (2003).
Del Zanna, L. & Olmi, B. in Modelling Pulsar Wind Nebulae (ed. Torres, D.) 215 (Astrophysics and Space Science Library Vol. 446, Springer, 2017).
Porth, O., Vorster, M. J., Lyutikov, M. & Engelbrecht, N. E. Diffusion in pulsar wind nebulae: an investigation using magnetohydrodynamic and particle transport models. Mon. Not. R. Astron. Soc. 460, 4135–4149 (2016).
Abeysekara, A. U. et al. Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth. Science 358, 911–914 (2017).
Berezinskii, V. S., Bulanov, S. V., Dogiel, V. A. & Ptuskin, V. S. Astrophysics of Cosmic Rays (North Holland, 1990).
Trotta, R. et al. Constraints on cosmic-ray propagation models from a global Bayesian analysis. Astrophys. J. 729, 106 (2011).
Aharonian, F. et al. A new population of very high energy gamma-ray sources in the Milky Way. Science 307, 1938–1942 (2005).
Aharonian, F. et al. The H.E.S.S. survey of the Inner Galaxy in very high energy gamma rays. Astrophys. J. 636, 777–797 (2006).
H.E.S.S. Collaboration et al. The H.E.S.S. Galactic plane survey. Astron. Astrophys. 612, A1 (2018).
H.E.S.S. Collaboration et al. The population of TeV pulsar wind nebulae in the H.E.S.S. Galactic Plane Survey. Astron. Astrophys. 612, A2 (2018).
Aharonian, F. A., Atoyan, A. M. & Kifune, T. Inverse Compton gamma radiation of faint synchrotron X-ray nebulae around pulsars. Mon. Not. R. Astron. Soc. 291, 162–176 (1997).
Aleksić, J. et al. Discovery of TeV γ-ray emission from the pulsar wind nebula 3C 58 by MAGIC. Astron. Astrophys. 567, L8 (2014).
Coerver, A. et al. Multiwavelength investigation of pulsar wind nebula DA 495 with HAWC, VERITAS, and NuSTAR. Astrophys. J. 878, 126 (2019).
H.E.S.S. Collaboration, et al.An extreme particle accelerator in the Galactic plane: HESS J1826-130. Astron. Astrophys. 644, A112 (2020).
H.E.S.S. Collaboration, et al.H.E.S.S. and Suzaku observations of the Vela X pulsar wind nebula. Astron. Astrophys. 627, A100 (2019).
H.E.S.S. Collaboration, et al.Identification of HESS J1303-631 as a pulsar wind nebula through γ-ray, X-ray, and radio observations. Astron. Astrophys. 548, A46 (2012).
Principe, G. et al. Energy dependent morphology of the pulsar wind nebula HESS J1825-137 with Fermi-LAT. Astron. Astrophys. 640, A76 (2020).
Abdo, A. A. et al. TeV gamma-ray sources from a survey of the Galactic plane with Milagro. Astrophys. J. Lett. 664, L91–L94 (2007).
Albert, A. et al. 3HWC: The Third HAWC Catalog of Very-high-energy Gamma-Ray Sources. Astrophys. J. 905, 76 (2020).
Cao, Z. et al. Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources. Nature 594, 33–36 (2021).
Abdollahi, S. et al. Fermi Large Area Telescope Fourth Source Catalog. Astrophys. J. Suppl. Ser. 247, 33 (2020).
Recchia, S. et al. Do the Geminga, Monogem and PSR J0622+3749 γ-ray halos imply slow diffusion around pulsars? Phys. Rev. D 104, 123017 (2021).
Giacinti, G. et al. Halo fraction in TeV-bright pulsar wind nebulae. Astron. Astrophys. 636, A113 (2020).
Linden, T. et al. Using HAWC to discover invisible pulsars. Phys. Rev. D 96, 103016 (2017).
