Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Planetesimal rings as the cause of the Solar System’s planetary architecture

Abstract

Astronomical observations reveal that protoplanetary disks around young stars commonly have ring- and gap-like structures in their dust distributions. These features are associated with pressure bumps trapping dust particles at specific locations, which simulations show are ideal sites for planetesimal formation. Here we show that our Solar System may have formed from rings of planetesimals—created by pressure bumps—rather than a continuous disk. We model the gaseous disk phase assuming the existence of pressure bumps near the silicate sublimation line (at T ~ 1,400 K), water snowline (at T ~ 170 K) and CO snowline (at T ~ 30 K). Our simulations show that dust piles up at the bumps and forms up to three rings of planetesimals: a narrow ring near 1 au, a wide ring between ~3–4 au and ~10–20 au and a distant ring between ~20 au and ~45 au. We use a series of simulations to follow the evolution of the innermost ring and show how it can explain the orbital structure of the inner Solar System and provides a framework to explain the origins of isotopic signatures of Earth, Mars and different classes of meteorites. The central ring contains enough mass to explain the rapid growth of the giant planets’ cores. The outermost ring is consistent with dynamical models of Solar System evolution proposing that the early Solar System had a primordial planetesimal disk beyond the current orbit of Uranus.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Simulated evolution of the Sun’s planet-forming disk, assuming the existence of three pressure bumps.
Fig. 2: Final distribution of terrestrial planets produced from 80 simulations modelling the late stage of accretion of terrestrial planet formation from a ring-like distribution of planetary objects around 1 au.
Fig. 3: Cumulative mass fraction distributions representing the feeding zones of terrestrial planets in 17 simulations that formed good analogues to the Solar System terrestrial planets.
Fig. 4: Planetesimal implantation efficiency into the asteroid belt for different inner ring configurations.
Fig. 5: A schematic showing migration of three pressure bumps associated with the CO snowline, H2O snowline and silicate sublimation line in the Sun’s natal disk.

Similar content being viewed by others

Data availability

Simulation data that support the findings of this study or were used to make the plots are available from the corresponding author upon reasonable request. Source data associated with the main figures of the manuscript are available at https://andreizidoro.com/simulation-data.

Code availability

Dust evolution simulations were performed using a modified version of the code Two-pop-py5, publicly available at https://github.com/birnstiel/two-pop-py, with modifications described in ref. 20. N-body simulations modelling the growth of planetesimals to planetary embryos were performed using LIPAD93. This is a proprietary software product funded by the Southwest Research Institute that is not publicly available. It is based on the N-body integrator SyMBA, which is publicly available at https://www.boulder.swri.edu/swifter/. Simulations of the late stage of accretion of terrestrial planets were performed using the Mercury N-body integrator94, publicly available at https://github.com/4xxi/mercury.

References

  1. DeMeo, F. E. & Carry, B. Solar System evolution from compositional mapping of the asteroid belt. Nature 505, 629–634 (2014).

    Article  ADS  Google Scholar 

  2. Kruijer, T. S., Kleine, T. & Borg, L. E. The great isotopic dichotomy of the early Solar System. Nat. Astron. 4, 32–40 (2020).

    Article  ADS  Google Scholar 

  3. Grewal, D. S., Dasgupta, R. & Marty, B. A very early origin of isotopically distinct nitrogen in inner Solar System protoplanets. Nat. Astron. 5, 356–364 (2021).

    Article  ADS  Google Scholar 

  4. Brasser, R. & Mojzsis, S. J. The partitioning of the inner and outer Solar System by a structured protoplanetary disk. Nat. Astron. 4, 492–499 (2020).

    Article  ADS  Google Scholar 

  5. Birnstiel, T., Klahr, H. & Ercolano, B. A simple model for the evolution of the dust population in protoplanetary disks. Astron. Astrophys. 539, A148 (2012).

    Article  ADS  MATH  Google Scholar 

  6. Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P. & Mandell, A. M. A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011).

    Article  ADS  Google Scholar 

  7. Raymond, S. N. & Izidoro, A. Origin of water in the inner Solar System: planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion. Icarus 297, 134–148 (2017).

    Article  ADS  Google Scholar 

  8. Huang, J. et al. The Disk Substructures at High Angular Resolution Project (DSHARP). II. Characteristics of annular substructures. Astrophys. J. Lett. 869, L42 (2018).

    Article  ADS  Google Scholar 

  9. Dullemond, C. P. et al. The Disk Substructures at High Angular Resolution Project (DSHARP). VI. Dust trapping in thin-ringed protoplanetary disks. Astrophys. J. Lett. 869, L46 (2018).

    Article  ADS  Google Scholar 

  10. Johansen, A. et al. Rapid planetesimal formation in turbulent circumstellar disks. Nature 448, 1022–1025 (2007).

    Article  ADS  Google Scholar 

  11. Müller, J., Savvidou, S. & Bitsch, B. The water-ice line as a birthplace of planets: implications of a species-dependent dust fragmentation threshold. Astron. Astrophys. 650, A185 (2021).

    Article  ADS  Google Scholar 

  12. Charnoz, S., Avice, G., Hyodo, R., Pignatale, F. C. & Chaussidon, M. Forming pressure traps at the snow line to isolate isotopic reservoirs in the absence of a planet. Astron. Astrophys. 652, A35 (2021).

    Article  ADS  Google Scholar 

  13. Gundlach, B. & Blum, J. The stickiness of micrometer-sized water-ice particles. Astrophys. J. 798, 34 (2015).

    Article  ADS  Google Scholar 

  14. Desch, S. J. & Turner, N. J. High-temperature ionization in protoplanetary disks. Astrophys. J. 811, 156 (2015).

    Article  ADS  Google Scholar 

  15. Flock, M., Fromang, S., Turner, N. J. & Benisty, M. 3D radiation nonideal magnetohydrodynamical simulations of the inner rim in protoplanetary disks. Astrophys. J. 835, 230 (2017).

    Article  ADS  Google Scholar 

  16. Qi, C. et al. Imaging of the CO snow line in a solar nebula analog. Science 341, 630–632 (2013).

    Article  ADS  Google Scholar 

  17. van ’t Hoff, M. L. R., Walsh, C., Kama, M., Facchini, S. & van Dishoeck, E. F. Robustness of N2H+ as tracer of the CO snowline. Astron. Astrophys. 599, A101 (2017).

    Article  Google Scholar 

  18. Pinilla, P. et al. Trapping dust particles in the outer regions of protoplanetary disks. Astron. Astrophys. 538, A114 (2012).

    Article  Google Scholar 

  19. Dittrich, K., Klahr, H. & Johansen, A. Gravoturbulent planetesimal formation: the positive effect of long-lived zonal flows. Astrophys. J. 763, 117 (2013).

    Article  ADS  Google Scholar 

  20. Izidoro, A., Bitsch, B. & Dasgupta, R. The effect of a strong pressure bump in the Sun’s natal disk: terrestrial planet formation via planetesimal accretion rather than pebble accretion. Astrophys. J. 915, 62 (2021).

    Article  ADS  Google Scholar 

  21. Dra̧żkowska, J. & Alibert, Y. Planetesimal formation starts at the snow line. Astron. Astrophys. 608, A92 (2017).

    Article  ADS  Google Scholar 

  22. Simon, J. B., Armitage, P. J., Li, R. & Youdin, A. N. The mass and size distribution of planetesimals formed by the streaming instability. I. The role of self-gravity. Astrophys. J. 822, 55 (2016).

    Article  ADS  Google Scholar 

  23. Chambers, J. A semi-analytic model for oligarchic growth. Icarus 180, 496–513 (2006).

    Article  ADS  Google Scholar 

  24. Tanaka, H., Takeuchi, T. & Ward, W. R. Three-dimensional interaction between a planet and an isothermal gaseous disk. I. Corotation and Lindblad torques and planet migration. Astrophys. J. 565, 1257–1274 (2002).

    Article  ADS  Google Scholar 

  25. Lambrechts, M. et al. Formation of planetary systems by pebble accretion and migration. How the radial pebble flux determines a terrestrial-planet or super-Earth growth mode. Astron. Astrophys. 627, A83 (2019).

    Article  Google Scholar 

  26. Hansen, B. M. S. Formation of the terrestrial planets from a narrow annulus. Astrophys. J. 703, 1131–1140 (2009).

    Article  ADS  Google Scholar 

  27. Izidoro, A., Haghighipour, N., Winter, O. ~C. & Tsuchida, M. Terrestrial planet formation in a protoplanetary disk with a local mass depletion: a successful scenario for the formation of Mars. Astrophys. J. 782, 31 (2014).

    Article  ADS  Google Scholar 

  28. Izidoro, A., Raymond, S. N., Morbidelli, A. & Winter, O. C. Terrestrial planet formation constrained by Mars and the structure of the asteroid belt. Mon. Not. R. Astron. Soc. 453, 3619–3634 (2015).

    Article  ADS  Google Scholar 

  29. Levison, H. F., Kretke, K. A. & Duncan, M. J. Growing the gas-giant planets by the gradual accumulation of pebbles. Nature 524, 322–324 (2015).

    Article  ADS  Google Scholar 

  30. Raymond, S. N. & Izidoro, A. The empty primordial asteroid belt. Sci. Adv. 3, e1701138 (2017).

    Article  ADS  Google Scholar 

  31. Morbidelli, A. et al. Fossilized condensation lines in the Solar System protoplanetary disk. Icarus 267, 368–376 (2016).

    Article  ADS  Google Scholar 

  32. Warren, P. H. Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: a subordinate role for carbonaceous chondrites. Earth Planet. Sci. Lett. 311, 93–100 (2011).

    Article  ADS  Google Scholar 

  33. Dauphas, N. et al. Calcium-48 isotopic anomalies in bulk chondrites and achondrites: evidence for a uniform isotopic reservoir in the inner protoplanetary disk. Earth Planet. Sci. Lett. 407, 96–108 (2014).

    Article  ADS  Google Scholar 

  34. Wittmann, A. et al. Petrography and composition of Martian regolith breccia meteorite Northwest Africa 7475. Meteorit. Planet. Sci. 50, 326–352 (2015).

    Article  ADS  Google Scholar 

  35. Lodders, K. An oxygen isotope mixing model for the accretion and composition of rocky planets. Space Sci. Rev. 92, 341–354 (2000).

    Article  ADS  Google Scholar 

  36. Dauphas, N. The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524 (2017).

    Article  ADS  Google Scholar 

  37. Brasser, R., Mojzsis, S. J., Matsumura, S. & Ida, S. The cool and distant formation of Mars. Earth Planet. Sci. Lett. 468, 85–93 (2017).

    Article  ADS  Google Scholar 

  38. Bottke, W. F., Nesvorný, D., Grimm, R. E., Morbidelli, A. & O’Brien, D. P. Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature 439, 821–824 (2006).

    Article  ADS  Google Scholar 

  39. Chambers, J. E. Making more terrestrial planets. Icarus 152, 205–224 (2001).

    Article  ADS  Google Scholar 

  40. Kokubo, E. & Ida, S. Formation of protoplanet systems and diversity of planetary systems. Astrophys. J. 581, 666–680 (2002).

    Article  ADS  Google Scholar 

  41. Bus, S. J. & Binzel, R. P. Phase II of the Small Main-Belt Asteroid Spectroscopic Survey. A feature-based taxonomy. Icarus 158, 146–177 (2002).

    Article  ADS  Google Scholar 

  42. Urey, H. C. The cosmic abundances of potassium, uranium, and thorium and the heat balances of the Earth, the Moon, and Mars. Proc. Natl Acad. Sci. USA 41, 127–144 (1955).

    Article  ADS  Google Scholar 

  43. Vernazza, P., Zanda, B., Nakamura, T., Scott, E. R. D. & Russell, S. In The Formation and Evolution of Ordinary Chondrite Parent Bodies (eds Bottke, W. F., DeMeo, F. E. & Michel, P.) 617–634 (University of Arizona Press, 2015).

  44. Weiss, B. P. & Elkins-Tanton, L. T. Differentiated planetesimals and the parent bodies of chondrites. Annu. Rev. Earth Planet. Sci. 41, 529–560 (2013).

    Article  ADS  Google Scholar 

  45. Neumann, W., Kruijer, T. S., Breuer, D. & Kleine, T. Multistage core formation in planetesimals revealed by numerical modeling and Hf–W chronometry of iron meteorites. J. Geophys. Res. Planets 123, 421–444 (2018).

    Article  ADS  Google Scholar 

  46. Sanders, I. S. & Scott, E. R. D. The origin of chondrules and chondrites: debris from low-velocity impacts between molten planetesimals? Meteorit. Planet. Sci. 47, 2170–2192 (2012).

    Article  ADS  Google Scholar 

  47. Moskovitz, N. & Gaidos, E. Differentiation of planetesimals and the thermal consequences of melt migration. Meteorit. Planet. Sci. 46, 903–918 (2011).

    Article  ADS  Google Scholar 

  48. Asphaug, E., Jutzi, M. & Movshovitz, N. Chondrule formation during planetesimal accretion. Earth Planet. Sci. Lett. 308, 369–379 (2011).

    Article  ADS  Google Scholar 

  49. Desch, S. J. & Connolly, J. H. C. A model of the thermal processing of particles in solar nebula shocks: application to the cooling rates of chondrules. Meteorit. Planet. Sci. 37, 183–207 (2002).

    Article  ADS  Google Scholar 

  50. Yang, C. C., Johansen, A. & Carrera, D. Concentrating small particles in protoplanetary disks through the streaming instability. Astron. Astrophys. 606, A80 (2017).

    Article  Google Scholar 

  51. Kunitomo, M., Guillot, T., Ida, S. & Takeuchi, T. Revisiting the pre-main-sequence evolution of stars. II. Consequences of planet formation on stellar surface composition. Astron. Astrophys. 618, A132 (2018).

    Article  ADS  Google Scholar 

  52. Izidoro, A., Morbidelli, A., Raymond, S. N., Hersant, F. & Pierens, A. Accretion of Uranus and Neptune from inward-migrating planetary embryos blocked by Jupiter and Saturn. Astron. Astrophys. 582, A99 (2015).

    Article  ADS  Google Scholar 

  53. Tsiganis, K., Gomes, R., Morbidelli, A. & Levison, H. F. Origin of the orbital architecture of the giant planets of the Solar System. Nature 435, 459–461 (2005).

    Article  ADS  Google Scholar 

  54. Nesvorný, D. Dynamical evolution of the early Solar System. Annu. Rev. Astron. Astrophys. 56, 137–174 (2018).

    Article  ADS  Google Scholar 

  55. Deienno, R., Morbidelli, A., Gomes, R. S. & Nesvorný, D. Constraining the giant planets’ initial configuration from their evolution: implications for the timing of the planetary instability. Astron. J. 153, 153 (2017).

    Article  ADS  Google Scholar 

  56. Nesvorný, D. et al. OSSOS XX: the meaning of Kuiper Belt colors. Astron. J. 160, 46 (2020).

    Article  ADS  Google Scholar 

  57. Gladman, B., Marsden, B. G. & Vanlaerhoven, C. In The Solar System Beyond Neptune (eds Barucci, M. A., Boehnhardt, H., Cruikshank, D. P. & Morbidelli, A.) 43–57 (University of Arizona Press, 2008).

  58. Fressin, F. et al. The false positive rate of Kepler and the occurrence of planets. Astrophys. J. 766, 81 (2013).

    Article  ADS  Google Scholar 

  59. Mayor, M. et al. The HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets. Preprint at https://arxiv.org/abs/1109.2497 (2011).

  60. Izidoro, A. et al. Formation of planetary systems by pebble accretion and migration. Hot super-Earth systems from breaking compact resonant chains. Astron. Astrophys. 650, A152 (2021).

    Article  Google Scholar 

  61. Morbidelli, A. Planet formation by pebble accretion in ringed disks. Astron. Astrophys. 638, A1 (2020).

    Article  ADS  Google Scholar 

  62. Lambrechts, M., Johansen, A. & Morbidelli, A. Separating gas-giant and ice-giant planets by halting pebble accretion. Astron. Astrophys. 572, A35 (2014).

    Article  ADS  Google Scholar 

  63. Raymond, S. N., Izidoro, A. & Morbidelli, A. In Solar System Formation in the Context of Extra-Solar Planets inPlanetary Astrobiology (eds Meadows, V. S., Arney, G. N., Schmidt, B. E. & Des Marais, D. J.) (University of Arizona Press, 2020).

  64. Pinilla, P., Pohl, A., Stammler, S. M. & Birnstiel, T. Dust density distribution and imaging analysis of different ice lines in protoplanetary disks. Astrophys. J. 845, 68 (2017).

    Article  ADS  Google Scholar 

  65. Dra̧żkowska, J. & Dullemond, C. P. Planetesimal formation during protoplanetary disk buildup. Astron. Astrophys. 614, A62 (2018).

    Article  ADS  Google Scholar 

  66. Ueda, T., Flock, M. & Okuzumi, S. Dust pileup at the dead-zone inner edge and implications for the disk shadow. Astrophys. J. 871, 10 (2019).

    Article  ADS  Google Scholar 

  67. Ida, S., Guillot, T. & Morbidelli, A. The radial dependence of pebble accretion rates: a source of diversity in planetary systems. I. Analytical formulation. Astron. Astrophys. 591, A72 (2016).

    Article  ADS  Google Scholar 

  68. Zhang, Y. & Jin, L. The evolution of the snow line in a protoplanetary disk. Astrophys. J. 802, 58 (2015).

    Article  ADS  Google Scholar 

  69. Zhang, K., Blake, G. A. & Bergin, E. A. Evidence of fast pebble growth near condensation fronts in the HL Tau protoplanetary disk. Astrophys. J. Lett. 806, L7 (2015).

    Article  ADS  Google Scholar 

  70. Baillié, K., Marques, J. & Piau, L. Building protoplanetary disks from the molecular cloud: redefining the disk timeline. Astron. Astrophys. 624, A93 (2019).

    Article  ADS  Google Scholar 

  71. Bitsch, B., Morbidelli, A., Lega, E. & Crida, A. Stellar irradiated discs and implications on migration of embedded planets. II. Accreting-discs. Astron. Astrophys. 564, A135 (2014).

    Article  ADS  Google Scholar 

  72. Ziampras, A., Ataiee, S., Kley, W., Dullemond, C. P. & Baruteau, C. The impact of planet wakes on the location and shape of the water ice line in a protoplanetary disk. Astron. Astrophys. 633, A29 (2020).

    Article  ADS  Google Scholar 

  73. Birnstiel, T., Andrews, S. M., Pinilla, P. & Kama, M. Dust evolution can produce scattered light gaps in protoplanetary disks. Astrophys. J. Lett. 813, L14 (2015).

    Article  ADS  Google Scholar 

  74. Drążkowska, J., Alibert, Y. & Moore, B. Close-in planetesimal formation by pile-up of drifting pebbles. Astron. Astrophys. 594, A105 (2016).

    Article  ADS  Google Scholar 

  75. Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

    Article  ADS  Google Scholar 

  76. Desch, S. J., Kalyaan, A. & O’D. Alexander, C. M. The effect of Jupiter’s formation on the distribution of refractory elements and inclusions in meteorites. Astrophys. J. Suppl. Ser. 238, 11 (2018).

    Article  ADS  Google Scholar 

  77. Pinilla, P., Lenz, C. T. & Stammler, S. M. Growing and trapping pebbles with fragile collisions of particles in protoplanetary disks. Astron. Astrophys. 645, A70 (2021).

    Article  ADS  Google Scholar 

  78. Schneider, A. D. & Bitsch, B. How drifting and evaporating pebbles shape giant planets. I. Heavy element content and atmospheric C/O. Astron. Astrophys. 654, A71 (2021).

    Article  ADS  Google Scholar 

  79. Lenz, C. T., Klahr, H., Birnstiel, T., Kretke, K. & Stammler, S. Constraining the parameter space for the solar nebula. The effect of disk properties on planetesimal formation. Astron. Astrophys. 640, A61 (2020).

    Article  ADS  Google Scholar 

  80. Lenz, C. T., Klahr, H. & Birnstiel, T. Planetesimal population synthesis: pebble flux-regulated planetesimal formation. Astrophys. J. 874, 36 (2019).

    Article  ADS  Google Scholar 

  81. Okuzumi, S. & Hirose, S. Planetesimal formation in magnetorotationally dead zones: critical dependence on the net vertical magnetic flux. Astrophys. J. Lett. 753, L8 (2012).

    Article  ADS  Google Scholar 

  82. Lynden-Bell, D. & Pringle, J. E. The evolution of viscous discs and the origin of the nebular variables. Mon. Not. R. Astron. Soc. 168, 603–637 (1974).

    Article  ADS  Google Scholar 

  83. Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973).

  84. Bai, X.-N. & Stone, J. M. Magnetic flux concentration and zonal flows in magnetorotational instability turbulence. Astrophys. J. 796, 31 (2014).

    Article  ADS  Google Scholar 

  85. Gerbig, K., Lenz, C. T. & Klahr, H. Linking planetesimal and dust content in protoplanetary disks via a local toy model. Astron. Astrophys. 629, A116 (2019).

    Article  ADS  Google Scholar 

  86. Ormel, C. W. & Klahr, H. H. The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks. Astron. Astrophys. 520, A43 (2010).

    Article  ADS  Google Scholar 

  87. Johansen, A. & Lambrechts, M. Forming planets via pebble accretion. Annu. Rev. Earth Planet. Sci. 45, 359–387 (2017).

    Article  ADS  Google Scholar 

  88. Walsh, K. J. & Levison, H. F. Planetesimals to terrestrial planets: collisional evolution amidst a dissipating gas disk. Icarus 329, 88–100 (2019).

    Article  ADS  Google Scholar 

  89. Deienno, R., Walsh, K. J., Kretke, K. A. & Levison, H. F. Energy dissipation in large collisions—no change in planet formation outcomes. Astrophys. J. 876, 103 (2019).

    Article  ADS  Google Scholar 

  90. Morbidelli, A. & Crida, A. The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk. Icarus 191, 158–171 (2007).

    Article  ADS  Google Scholar 

  91. Raymond, S. N., Quinn, T. & Lunine, J. I. Making other earths: dynamical simulations of terrestrial planet formation and water delivery. Icarus 168, 1–17 (2004).

    Article  ADS  Google Scholar 

  92. O’Brien, D. P., Morbidelli, A. & Levison, H. F. Terrestrial planet formation with strong dynamical friction. Icarus 184, 39–58 (2006).

    Article  ADS  Google Scholar 

  93. Levison, H. F., Duncan, M. J. & Thommes, E. A Lagrangian Integrator for Planetary Accretion and Dynamics (LIPAD). Astron. J. 144, 119 (2012).

    Article  ADS  Google Scholar 

  94. Chambers, J. E. A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304, 793–799 (1999).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A. Izidoro, R. Dasgupta and A. Isella acknowledge NASA grant 80NSSC18K0828 for financial support during preparation and submission of the work. A. Isella and A. Izidoro acknowledge support from the Welch Foundation grant No. C-2035-20200401. B.B. thanks the European Research Council (ERC Starting Grant 757448-PAMDORA) for financial support. R. Deienno acknowledges support from the NASA Emerging Worlds program, grant 80NSSC21K0387. S.N.R. thanks the CNRS’s PNP programme for support. A. Izidoro thanks M. Maurice for numerous inspirational discussions, and the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES), in the scope of the Programme CAPES-PrInt, process number 88887.310463/2018-00, International Cooperation Project number 3266.

Author information

Authors and Affiliations

Authors

Contributions

A. Izidoro conceived the project in discussions with R. Dasgupta and B.B. A. Izidoro performed numerical simulations modelling dust evolution and planetesimal formation. S.N.R., R. Deienno and A. Izidoro conducted N-body numerical simulations. A. Izidoro analysed the results of numerical simulations and led the writing of the manuscript. R. Dasgupta helped with the cosmochemical implications of the model and constructed Fig. 5. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Andre Izidoro.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Eiichiro Kokubo and Bradley Hansen for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Final distribution of planetesimals in a simulation with three pressure bumps.

a) Including the effects of planetesimal formation via zonal flows80, see Eq. (8). b) Neglecting the effects of planetesimal formation via zonal flows21,65. Final distribution of planetesimals in a simulation with three pressure bumps. Top and middle panels show the evolution of the gas and pebble surface densities, respectively. The initial dust-to-gas ratio is Z0 = 1.3%, ϵ = 1 × 10−4, αt = αν/27. The final rings contain 2.5 M (inner), 85 M (central), and 18 M (outer) in planetesimals. In both simulations rc = 25 au.

Extended Data Fig. 2 Final distribution of planetesimals in a simulation with two pressure bumps (β = 0.7).

Final distribution of planetesimals in a simulation with two pressure bumps (β = 0.7). Top and middle panels show the evolution of the gas and pebble surface densities, respectively. The planetesimal formation efficiency in this simulation is ϵ = 7.5 × 10−7. The initial dust-to-gas ratio is Z0 = 0.01, αt = αν/40, αMRI = 3αν, and rc = .

Extended Data Fig. 3 Cumulative mass fraction distributions representing the feeding zones of terrestrial planets in simulations with Jupiter and Saturn in their current orbits.

a) Inner planetesimal ring with surface density profile given by Σplar−1. Curves are computed from 6 solar system analogues. b) Inner planetesimal ring with surface density profile given by Σplar−5.5. Curves are computed from 12 solar system analogues. Cumulative mass fraction distributions representing the feeding zones of terrestrial planets in simulations with Jupiter and Saturn in their current orbits. Thin green, blue and red curves represent Venus, Earth, and Mars analogues. Shaded regions encompassing each thin line represent 95% confidence bands derived from the Kolmogorov–Smirnov statistic. Each selected planetary system contains one single Venus, Earth, and Mars-analogue.

Extended Data Fig. 4 Simulation using the same parameters of simulation shown in Extended Data Figure 2, but considering that the bump at the snowline forms later, at ~ 0.1 Myr after the beginning of the simulation.

Planetesimal formation efficiency is set at ϵ = 7.5 × 10−7.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, effects of different parameters of the model, additional methods and comparison with other Solar System models.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izidoro, A., Dasgupta, R., Raymond, S.N. et al. Planetesimal rings as the cause of the Solar System’s planetary architecture. Nat Astron 6, 357–366 (2022). https://doi.org/10.1038/s41550-021-01557-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01557-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing