Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Hunting for massive black holes in dwarf galaxies

Abstract

Despite traditional thinking, an appreciable population of massive black holes (that is, more massive than stellar-mass black holes) may be lurking in dwarf galaxies. Before the last decade, nearly all known massive black holes were in the nuclei of giant galaxies and the existence of massive black holes in dwarf galaxies was highly controversial. The field has now been transformed, with a growing community of researchers working on a variety of observational studies and theoretical models of dwarf galaxies hosting massive black holes. Work in this area not only is important for a holistic understanding of dwarf galaxy evolution and feedback, but also may just tell us how the first ‘seeds’ of massive black holes formed in the early Universe. In this Perspective, I discuss the current state of the field as well as future prospects. I also present new insights on the demographics of nearby dwarf galaxies, which can be used to help constrain the black hole occupation/active fraction as a function of mass and dwarf galaxy type.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The dwarf galaxy NGC 4395 has an optically selected AGN, while Henize 2-10 has a radio-selected highly sub-Eddington massive BH.
Fig. 2: Morphology versus log K-band luminosity for 1,245 galaxies.
Fig. 3: Number distributions of various types of dwarf galaxies fainter than the LMC (log LK/L < 9.42) as a function of K-band luminosity.

Similar content being viewed by others

References

  1. Rees, M. J. Emission from the nuclei of nearby galaxies: evidence for massive black holes? In Structure and Properties of Nearby Galaxies; Proc. Symposium (eds Berkhuijsen, E. M. & Wielebinski, R.) 237 (IAU Symposium No. 77, Reidel, 1978).

  2. Kormendy, J. & Ho, L. C. Coevolution (or not) of supermassive black holes and host galaxies. Annu. Rev. Astron. Astrophys. 51, 511–653 (2013).

    Article  ADS  Google Scholar 

  3. Reines, A. E., Greene, J. E. & Geha, M. Dwarf galaxies with optical signatures of active massive black holes. Astrophys. J. 775, 116 (2013).

    Article  ADS  Google Scholar 

  4. Moran, E. C., Shahinyan, K., Sugarman, H. R., Vélez, D. O. & Eracleous, M. Black holes at the centers of nearby dwarf galaxies. Astron. J. 148, 136 (2014).

    Article  ADS  Google Scholar 

  5. Bullock, J. S. & Boylan-Kolchin, M. Small-scale challenges to the ΛCDM paradigm. Annu. Rev. Astron. Astrophys. 55, 343–387 (2017).

    Article  ADS  Google Scholar 

  6. Bustamante-Rosell, M. J. et al. Dynamical analysis of the dark matter and central black hole mass in the dwarf spheroidal Leo I. Astrophys. J. 921, 107 (2021).

    Article  ADS  Google Scholar 

  7. Volonteri, M., Lodato, G. & Natarajan, P. The evolution of massive black hole seeds. Mon. Not. R. Astron. Soc. 383, 1079–1088 (2008).

    Article  ADS  Google Scholar 

  8. Habouzit, M., Volonteri, M. & Dubois, Y. Blossoms from black hole seeds: properties and early growth regulated by supernova feedback. Mon. Not. R. Astron. Soc. 468, 3935–3948 (2017).

    Article  ADS  Google Scholar 

  9. Anglés-Alcázar, D. et al. Black holes on FIRE: stellar feedback limits early feeding of galactic nuclei. Mon. Not. R. Astron. Soc. 472, L109–L114 (2017).

    Article  ADS  Google Scholar 

  10. Volonteri, M. Formation of supermassive black holes. Astron. Astrophys. Rev. 18, 279–315 (2010).

    Article  ADS  Google Scholar 

  11. Natarajan, P. Seeds to monsters: tracing the growth of black holes in the universe. Gen. Relativ. Gravit. 46, 1702 (2014).

    Article  MATH  ADS  Google Scholar 

  12. Inayoshi, K., Visbal, E. & Haiman, Z. The assembly of the first massive black holes. Annu. Rev. Astron. Astrophys. 58, 27–97 (2020).

    Article  ADS  Google Scholar 

  13. Madau, P. & Rees, M. J. Massive black holes as population III remnants. Astrophys. J. 551, L27–L30 (2001).

    Article  ADS  Google Scholar 

  14. Portegies Zwart, S. F., Baumgardt, H., Hut, P., Makino, J. & McMillan, S. L. W. Formation of massive black holes through runaway collisions in dense young star clusters. Nature 428, 724–726 (2004).