H.E.S.S. Collaboration, et al.Particle transport within the pulsar wind nebula HESS J1825-137. Astron. Astrophys. 621, A116 (2019).
Khangulyan, D., Koldoba, A. V., Ustyugova, G. V., Bogovalov, S. V. & Aharonian, F. On the anomalously large extension of the pulsar wind nebula HESS J1825-137. Astrophys. J. 860, 59 (2018).
Rishbeth, H. Radio emission from the Vela–Puppis region. Aust. J. Phys. 11, 550–563 (1958).
Aharonian, F. et al. First detection of a VHE gamma-ray spectral maximum from a cosmic source: HESS discovery of the Vela X nebula. Astron. Astrophys. 448, L43–L47 (2006).
Tibaldo, L. et al. Disentangling multiple high-energy emission components in the Vela X pulsar wind nebula with the Fermi Large Area Telescope. Astron. Astrophys. 617, A78 (2018).
Grondin, M. H. et al. The Vela-X pulsar wind nebula revisited with four years of Fermi Large Area Telescope observations. Astrophys. J. 774, 110 (2013).
Mitchell, A. (for the H.E.S.S. Collaboration) Search for Extended Gamma-ray Emission Around the Geminga Pulsar with H.E.S.S (2019).
Flinders, A. VERITAS observations of the Geminga supernova remnant. Preprint at https://arxiv.org/abs/1509.04224 (2015).
Ahnen, M. L. et al. Search for VHE gamma-ray emission from Geminga pulsar and nebula with the MAGIC telescopes. Astron. Astrophys. 591, A138 (2016).
Riviere, C., Fleischhack, H. & Sandoval, A. HAWC detection of TeV emission near PSR B0540+23. The Astronomer’s Telegram 10941 (2017).
Brisbois, C., Riviere, C., Fleischhack, H. & Smith, A. HAWC detection of TeV source HAWC J0635+070. The Astronomer’s Telegram 12013 (2018).
Smith, A. A systematic search for TeV halos associated with known pulsars. PoS ICRC2019, 797 (2019).
Abeysekara, A. U. et al. Multiple Galactic sources with emission above 56 TeV detected by HAWC. Phys. Rev. Lett. 124, 021102 (2020).
LHAASO Collaboration. Extended very-high-energy gamma-ray emission surrounding PSR J0622+3749 observed by LHAASO-KM2A. Phys. Rev. Lett. 126, 241103 (2021).
Hooper, D. & Linden, T. Measuring the local diffusion coefficient with H.E.S.S. observations of very high-energy electrons. Phys. Rev. D 98, 083009 (2018).
Di Mauro, M., Manconi, S. & Donato, F. Evidences of low-diffusion bubbles around Galactic pulsars. Phys. Rev. D 101, 103035 (2020).
Chen, S. (for the LHAASO Collaboration) LHAASO Performance and First Results on Extended Emission from Known Halos (2020).
Guo, Y. Observations of extended very-high-energy halos around Geminga and Monogem with the LHAAS0-KM2A. PoS ICRC2021, 964 (2021).
Caraveo, P. A. et al. Geminga’s tails: a pulsar bow shock probing the interstellar medium. Science 301, 1345–1348 (2003).
Posselt, B. et al. Geminga’s puzzling pulsar wind nebula. Astrophys. J. 835, 66 (2017).
Di Mauro, M., Manconi, S. & Donato, F. Detection of a γ-ray halo around Geminga with the Fermi-LAT data and implications for the positron flux. Phys. Rev. D 100, 123015 (2019).
Xi, S.-Q., Liu, R.-Y., Huang, Z.-Q., Fang, K. & Wang, X.-Y. GeV observations of the extended pulsar wind nebulae constrain the pulsar interpretations of the cosmic-ray positron excess. Astrophys. J. 878, 104 (2019).
Johnson, S. P. & Wang, Q. D. The pulsar B2224+65 and its jets: a two epoch X-ray analysis. Mon. Not. R. Astron. Soc. 408, 1216–1224 (2010).
Hui, C. Y. et al. XMM-Newton observation of PSR B2224+65 and its jet. Astrophys. J. 747, 74 (2012).
Pavan, L. et al. The long helical jet of the Lighthouse nebula, IGR J11014-6103. Astron. Astrophys. 562, A122 (2014).
Liu, R.-Y., Ge, C., Sun, X.-N. & Wang, X.-Y. Constraining the magnetic field in the TeV halo of Geminga with X-ray observations. Astrophys. J. 875, 149 (2019).
Goldreich, P. & Julian, W. H. Pulsar electrodynamics. Astrophys. J. 157, 869 (1969).
Sironi, L., Keshet, U. & Lemoine, M. Relativistic shocks: particle acceleration and magnetization. Space Sci. Rev. 191, 519–544 (2015).
Sironi, L. & Spitkovsky, A. Acceleration of particles at the termination shock of a relativistic striped wind. Astrophys. J. 741, 39 (2011).
Hoshino, M., Arons, J., Gallant, Y. A. & Langdon, A. B. Relativistic magnetosonic shock waves in synchrotron sources: shock structure and nonthermal acceleration of positrons. Astrophys. J. 390, 454 (1992).
Amato, E. & Arons, J. Heating and nonthermal particle acceleration in relativistic, transverse magnetosonic shock waves in proton–electron–positron plasmas. Astrophys. J. 653, 325–338 (2006).
Amato, E. The theory of pulsar wind nebulae: recent progress. Preprint at https://arxiv.org/abs/2001.04442 (2020).
Olmi, B., Del Zanna, L., Amato, E., Bucciantini, N. & Mignone, A. Multi-D magnetohydrodynamic modelling of pulsar wind nebulae: recent progress and open questions. J. Plasma Phys. 82, 635820601 (2016).
Olmi, B. & Bucciantini, N. Full-3D relativistic MHD simulations of bow shock pulsar wind nebulae: dynamics. Mon. Not. R. Astron. Soc. 484, 5755–5770 (2019).
Olmi, B. & Bucciantini, N. On the origin of jet-like features in bow shock pulsar wind nebulae. Mon. Not. R. Astron. Soc. 490, 3608–3615 (2019).
Kulsrud, R. & Pearce, W. P. The effect of wave–particle interactions on the propagation of cosmic rays. Astrophys. J. 156, 445–469 (1969).
Evoli, C., Linden, T. & Morlino, G. Self-generated cosmic-ray confinement in TeV halos: implications for TeV γ-ray emission and the positron excess. Phys. Rev. D 98, 063017 (2018).
Bell, A. R. Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 353, 550–558 (2004).
López-Coto, R. & Giacinti, G. Constraining the properties of the magnetic turbulence in the Geminga region using HAWC γ-ray data. Mon. Not. R. Astron. Soc. 479, 4526–4534 (2018).
Strong, A. W., Moskalenko, I. V. & Ptuskin, V. S. Cosmic-ray propagation and interactions in the galaxy. Annu. Rev. Nucl. Part. Sci. 57, 285–327 (2007).
Grenier, I. A., Black, J. H. & Strong, A. W. The nine lives of cosmic rays in galaxies. Annu. Rev. Astron. Astrophys. 53, 199–246 (2015).
Sudoh, T., Linden, T. & Beacom, J. F. TeV halos are everywhere: prospects for new discoveries. Phys. Rev. D 100, 043016 (2019).
Atoyan, A. M., Aharonian, F. A. & Völk, H. J. Electrons and positrons in the galactic cosmic rays. Phys. Rev. D 52, 3265–3275 (1995).
Adriani, O. et al. An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV. Nature 458, 607–609 (2009).
Ackermann, M. et al. Measurement of separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope. Phys. Rev. Lett. 108, 011103 (2012).
Aguilar, M. et al. First result from the Alpha Magnetic Spectrometer on the International Space Station: precision measurement of the positron fraction in primary cosmic rays of 0.5–350 GeV. Phys. Rev. Lett. 110, 141102 (2013).
Aharonian, F. A., Atoyan, A. M. & Voelk, H. J. High energy electrons and positrons in cosmic rays as an indicator of the existence of a nearby cosmic tevatron. Astron. Astrophys. 294, L41–L44 (1995).
Yüksel, H., Kistler, M. D. & Stanev, T. TeV gamma rays from Geminga and the origin of the GeV positron excess. Phys. Rev. Lett. 103, 051101 (2009).
Gupta, N. & Torres, D. F. pγ interactions in Galactic jets as a plausible origin of the positron excess. Mon. Not. R. Astron. Soc. 441, 3122–3126 (2014).
Bergström, L., Bringmann, T. & Edsjö, J. New positron spectral features from supersymmetric dark matter: a way to explain the PAMELA data? Phys. Rev. D 78, 103520 (2008).
Evoli, C., Amato, E., Blasi, P. & Aloisio, R. Galactic factories of cosmic-ray electrons and positrons. Phys. Rev. D 103, 083010 (2021).
Lipari, P. Interpretation of the cosmic ray positron and antiproton fluxes. Phys. Rev. D 95, 063009 (2017).
Lipari, P. Spectral shapes of the fluxes of electrons and positrons and the average residence time of cosmic rays in the Galaxy. Phys. Rev. D 99, 043005 (2019).
Evoli, C., Blasi, P., Amato, E. & Aloisio, R. Signature of energy losses on the cosmic ray electron spectrum. Phys. Rev. Lett. 125, 051101 (2020).
Evoli, C., Amato, E., Blasi, P. & Aloisio, R. Galactic factories of cosmic-ray electrons and positrons. Phys. Rev. D 103, 083010 (2021).
Manconi, S., Di Mauro, M. & Donato, F. Contribution of pulsars to cosmic-ray positrons in light of recent observation of inverse-Compton halos. Phys. Rev. D 102, 023015 (2020).
Jóhannesson, G., Porter, T. A. & Moskalenko, I. V. Cosmic-ray propagation in light of the recent observation of Geminga. Astrophys. J. 879, 91 (2019).
Hooper, D., Cholis, I., Linden, T. & Fang, K. HAWC observations strongly favor pulsar interpretations of the cosmic-ray positron excess. Phys. Rev. D 96, 103013 (2017).
Profumo, S., Reynoso-Cordova, J., Kaaz, N. & Silverman, M. Lessons from HAWC pulsar wind nebulae observations: the diffusion constant is not a constant; pulsars remain the likeliest sources of the anomalous positron fraction; cosmic rays are trapped for long periods of time in pockets of inefficient diffusion. Phys. Rev. D 97, 123008 (2018).
Kerszberg, D. (for the H. E. S. S. Collaboration) The Cosmic-ray Electron Spectrum Measured with H.E.S.S (2017).
DAMPE Collaboration et al. Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons. Nature 552, 63–66 (2017).
Adriani, O. et al. Energy spectrum of cosmic-ray electron and positron from 10 GeV to 3 TeV observed with the Calorimetric Electron Telescope on the International Space Station. Phys. Rev. Lett. 119, 181101 (2017).
Recchia, S., Gabici, S., Aharonian, F. A. & Vink, J. Local fading accelerator and the origin of TeV cosmic ray electrons. Phys. Rev. D 99, 103022 (2019).
Fornieri, O., Gaggero, D. & Grasso, D. Features in cosmic-ray lepton data unveil the properties of nearby cosmic accelerators. J. Cosmol. Astropart. Phys. 2020, 009 (2020).
Aguilar, M. et al. Towards understanding the origin of cosmic-ray electrons. Phys. Rev. Lett. 122, 101101 (2019).
López-Coto, R., Parsons, R. D., Hinton, J. A. & Giacinti, G. Undiscovered pulsar in the Local Bubble as an explanation of the local high energy cosmic ray all-electron spectrum. Phys. Rev. Lett. 121, 251106 (2018).
Manconi, S., Di Mauro, M. & Donato, F. Dipole anisotropy in cosmic electrons and positrons: inspection on local sources. J. Cosmol. Astropart. Phys. 1, 006 (2017).
Manconi, S., Di Mauro, M. & Donato, F. Multi-messenger constraints to the local emission of cosmic-ray electrons. Preprint at https://arxiv.org/abs/1803.01009 (2018).
Ackermann, M. et al. A cocoon of freshly accelerated cosmic rays detected by Fermi in the Cygnus superbubble. Science 334, 1103 (2011).
D’Angelo, M., Blasi, P. & Amato, E. Grammage of cosmic rays around Galactic supernova remnants. Phys. Rev. D 94, 083003 (2016).
Strong, A. W. & Moskalenko, I. V. Propagation of cosmic-ray nucleons in the galaxy. Astrophys. J. 509, 212–228 (1998).
Evoli, C. et al. Cosmic-ray propagation with DRAGON2: I. Numerical solver and astrophysical ingredients. J. Cosmol. Astropart. Phys. 2017, 015 (2017).
Kissmann, R. PICARD: a novel code for the Galactic cosmic ray propagation problem. Astropart. Phys. 55, 37–50 (2014).
Maurin, D., Donato, F., Taillet, R. & Salati, P. Cosmic rays below Z = 30 in a diffusion model: new constraints on propagation parameters. Astrophys. J. 555, 585–596 (2001).
Bucciantini, N., Arons, J. & Amato, E. Modelling spectral evolution of pulsar wind nebulae inside supernova remnants. Mon. Not. R. Astron. Soc. 410, 381–398 (2011).
Di Mauro, M., Manconi, S. & Donato, F. Prospects for the detection of synchrotron halos around middle-age pulsars. Bull. Am. Astron. Soc. 51, 183 (2019).
Bonnarel, F. et al. The ALADIN interactive sky atlas. A reference tool for identification of astronomical sources. Astron. Astrophys. Suppl. 143, 33–40 (2000).
Abdollahi, S. et al. Cosmic-ray electron–positron spectrum from 7 GeV to 2 TeV with the Fermi Large Area Telescope. Phys. Rev. D 95, 082007 (2017).
Aguilar, M. et al. Towards understanding the origin of cosmic-ray positrons. Phys. Rev. Lett. 122, 041102 (2019).
Adriani, O. et al. Cosmic-ray positron energy spectrum measured by PAMELA. Phys. Rev. Lett. 111, 081102 (2013).
Acknowledgements
This article is the result of fruitful discussions during the First Workshop on Gamma-ray Halos Around Pulsars (https://agenda.infn.it/e/GammaHalos). We first and foremost thank the Scientific Organizing Committee of the Workshop (A. Mitchell, S. Profumo, D. Torres, H. Zhou, R. Zanin), the Local Organizing Committee (M. I. Bernardos, A. de Angelis, A. Spolon) and all the participants (S. Abdollahi, A. Abdulrahman, F. Acero, F. Aharonian, A. Albert, E. Amato, M. Araya, T. Armstrong, V. Baghmanyan, C. Baheeja, A. Baktash, Y. Bao, M. Barnard, U. Barres de Almeida, I. Batkovic, M. Bernardos Martin, P. Blasi, P. Blay, M. Breuhaus, C. Brisbois, D. Burgess, S. Çabuk, F. Calore, T. Capistran Rojas, P. Caraveo, M. Cardillo, A. Carramiñana, M. Carreon Gonzalez, S. Casanova, F. Cassol, S. Chagren, P. Chambery, T. Chand, S. Chen, J.-G. Cheng, S. M. Colak, H. Costantini, R. Crocker, A. De Angelis, E. de la Fuente Acosta, E. de Oña Wilhelmi, A. De Sarkar, J. Devin, M. Di Mauro, B. Dingus, F. Donato, J. Eagle, C. Eckner, K. Egberts, G. Emery, A. Eungwanichayapant, C. Evoli, Y. Eweis, K. L. Fan, K. Fang, L. Fariña, Y. Feng, M. Fiori, H. Fleischhack, O. Fornieri, Y. Gallant, G. Giacinti, M. Gonzalez, E. Gotthelf, J. Goulart Coelho, D. Green, I. Grenier, P. Grespan, M.-H. Grondin, Y. Guo, N. Gupta, A. Hahn, H. Hamed, I. Herzog, J. Hinton, B. Hnatyk, W. Hofmann, B. Hona, D. Huang, Z. Huang, A. Jardin-Blicq, H. Jiachun, H. Jiankun, G. Johannesson, V. Joshi, F. Kamal Youssef, G. Kanbach, D. Khangulyan, B. Khelifi, S. Kisaka, T. Kleiner, J. Knödlseder, D. Kostunin, A. Kundu, M. Kuss, P. C. W. Lai, S. Lalkovski, F. Lavorenti, M. Lemoine-Goumard, F. Leone, M. Linares, T. Linden, R. Liu, S. Lloyd, R. López-Coto, I. Lypova, K. Malone, S. Manconi, V. Marandon, A. Marcowith, J. Martin, P. Martin, F. Massaro, R. Mirzoyan, A. Mitchell, K. Mori, G. Morlino, R. Mukherjee, K. Nakashima, L. Nava, A. Nayerhoda, M. Newbold, M. Nynka, B. Olmi, E. Orlando, Z. Ou, M. Pilia, F. Pintore, I. Plotnikov, T. Porter, R. R. Prado, E. Prandini, G. Principe, S. Profumo, H. Rahman K. K., B. Reville, C. Righi, G. Rodríguez Fernández, L. Romanato, B. Rudak, S. Safi-Harb, T. Saito, A. Sandoval, A. Scherer, P. Sharma, S. Silvestri, A. Sinha, H. Spackman, A. Spolon, G. Stratta, A. Strong, M. Strzys, T. Sudoh, X. Sun, P. H. T. Tam, S. Tanaka, F. Tavecchio, R. Terrier, L. Tibaldo, G. Tingting, D. Torres, R. Torres Escobedo, M. Tsirou, N. Tsuji, A. Tutone, A. J. van Marle, J. van Scherpenberg, G. Verna, J. Vink, E. Vurgun, S. M. Wagner, J. Wang, X. Wang, J. Xia, G. Zaharijas, S. Zane, R. Zanin, D. Zargaryan, D. Zaric, J. Zhang, Y. Zhang, Y. Zhang, H. Zhou).
R.L.-C. acknowledges the financial support of the European Union Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement 754496-FELLINI. R.L.-C. also acknowledges financial support from the State Agency for Research of the Spanish MCIU through the Centre of Excellence Severo Ochoa award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709). E.A. acknowledges support from ASI-INAF under grant 2017-14-H.0) and from INAF under grants PRIN SKA-CTA, INAF Mainstream 2018 and PRIN-INAF 2019.
Author information
Authors and Affiliations
Contributions
R.L.-C. and E.d.O.W. coordinated the manuscript writing. All authors meet the journal’s authorship criteria and have reviewed, discussed and commented on the content of the Review.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks Mattia Di Mauro, Patrick Slane and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
López-Coto, R., de Oña Wilhelmi, E., Aharonian, F. et al. Gamma-ray haloes around pulsars as the key to understanding cosmic-ray transport in the Galaxy. Nat Astron 6, 199–206 (2022). https://doi.org/10.1038/s41550-021-01580-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41550-021-01580-0