    Article  ADS  Google Scholar 

  15. Giersz, M., Leigh, N., Hypki, A., Lützgendorf, N. & Askar, A. MOCCA code for star cluster simulations—IV. A new scenario for intermediate mass black hole formation in globular clusters. Mon. Not. R. Astron. Soc. 454, 3150–3165 (2015).

    Article  ADS  Google Scholar 

  16. Antonini, F., Gieles, M. & Gualandris, A. Black hole growth through hierarchical black hole mergers in dense star clusters: implications for gravitational wave detections. Mon. Not. R. Astron. Soc. 486, 5008–5021 (2019).

    Article  ADS  Google Scholar 

  17. Tagawa, H., Haiman, Z. & Kocsis, B. Making a supermassive star by stellar bombardment. Astrophys. J. 892, 36 (2020).

    Article  ADS  Google Scholar 

  18. Loeb, A. & Rasio, F. A. Collapse of primordial gas clouds and the formation of quasar black holes. Astrophys. J. 432, 52 (1994).

    Article  ADS  Google Scholar 

  19. Begelman, M. C., Volonteri, M. & Rees, M. J. Formation of supermassive black holes by direct collapse in pre-galactic haloes. Mon. Not. R. Astron. Soc. 370, 289–298 (2006).

    Article  ADS  Google Scholar 

  20. Reines, A. E. & Volonteri, M. Relations between central black hole mass and total galaxy stellar mass in the local Universe. Astrophys. J. 813, 82 (2015).

    Article  ADS  Google Scholar 

  21. Baldassare, V. F., Reines, A. E., Gallo, E. & Greene, J. E. A 50,000 M solar mass black hole in the nucleus of RGG 118. Astrophys. J. 809, L14 (2015).

    Article  ADS  Google Scholar 

  22. Nguyen, D. D. et al. Improved dynamical constraints on the masses of the central black holes in nearby low-mass early-type galactic nuclei and the first black hole determination for NGC 205. Astrophys. J. 872, 104 (2019).

    Article  ADS  Google Scholar 

  23. Volonteri, M. & Natarajan, P. Journey to the MBHσ relation: the fate of low-mass black holes in the Universe. Mon. Not. R. Astron. Soc. 400, 1911–1918 (2009).

    Article  ADS  Google Scholar 

  24. Ricarte, A. & Natarajan, P. The observational signatures of supermassive black hole seeds. Mon. Not. R. Astron. Soc. 481, 3278–3292 (2018).

    Article  ADS  Google Scholar 

  25. Vogelsberger, M. et al. Introducing the Illustris project: simulating the coevolution of dark and visible matter in the Universe. Mon. Not. R. Astron. Soc. 444, 1518–1547 (2014).

    Article  ADS  Google Scholar 

  26. Sharma, R. S. et al. Black hole growth and feedback in isolated ROMULUS25 dwarf galaxies. Astrophys. J. 897, 103 (2020).

    Article  ADS  Google Scholar 

  27. Koudmani, S., Henden, N. A. & Sijacki, D. A little FABLE: exploring AGN feedback in dwarf galaxies with cosmological simulations. Mon. Not. R. Astron. Soc. 503, 3568–3591 (2021).

    Article  ADS  Google Scholar 

  28. Greene, J. E., Strader, J. & Ho, L. C. Intermediate-mass black holes. Annu. Rev. Astron. Astrophys. 58, 257–312 (2020).

    Article  ADS  Google Scholar 

  29. Seth, A. C. et al. A supermassive black hole in an ultra-compact dwarf galaxy. Nature 513, 398–400 (2014).

    Article  ADS  Google Scholar 

  30. Ahn, C. P. et al. Detection of supermassive black holes in two Virgo ultracompact dwarf galaxies. Astrophys. J. 839, 72 (2017).

    Article  ADS  Google Scholar 

  31. Ahn, C. P. et al. The black hole in the most massive ultracompact dwarf galaxy M59-UCD3. Astrophys. J. 858, 102 (2018).

    Article  ADS  Google Scholar 

  32. Afanasiev, A. V. et al. A 3.5 million Solar masses black hole in the centre of the ultracompact dwarf galaxy Fornax UCD3. Mon. Not. R. Astron. Soc. 477, 4856–4865 (2018).

    Article  ADS  Google Scholar 

  33. Verolme, E. K. et al. A SAURON study of M32: measuring the intrinsic flattening and the central black hole mass. Mon. Not. R. Astron. Soc. 335, 517–525 (2002).

    Article  ADS  Google Scholar 

  34. Ferré-Mateu, A., Mezcua, M. & Barrows, R. S. A search for active galactic nuclei in low-mass compact galaxies. Mon. Not. R. Astron. Soc. 506, 4702–4714 (2021).

    Article  ADS  Google Scholar 

  35. Voggel, K. T. et al. The impact of stripped nuclei on the supermassive black hole number density in the local Universe. Astrophys. J. 871, 159 (2019).

    Article  ADS  Google Scholar 

  36. Webb, N. A. et al. Understanding the environment around the intermediate mass black hole candidate ESO 243-49 HLX-1. Astron. Astrophys. 602, A103 (2017).

    Article  Google Scholar 

  37. Bellovary, J. M. et al. Wandering black holes in bright disk galaxy halos. Astrophys. J. 721, L148–L152 (2010).

    Article  ADS  Google Scholar 

  38. Ricarte, A., Tremmel, M., Natarajan, P. & Quinn, T. Unveiling the population of wandering black holes via electromagnetic signatures. Astrophys. J. 916, L18 (2021).

    Article  ADS  Google Scholar 

  39. Greene, J. E. et al. A search for wandering black holes in the Milky Way with Gaia and DECaLS. Astrophys. J. 917, 17 (2021).

    Article  ADS  Google Scholar 

  40. Filippenko, A. V. & Sargent, W. L. W. Discovery of an extremely low luminosity Seyfert 1 nucleus in the dwarf galaxy NGC 4395. Astrophys. J. 342, L11 (1989).

    Article  ADS  Google Scholar 

  41. Kunth, D., Sargent, W. L. W. & Bothun, G. D. A dwarf galaxy with Seyfert characteristics. Astron. J. 93, 29–32 (1987).

    Article  ADS  Google Scholar 

  42. Greene, J. E. & Ho, L. C. A new sample of low-mass black holes in active galaxies. Astrophys. J. 670, 92–104 (2007).

    Article  ADS  Google Scholar 

  43. Dong, X. et al. SDSS J160531.84+174826.1: a dwarf disk galaxy with an intermediate-mass black hole. Astrophys. J. 657, 700–705 (2007).

    Article  ADS  Google Scholar 

  44. Dong, X.-B. et al. Uniformly selected sample of low-mass black holes in Seyfert 1 galaxies. Astrophys. J. 755, 167 (2012).

    Article  ADS  Google Scholar 

  45. Barth, A. J., Greene, J. E. & Ho, L. C. Low-mass Seyfert 2 galaxies in the Sloan Digital Sky Survey. Astron. J. 136, 1179–1200 (2008).

    Article  ADS  Google Scholar 

  46. Jiang, Y.-F., Greene, J. E., Ho, L. C., Xiao, T. & Barth, A. J. The host galaxies of low-mass black holes. Astrophys. J. 742, 68 (2011).

    Article  ADS  Google Scholar 

  47. Gallo, E. et al. AMUSE-Virgo. I. Supermassive black holes in low-mass spheroids. Astrophys. J. 680, 154–168 (2008).

    Article  ADS  Google Scholar 

  48. Reines, A. E., Sivakoff, G. R., Johnson, K. E. & Brogan, C. L. An actively accreting massive black hole in the dwarf starburst galaxy Henize 2-10. Nature 470, 66–68 (2011).

    Article  ADS  Google Scholar 

  49. Reines, A. E. & Deller, A. T. Parsec-scale radio emission from the low-luminosity active galactic nucleus in the dwarf starburst galaxy Henize 2-10. Astrophys. J. 750, L24 (2012).

    Article  ADS  Google Scholar 

  50. Reines, A. E. et al. Deep Chandra observations of the compact starburst galaxy Henize 2-10: X-rays from the massive black hole. Astrophys. J. 830, L35 (2016).

    Article  ADS  Google Scholar 

  51. Schutte, Z. & Reines A. E. Black-hole-triggered star formation in the dwarf galaxy Henize 2-10. Nature https://doi.org/10.1038/s41586-021-04215-6 (2022).

  52. Bellovary, J. M. et al. Multimessenger signatures of massive black holes in dwarf galaxies. Mon. Not. R. Astron. Soc. 482, 2913–2923 (2019).

    ADS  Google Scholar 

  53. Bellovary, J. M. et al. The origins of off-centre massive black holes in dwarf galaxies. Mon. Not. R. Astron. Soc. 505, 5129–5141 (2021).

    Article  ADS  Google Scholar 

  54. Volonteri, M. et al. Black hole mergers from dwarf to massive galaxies with the NewHorizon and Horizon-AGN simulations. Mon. Not. R. Astron. Soc. 498, 2219–2238 (2020).

    Article  ADS  Google Scholar 

  55. Neumayer, N., Seth, A. & Böker, T. Nuclear star clusters. Astron. Astrophys. Rev. 28, 4 (2020).

    Article  ADS  Google Scholar 

  56. Sartori, L. F. et al. The search for active black holes in nearby low-mass galaxies using optical and mid-IR data. Mon. Not. R. Astron. Soc. 454, 3722–3742 (2015).

    Article  ADS  Google Scholar 

  57. Chilingarian, I. V. et al. A population of bona fide intermediate-mass black holes identified as low-luminosity active galactic nuclei. Astrophys. J. 863, 1 (2018).

    Article  ADS  Google Scholar 

  58. Baldassare, V. F. et al. Multi-epoch spectroscopy of dwarf galaxies with AGN signatures: identifying sources with persistent broad Hα emission. Astrophys. J. 829, 57 (2016).

    Article  ADS  Google Scholar 

  59. Baldassare, V. F., Reines, A. E., Gallo, E. & Greene, J. E. X-ray and ultraviolet properties of AGNs in nearby dwarf galaxies. Astrophys. J. 836, 20 (2017).

    Article  ADS  Google Scholar 

  60. Kimbrell, S. J., Reines, A. E., Schutte, Z., Greene, J. E. & Geha, M. The diverse morphologies and structures of dwarf galaxies hosting optically selected active massive black holes. Astrophys. J. 911, 134 (2021).

    Article  ADS  Google Scholar 

  61. Cai, W., Zhao, Y., Zhang, H.-X., Bai, J.-M. & Liu, H.-T. Stellar populations of a sample of optically selected AGN-host dwarf galaxies. Astrophys. J. 903, 58 (2020).

    Article  ADS  Google Scholar 

  62. Schulze, A. & Wisotzki, L. Low redshift AGN in the Hamburg/ESO Survey. II. The active black hole mass function and the distribution function of Eddington ratios. Astron. Astrophys. 516, A87 (2010).

    Article  ADS  Google Scholar 

  63. Geha, M., Blanton, M. R., Yan, R. & Tinker, J. L. A stellar mass threshold for quenching of field galaxies. Astrophys. J. 757, 85 (2012).

    Article  ADS  Google Scholar 

  64. Groves, B. A., Heckman, T. M. & Kauffmann, G. Emission-line diagnostics of low-metallicity active galactic nuclei. Mon. Not. R. Astron. Soc. 371, 1559–1569 (2006).

    Article  ADS  Google Scholar 

  65. Schaerer, D., Fragos, T. & Izotov, Y. I. X-ray binaries as the origin of nebular He ii emission in low-metallicity star-forming galaxies. Astron. Astrophys. 622, L10 (2019).

    Article  ADS  Google Scholar 

  66. Baldassare, V. F., Geha, M. & Greene, J. Identifying AGNs in low-mass galaxies via long-term optical variability. Astrophys. J. 868, 152 (2018).

    Article  ADS  Google Scholar 

  67. Baldassare, V. F., Geha, M. & Greene, J. A search for optical AGN variability in 35,000 low-mass galaxies with the Palomar Transient Factory. Astrophys. J. 896, 10 (2020).

    Article  ADS  Google Scholar 

  68. Martínez-Palomera, J., Lira, P., Bhalla-Ladd, I., Förster, F. & Plotkin, R. M. Introducing the Search for Intermediate-Mass Black Holes in Nearby Galaxies (SIBLING) Survey. Astrophys. J. 889, 113 (2020).

    Article  ADS  Google Scholar 

  69. Ward, C. et al. Variability-selected intermediate mass black hole candidates in dwarf galaxies from ZTF and WISE. Preprint at https://arxiv.org/abs/2110.13098 (2021).

  70. Penny, S. J. et al. SDSS-IV MaNGA: evidence of the importance of AGN feedback in low-mass galaxies. Mon. Not. R. Astron. Soc. 476, 979–998 (2018).

    Article  ADS  Google Scholar 

  71. Dickey, C. M., Geha, M., Wetzel, A. & El-Badry, K. AGN all the way down? AGN-like line ratios are common in the lowest-mass isolated quiescent galaxies. Astrophys. J. 884, 180 (2019).

    Article  ADS  Google Scholar 

  72. Mezcua, M. & Domínguez Sánchez, H. Hidden AGNs in dwarf galaxies revealed by MaNGA: light echoes, off-nuclear wanderers, and a new broad-line AGN. Astrophys. J. 898, L30 (2020).

    Article  ADS  Google Scholar 

  73. Molina, M., Reines, A. E., Greene, J. E., Darling, J. & Condon, J. J. Outflows, shocks, and coronal line emission in a radio-selected AGN in a dwarf galaxy. Astrophys. J. 910, 5 (2021).

    Article  ADS  Google Scholar 

  74. Molina, M., Reines, A. E., Latimer, C. J., Baldassare, V. & Salehirad, S. A sample of massive black holes in dwarf galaxies detected via [Fe X] coronal line emission: active galactic nuclei and/or tidal disruption events. Astrophys. J. 922, 155 (2021).

  75. Maksym, W. P., Lin, D. & Irwin, J. A. RBS 1032: a tidal disruption event in another dwarf galaxy? Astrophys. J. 792, L29 (2014).

    Article  ADS  Google Scholar 

  76. French, K. D., Wevers, T., Law-Smith, J., Graur, O. & Zabludoff, A. I. The host galaxies of tidal disruption events. Space Sci. Rev. 216, 32 (2020).

    Article  ADS  Google Scholar 

  77. Nyland, K., Marvil, J., Wrobel, J. M., Young, L. M. & Zauderer, B. A. The intermediate-mass black hole candidate in the center of NGC 404: new evidence from radio continuum observations. Astrophys. J. 753, 103 (2012).

    Article  ADS  Google Scholar 

  78. Reines, A. E. et al. A candidate massive black hole in the low-metallicity dwarf galaxy pair Mrk 709. Astrophys. J. 787, L30 (2014).

    Article  ADS  Google Scholar 

  79. Latimer, C. J., Reines, A. E., Plotkin, R. M., Russell, T. D. & Condon, J. J. An X-ray + radio search for massive black holes in blue compact dwarf galaxies. Astrophys. J. 884, 78 (2019).

    Article  ADS  Google Scholar 

  80. Mezcua, M., Suh, H. & Civano, F. Radio jets from AGNs in dwarf galaxies in the COSMOS survey: mechanical feedback out to redshift ~3.4. Mon. Not. R. Astron. Soc. 488, 685–695 (2019).

    Article  ADS  Google Scholar 

  81. Reines, A. E., Condon, J. J., Darling, J. & Greene, J. E. A new sample of (wandering) massive black holes in dwarf galaxies from high-resolution radio observations. Astrophys. J. 888, 36 (2020).

    Article  ADS  Google Scholar 

  82. Zaw, I. et al. An accreting, anomalously low-mass black hole at the center of low-mass galaxy IC 750. Astrophys. J. 897, 111 (2020).

    Article  ADS  Google Scholar 

  83. Schramm, M. et al. Unveiling a population of galaxies harboring low-mass black holes with X-rays. Astrophys. J. 773, 150 (2013).

    Article  ADS  Google Scholar 

  84. Lemons, S. M., Reines, A. E., Plotkin, R. M., Gallo, E. & Greene, J. E. An X-ray selected sample of candidate black holes in dwarf galaxies. Astrophys. J. 805, 12 (2015).

    Article  ADS  Google Scholar 

  85. Miller, B. P. et al. X-ray constraints on the local supermassive black hole occupation fraction. Astrophys. J. 799, 98 (2015).

    Article  ADS  Google Scholar 

  86. Pardo, K. et al. X-ray detected active galactic nuclei in dwarf galaxies at 0 < z < 1. Astrophys. J. 831, 203 (2016).

    Article  ADS  Google Scholar 

  87. Mezcua, M. et al. Intermediate-mass black holes in dwarf galaxies out to redshift 2.4 in the Chandra COSMOS-Legacy Survey. Mon. Not. R. Astron. Soc. 478, 2576–2591 (2018).

    Article  ADS  Google Scholar 

  88. Birchall, K. L., Watson, M. G. & Aird, J. X-ray detected AGN in SDSS dwarf galaxies. Mon. Not. R. Astron. Soc. 492, 2268–2284 (2020).

    Article  ADS  Google Scholar 

  89. Latimer, C. J., Reines, A. E., Hainline, K. N., Greene, J. E. & Stern, D. A Chandra and HST view of WISE-selected AGN candidates in dwarf galaxies. Astrophys. J. 914, 133 (2021).

    Article  ADS  Google Scholar 

  90. Latimer, C. J., Reines, A. E., Bogdan, A. & Kraft, R. The AGN fraction in dwarf galaxies from eROSITA: first results and future prospects. Astrophys. J. 922, L40 (2021).

    Article  ADS  Google Scholar 

  91. Lehmer, B. D. et al. A Chandra perspective on galaxy-wide X-ray binary emission and its correlation with star formation rate and stellar mass: new results from luminous infrared galaxies. Astrophys. J. 724, 559–571 (2010).

    Article  ADS  Google Scholar 

  92. Lehmer, B. D. et al. The metallicity dependence of the high-mass X-ray binary luminosity function. Astrophys. J. 907, 17 (2021).

    Article  ADS  Google Scholar 

  93. Satyapal, S. et al. Discovery of a population of bulgeless galaxies with extremely red mid-IR colors: obscured AGN activity in the low-mass regime? Astrophys. J. 784, 113 (2014).

    Article  ADS  Google Scholar 

  94. Marleau, F. R., Clancy, D., Habas, R. & Bianconi, M. Infrared signature of active massive black holes in nearby dwarf galaxies. Astron. Astrophys. 602, A28 (2017).

    Article  ADS  Google Scholar 

  95. Kaviraj, S., Martin, G. & Silk, J. AGN in dwarf galaxies: frequency, triggering processes and the plausibility of AGN feedback. Mon. Not. R. Astron. Soc. 489, L12–L16 (2019).

    Article  ADS  Google Scholar 

  96. Hainline, K. N., Reines, A. E., Greene, J. E. & Stern, D. Mid-infrared colors of dwarf galaxies: young starbursts mimicking active galactic nuclei. Astrophys. J. 832, 119 (2016).

    Article  ADS  Google Scholar 

  97. Lupi, A., Sbarrato, T. & Carniani, S. Difficulties in mid-infrared selection of AGNs in dwarf galaxies. Mon. Not. R. Astron. Soc. 492, 2528–2534 (2020).

    Article  ADS  Google Scholar 

  98. Neumayer, N. & Walcher, C. J. Are nuclear star clusters the precursors of massive black holes? Adv. Astron. 2012, 709038 (2012).

    ADS  Google Scholar 

  99. Karachentsev, I. D., Makarov, D. I. & Kaisina, E. I. Updated nearby galaxy catalog. Astron. J. 145, 101 (2013).

    Article  ADS  Google Scholar 

  100. Bell, E. F., McIntosh, D. H., Katz, N. & Weinberg, M. D. The optical and near-infrared properties of galaxies. I. Luminosity and stellar mass functions. Astrophys. J. Suppl. 149, 289–312 (2003).

    Article  ADS  Google Scholar 

  101. Kelvin, L. S. et al. Galaxy And Mass Assembly (GAMA): stellar mass functions by Hubble type. Mon. Not. R. Astron. Soc. 444, 1647–1659 (2014).

    Article  ADS  Google Scholar 

  102. She, R., Ho, L. C. & Feng, H. Chandra Survey of Nearby Galaxies: a significant population of candidate central black holes in late-type galaxies. Astrophys. J. 842, 131 (2017).

    Article  ADS  Google Scholar 

  103. Kimbro, E., Reines, A. E., Molina, M., Deller, A. T. & Stern, D. Clumpy star formation and AGN activity in the dwarf–dwarf galaxy merger Mrk 709. Astrophys. J. 912, 89 (2021).

    Article  ADS  Google Scholar 

  104. Baldassare, V. F., Dickey, C., Geha, M. & Reines, A. E. Populating the low-mass end of the MBHσ relation. Astrophys. J. 898, L3 (2020).

    Article  ADS  Google Scholar 

  105. Schutte, Z., Reines, A. E. & Greene, J. E. The black hole–bulge mass relation including dwarf galaxies hosting active galactic nuclei. Astrophys. J. 887, 245 (2019).

    Article  ADS  Google Scholar 

  106. Shen, Y. The mass of quasars. Bull. Astron. Soc. India 41, 61–115 (2013)

  107. Manzano-King, C. M., Canalizo, G. & Sales, L. V. AGN-driven outflows in dwarf galaxies. Astrophys. J. 884, 54 (2019).

    Article  ADS  Google Scholar 

  108. Liu, W. et al. Integral field spectroscopy of fast outflows in dwarf galaxies with AGNs. Astrophys. J. 905, 166 (2020).

    Article  ADS  Google Scholar 

  109. Bradford, J. D., Geha, M. C., Greene, J. E., Reines, A. E. & Dickey, C. M. The effect of AGNs on the global H i content of isolated low-mass galaxies. Astrophys. J. 861, 50 (2018).

    Article  ADS  Google Scholar 

  110. Dashyan, G., Silk, J., Mamon, G. A., Dubois, Y. & Hartwig, T. AGN feedback in dwarf galaxies? Mon. Not. R. Astron. Soc. 473, 5698–5703 (2018).

    Article  ADS  Google Scholar 

  111. Silk, J. Feedback by massive black holes in gas-rich dwarf galaxies. Astrophys. J. 839, L13 (2017).

    Article  ADS  Google Scholar 

  112. Barai, P. & de Gouveia Dal Pino, E. M. Intermediate-mass black hole growth and feedback in dwarf galaxies at high redshifts. Mon. Not. R. Astron. Soc. 487, 5549–5563 (2019).

    Article  ADS  Google Scholar 

  113. Mockler, B., Guillochon, J. & Ramirez-Ruiz, E. Weighing black holes using tidal disruption events. Astrophys. J. 872, 151 (2019).

    Article  ADS  Google Scholar 

  114. van Velzen, S. On the mass and luminosity functions of tidal disruption flares: rate suppression due to black hole event horizons. Astrophys. J. 852, 72 (2018).

    Article  ADS  Google Scholar 

  115. Plotkin, R. M. & Reines, A. E. Local constraints on supermassive black hole seeds from a next generation Very Large Array. In Science with a Next Generation Very Large Array (ed. Murphy, E.) 719 (ASP Conference Series Vol. 517, ASP Monograph 7, 2018).

  116. Cann, J. M. et al. The hunt for intermediate-mass black holes in the JWST era. Astrophys. J. 861, 142 (2018).

    Article  ADS  Google Scholar 

  117. Cann, J. M. et al. Relics of supermassive black hole seeds: the discovery of an accreting black hole in an optically normal, low metallicity dwarf galaxy. Astrophys. J. 912, L2 (2021).

    Article  ADS  Google Scholar 

  118. Satyapal, S., Kamal, L., Cann, J. M., Secrest, N. J. & Abel, N. P. The diagnostic potential of JWST in characterizing elusive AGNs. Astrophys. J. 906, 35 (2021).

    Article  ADS  Google Scholar 

  119. Bohn, T., Canalizo, G., Veilleux, S. & Liu, W. Near-infrared coronal line observations of dwarf galaxies hosting AGN-driven outflows. Astrophys. J. 911, 70 (2021).

    Article  ADS  Google Scholar 

  120. Volonteri, M., Reines, A. E., Atek, H., Stark, D. P. & Trebitsch, M. High-redshift galaxies and black holes detectable with the JWST: a population synthesis model from infrared to X-rays. Astrophys. J. 849, 155 (2017).

    Article  ADS  Google Scholar 

  121. Natarajan, P. et al. Unveiling the first black holes with JWST: multi-wavelength spectral predictions. Astrophys. J. 838, 117 (2017).

    Article  ADS  Google Scholar 

  122. Sesana, A., Volonteri, M. & Haardt, F. The imprint of massive black hole formation models on the LISA data stream. Mon. Not. R. Astron. Soc. 377, 1711–1716 (2007).

    Article  ADS  Google Scholar 

  123. de Vaucouleurs, G. et al. Third Reference Catalogue of Bright Galaxies: Volume I: Explanations and References (Springer, 1991).

Download references

Acknowledgements

A.E.R. acknowledges support for this work provided by Montana State University and NASA through EPSCoR grant number 80NSSC20M0231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy E. Reines.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Jillian Bellovary, Igor Chilingarian and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reines, A.E. Hunting for massive black holes in dwarf galaxies. Nat Astron 6, 26–34 (2022). https://doi.org/10.1038/s41550-021-01556-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01556-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing