Abstract
Despite traditional thinking, an appreciable population of massive black holes (that is, more massive than stellar-mass black holes) may be lurking in dwarf galaxies. Before the last decade, nearly all known massive black holes were in the nuclei of giant galaxies and the existence of massive black holes in dwarf galaxies was highly controversial. The field has now been transformed, with a growing community of researchers working on a variety of observational studies and theoretical models of dwarf galaxies hosting massive black holes. Work in this area not only is important for a holistic understanding of dwarf galaxy evolution and feedback, but also may just tell us how the first ‘seeds’ of massive black holes formed in the early Universe. In this Perspective, I discuss the current state of the field as well as future prospects. I also present new insights on the demographics of nearby dwarf galaxies, which can be used to help constrain the black hole occupation/active fraction as a function of mass and dwarf galaxy type.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Rees, M. J. Emission from the nuclei of nearby galaxies: evidence for massive black holes? In Structure and Properties of Nearby Galaxies; Proc. Symposium (eds Berkhuijsen, E. M. & Wielebinski, R.) 237 (IAU Symposium No. 77, Reidel, 1978).
Kormendy, J. & Ho, L. C. Coevolution (or not) of supermassive black holes and host galaxies. Annu. Rev. Astron. Astrophys. 51, 511–653 (2013).
Reines, A. E., Greene, J. E. & Geha, M. Dwarf galaxies with optical signatures of active massive black holes. Astrophys. J. 775, 116 (2013).
Moran, E. C., Shahinyan, K., Sugarman, H. R., Vélez, D. O. & Eracleous, M. Black holes at the centers of nearby dwarf galaxies. Astron. J. 148, 136 (2014).
Bullock, J. S. & Boylan-Kolchin, M. Small-scale challenges to the ΛCDM paradigm. Annu. Rev. Astron. Astrophys. 55, 343–387 (2017).
Bustamante-Rosell, M. J. et al. Dynamical analysis of the dark matter and central black hole mass in the dwarf spheroidal Leo I. Astrophys. J. 921, 107 (2021).
Volonteri, M., Lodato, G. & Natarajan, P. The evolution of massive black hole seeds. Mon. Not. R. Astron. Soc. 383, 1079–1088 (2008).
Habouzit, M., Volonteri, M. & Dubois, Y. Blossoms from black hole seeds: properties and early growth regulated by supernova feedback. Mon. Not. R. Astron. Soc. 468, 3935–3948 (2017).
Anglés-Alcázar, D. et al. Black holes on FIRE: stellar feedback limits early feeding of galactic nuclei. Mon. Not. R. Astron. Soc. 472, L109–L114 (2017).
Volonteri, M. Formation of supermassive black holes. Astron. Astrophys. Rev. 18, 279–315 (2010).
Natarajan, P. Seeds to monsters: tracing the growth of black holes in the universe. Gen. Relativ. Gravit. 46, 1702 (2014).
Inayoshi, K., Visbal, E. & Haiman, Z. The assembly of the first massive black holes. Annu. Rev. Astron. Astrophys. 58, 27–97 (2020).
Madau, P. & Rees, M. J. Massive black holes as population III remnants. Astrophys. J. 551, L27–L30 (2001).
Portegies Zwart, S. F., Baumgardt, H., Hut, P., Makino, J. & McMillan, S. L. W. Formation of massive black holes through runaway collisions in dense young star clusters. Nature 428, 724–726 (2004).
Giersz, M., Leigh, N., Hypki, A., Lützgendorf, N. & Askar, A. MOCCA code for star cluster simulations—IV. A new scenario for intermediate mass black hole formation in globular clusters. Mon. Not. R. Astron. Soc. 454, 3150–3165 (2015).
Antonini, F., Gieles, M. & Gualandris, A. Black hole growth through hierarchical black hole mergers in dense star clusters: implications for gravitational wave detections. Mon. Not. R. Astron. Soc. 486, 5008–5021 (2019).
Tagawa, H., Haiman, Z. & Kocsis, B. Making a supermassive star by stellar bombardment. Astrophys. J. 892, 36 (2020).
Loeb, A. & Rasio, F. A. Collapse of primordial gas clouds and the formation of quasar black holes. Astrophys. J. 432, 52 (1994).
Begelman, M. C., Volonteri, M. & Rees, M. J. Formation of supermassive black holes by direct collapse in pre-galactic haloes. Mon. Not. R. Astron. Soc. 370, 289–298 (2006).
Reines, A. E. & Volonteri, M. Relations between central black hole mass and total galaxy stellar mass in the local Universe. Astrophys. J. 813, 82 (2015).
Baldassare, V. F., Reines, A. E., Gallo, E. & Greene, J. E. A ∼50,000 M⊙ solar mass black hole in the nucleus of RGG 118. Astrophys. J. 809, L14 (2015).
Nguyen, D. D. et al. Improved dynamical constraints on the masses of the central black holes in nearby low-mass early-type galactic nuclei and the first black hole determination for NGC 205. Astrophys. J. 872, 104 (2019).
Volonteri, M. & Natarajan, P. Journey to the MBH–σ relation: the fate of low-mass black holes in the Universe. Mon. Not. R. Astron. Soc. 400, 1911–1918 (2009).
Ricarte, A. & Natarajan, P. The observational signatures of supermassive black hole seeds. Mon. Not. R. Astron. Soc. 481, 3278–3292 (2018).
Vogelsberger, M. et al. Introducing the Illustris project: simulating the coevolution of dark and visible matter in the Universe. Mon. Not. R. Astron. Soc. 444, 1518–1547 (2014).
Sharma, R. S. et al. Black hole growth and feedback in isolated ROMULUS25 dwarf galaxies. Astrophys. J. 897, 103 (2020).
Koudmani, S., Henden, N. A. & Sijacki, D. A little FABLE: exploring AGN feedback in dwarf galaxies with cosmological simulations. Mon. Not. R. Astron. Soc. 503, 3568–3591 (2021).
Greene, J. E., Strader, J. & Ho, L. C. Intermediate-mass black holes. Annu. Rev. Astron. Astrophys. 58, 257–312 (2020).
Seth, A. C. et al. A supermassive black hole in an ultra-compact dwarf galaxy. Nature 513, 398–400 (2014).
Ahn, C. P. et al. Detection of supermassive black holes in two Virgo ultracompact dwarf galaxies. Astrophys. J. 839, 72 (2017).
Ahn, C. P. et al. The black hole in the most massive ultracompact dwarf galaxy M59-UCD3. Astrophys. J. 858, 102 (2018).
Afanasiev, A. V. et al. A 3.5 million Solar masses black hole in the centre of the ultracompact dwarf galaxy Fornax UCD3. Mon. Not. R. Astron. Soc. 477, 4856–4865 (2018).
Verolme, E. K. et al. A SAURON study of M32: measuring the intrinsic flattening and the central black hole mass. Mon. Not. R. Astron. Soc. 335, 517–525 (2002).
Ferré-Mateu, A., Mezcua, M. & Barrows, R. S. A search for active galactic nuclei in low-mass compact galaxies. Mon. Not. R. Astron. Soc. 506, 4702–4714 (2021).
Voggel, K. T. et al. The impact of stripped nuclei on the supermassive black hole number density in the local Universe. Astrophys. J. 871, 159 (2019).
Webb, N. A. et al. Understanding the environment around the intermediate mass black hole candidate ESO 243-49 HLX-1. Astron. Astrophys. 602, A103 (2017).
Bellovary, J. M. et al. Wandering black holes in bright disk galaxy halos. Astrophys. J. 721, L148–L152 (2010).
Ricarte, A., Tremmel, M., Natarajan, P. & Quinn, T. Unveiling the population of wandering black holes via electromagnetic signatures. Astrophys. J. 916, L18 (2021).
Greene, J. E. et al. A search for wandering black holes in the Milky Way with Gaia and DECaLS. Astrophys. J. 917, 17 (2021).
Filippenko, A. V. & Sargent, W. L. W. Discovery of an extremely low luminosity Seyfert 1 nucleus in the dwarf galaxy NGC 4395. Astrophys. J. 342, L11 (1989).
Kunth, D., Sargent, W. L. W. & Bothun, G. D. A dwarf galaxy with Seyfert characteristics. Astron. J. 93, 29–32 (1987).
Greene, J. E. & Ho, L. C. A new sample of low-mass black holes in active galaxies. Astrophys. J. 670, 92–104 (2007).
Dong, X. et al. SDSS J160531.84+174826.1: a dwarf disk galaxy with an intermediate-mass black hole. Astrophys. J. 657, 700–705 (2007).
Dong, X.-B. et al. Uniformly selected sample of low-mass black holes in Seyfert 1 galaxies. Astrophys. J. 755, 167 (2012).
Barth, A. J., Greene, J. E. & Ho, L. C. Low-mass Seyfert 2 galaxies in the Sloan Digital Sky Survey. Astron. J. 136, 1179–1200 (2008).
Jiang, Y.-F., Greene, J. E., Ho, L. C., Xiao, T. & Barth, A. J. The host galaxies of low-mass black holes. Astrophys. J. 742, 68 (2011).
Gallo, E. et al. AMUSE-Virgo. I. Supermassive black holes in low-mass spheroids. Astrophys. J. 680, 154–168 (2008).
Reines, A. E., Sivakoff, G. R., Johnson, K. E. & Brogan, C. L. An actively accreting massive black hole in the dwarf starburst galaxy Henize 2-10. Nature 470, 66–68 (2011).
Reines, A. E. & Deller, A. T. Parsec-scale radio emission from the low-luminosity active galactic nucleus in the dwarf starburst galaxy Henize 2-10. Astrophys. J. 750, L24 (2012).
Reines, A. E. et al. Deep Chandra observations of the compact starburst galaxy Henize 2-10: X-rays from the massive black hole. Astrophys. J. 830, L35 (2016).
Schutte, Z. & Reines A. E. Black-hole-triggered star formation in the dwarf galaxy Henize 2-10. Nature https://doi.org/10.1038/s41586-021-04215-6 (2022).
Bellovary, J. M. et al. Multimessenger signatures of massive black holes in dwarf galaxies. Mon. Not. R. Astron. Soc. 482, 2913–2923 (2019).
Bellovary, J. M. et al. The origins of off-centre massive black holes in dwarf galaxies. Mon. Not. R. Astron. Soc. 505, 5129–5141 (2021).
Volonteri, M. et al. Black hole mergers from dwarf to massive galaxies with the NewHorizon and Horizon-AGN simulations. Mon. Not. R. Astron. Soc. 498, 2219–2238 (2020).
Neumayer, N., Seth, A. & Böker, T. Nuclear star clusters. Astron. Astrophys. Rev. 28, 4 (2020).
Sartori, L. F. et al. The search for active black holes in nearby low-mass galaxies using optical and mid-IR data. Mon. Not. R. Astron. Soc. 454, 3722–3742 (2015).
Chilingarian, I. V. et al. A population of bona fide intermediate-mass black holes identified as low-luminosity active galactic nuclei. Astrophys. J. 863, 1 (2018).
Baldassare, V. F. et al. Multi-epoch spectroscopy of dwarf galaxies with AGN signatures: identifying sources with persistent broad Hα emission. Astrophys. J. 829, 57 (2016).
Baldassare, V. F., Reines, A. E., Gallo, E. & Greene, J. E. X-ray and ultraviolet properties of AGNs in nearby dwarf galaxies. Astrophys. J. 836, 20 (2017).
Kimbrell, S. J., Reines, A. E., Schutte, Z., Greene, J. E. & Geha, M. The diverse morphologies and structures of dwarf galaxies hosting optically selected active massive black holes. Astrophys. J. 911, 134 (2021).
Cai, W., Zhao, Y., Zhang, H.-X., Bai, J.-M. & Liu, H.-T. Stellar populations of a sample of optically selected AGN-host dwarf galaxies. Astrophys. J. 903, 58 (2020).
Schulze, A. & Wisotzki, L. Low redshift AGN in the Hamburg/ESO Survey. II. The active black hole mass function and the distribution function of Eddington ratios. Astron. Astrophys. 516, A87 (2010).
Geha, M., Blanton, M. R., Yan, R. & Tinker, J. L. A stellar mass threshold for quenching of field galaxies. Astrophys. J. 757, 85 (2012).
Groves, B. A., Heckman, T. M. & Kauffmann, G. Emission-line diagnostics of low-metallicity active galactic nuclei. Mon. Not. R. Astron. Soc. 371, 1559–1569 (2006).
Schaerer, D., Fragos, T. & Izotov, Y. I. X-ray binaries as the origin of nebular He ii emission in low-metallicity star-forming galaxies. Astron. Astrophys. 622, L10 (2019).
Baldassare, V. F., Geha, M. & Greene, J. Identifying AGNs in low-mass galaxies via long-term optical variability. Astrophys. J. 868, 152 (2018).
Baldassare, V. F., Geha, M. & Greene, J. A search for optical AGN variability in 35,000 low-mass galaxies with the Palomar Transient Factory. Astrophys. J. 896, 10 (2020).
Martínez-Palomera, J., Lira, P., Bhalla-Ladd, I., Förster, F. & Plotkin, R. M. Introducing the Search for Intermediate-Mass Black Holes in Nearby Galaxies (SIBLING) Survey. Astrophys. J. 889, 113 (2020).
Ward, C. et al. Variability-selected intermediate mass black hole candidates in dwarf galaxies from ZTF and WISE. Preprint at https://arxiv.org/abs/2110.13098 (2021).
Penny, S. J. et al. SDSS-IV MaNGA: evidence of the importance of AGN feedback in low-mass galaxies. Mon. Not. R. Astron. Soc. 476, 979–998 (2018).
Dickey, C. M., Geha, M., Wetzel, A. & El-Badry, K. AGN all the way down? AGN-like line ratios are common in the lowest-mass isolated quiescent galaxies. Astrophys. J. 884, 180 (2019).
Mezcua, M. & Domínguez Sánchez, H. Hidden AGNs in dwarf galaxies revealed by MaNGA: light echoes, off-nuclear wanderers, and a new broad-line AGN. Astrophys. J. 898, L30 (2020).
Molina, M., Reines, A. E., Greene, J. E., Darling, J. & Condon, J. J. Outflows, shocks, and coronal line emission in a radio-selected AGN in a dwarf galaxy. Astrophys. J. 910, 5 (2021).
Molina, M., Reines, A. E., Latimer, C. J., Baldassare, V. & Salehirad, S. A sample of massive black holes in dwarf galaxies detected via [Fe X] coronal line emission: active galactic nuclei and/or tidal disruption events. Astrophys. J. 922, 155 (2021).
Maksym, W. P., Lin, D. & Irwin, J. A. RBS 1032: a tidal disruption event in another dwarf galaxy? Astrophys. J. 792, L29 (2014).
French, K. D., Wevers, T., Law-Smith, J., Graur, O. & Zabludoff, A. I. The host galaxies of tidal disruption events. Space Sci. Rev. 216, 32 (2020).
Nyland, K., Marvil, J., Wrobel, J. M., Young, L. M. & Zauderer, B. A. The intermediate-mass black hole candidate in the center of NGC 404: new evidence from radio continuum observations. Astrophys. J. 753, 103 (2012).
Reines, A. E. et al. A candidate massive black hole in the low-metallicity dwarf galaxy pair Mrk 709. Astrophys. J. 787, L30 (2014).
Latimer, C. J., Reines, A. E., Plotkin, R. M., Russell, T. D. & Condon, J. J. An X-ray + radio search for massive black holes in blue compact dwarf galaxies. Astrophys. J. 884, 78 (2019).
Mezcua, M., Suh, H. & Civano, F. Radio jets from AGNs in dwarf galaxies in the COSMOS survey: mechanical feedback out to redshift ~3.4. Mon. Not. R. Astron. Soc. 488, 685–695 (2019).
Reines, A. E., Condon, J. J., Darling, J. & Greene, J. E. A new sample of (wandering) massive black holes in dwarf galaxies from high-resolution radio observations. Astrophys. J. 888, 36 (2020).
Zaw, I. et al. An accreting, anomalously low-mass black hole at the center of low-mass galaxy IC 750. Astrophys. J. 897, 111 (2020).
Schramm, M. et al. Unveiling a population of galaxies harboring low-mass black holes with X-rays. Astrophys. J. 773, 150 (2013).
Lemons, S. M., Reines, A. E., Plotkin, R. M., Gallo, E. & Greene, J. E. An X-ray selected sample of candidate black holes in dwarf galaxies. Astrophys. J. 805, 12 (2015).
Miller, B. P. et al. X-ray constraints on the local supermassive black hole occupation fraction. Astrophys. J. 799, 98 (2015).
Pardo, K. et al. X-ray detected active galactic nuclei in dwarf galaxies at 0 < z < 1. Astrophys. J. 831, 203 (2016).
Mezcua, M. et al. Intermediate-mass black holes in dwarf galaxies out to redshift ∼2.4 in the Chandra COSMOS-Legacy Survey. Mon. Not. R. Astron. Soc. 478, 2576–2591 (2018).
Birchall, K. L., Watson, M. G. & Aird, J. X-ray detected AGN in SDSS dwarf galaxies. Mon. Not. R. Astron. Soc. 492, 2268–2284 (2020).
Latimer, C. J., Reines, A. E., Hainline, K. N., Greene, J. E. & Stern, D. A Chandra and HST view of WISE-selected AGN candidates in dwarf galaxies. Astrophys. J. 914, 133 (2021).
Latimer, C. J., Reines, A. E., Bogdan, A. & Kraft, R. The AGN fraction in dwarf galaxies from eROSITA: first results and future prospects. Astrophys. J. 922, L40 (2021).
Lehmer, B. D. et al. A Chandra perspective on galaxy-wide X-ray binary emission and its correlation with star formation rate and stellar mass: new results from luminous infrared galaxies. Astrophys. J. 724, 559–571 (2010).
Lehmer, B. D. et al. The metallicity dependence of the high-mass X-ray binary luminosity function. Astrophys. J. 907, 17 (2021).
Satyapal, S. et al. Discovery of a population of bulgeless galaxies with extremely red mid-IR colors: obscured AGN activity in the low-mass regime? Astrophys. J. 784, 113 (2014).
Marleau, F. R., Clancy, D., Habas, R. & Bianconi, M. Infrared signature of active massive black holes in nearby dwarf galaxies. Astron. Astrophys. 602, A28 (2017).
Kaviraj, S., Martin, G. & Silk, J. AGN in dwarf galaxies: frequency, triggering processes and the plausibility of AGN feedback. Mon. Not. R. Astron. Soc. 489, L12–L16 (2019).
Hainline, K. N., Reines, A. E., Greene, J. E. & Stern, D. Mid-infrared colors of dwarf galaxies: young starbursts mimicking active galactic nuclei. Astrophys. J. 832, 119 (2016).
Lupi, A., Sbarrato, T. & Carniani, S. Difficulties in mid-infrared selection of AGNs in dwarf galaxies. Mon. Not. R. Astron. Soc. 492, 2528–2534 (2020).
Neumayer, N. & Walcher, C. J. Are nuclear star clusters the precursors of massive black holes? Adv. Astron. 2012, 709038 (2012).
Karachentsev, I. D., Makarov, D. I. & Kaisina, E. I. Updated nearby galaxy catalog. Astron. J. 145, 101 (2013).
Bell, E. F., McIntosh, D. H., Katz, N. & Weinberg, M. D. The optical and near-infrared properties of galaxies. I. Luminosity and stellar mass functions. Astrophys. J. Suppl. 149, 289–312 (2003).
Kelvin, L. S. et al. Galaxy And Mass Assembly (GAMA): stellar mass functions by Hubble type. Mon. Not. R. Astron. Soc. 444, 1647–1659 (2014).
She, R., Ho, L. C. & Feng, H. Chandra Survey of Nearby Galaxies: a significant population of candidate central black holes in late-type galaxies. Astrophys. J. 842, 131 (2017).
Kimbro, E., Reines, A. E., Molina, M., Deller, A. T. & Stern, D. Clumpy star formation and AGN activity in the dwarf–dwarf galaxy merger Mrk 709. Astrophys. J. 912, 89 (2021).
Baldassare, V. F., Dickey, C., Geha, M. & Reines, A. E. Populating the low-mass end of the MBH–σ relation. Astrophys. J. 898, L3 (2020).
Schutte, Z., Reines, A. E. & Greene, J. E. The black hole–bulge mass relation including dwarf galaxies hosting active galactic nuclei. Astrophys. J. 887, 245 (2019).
Shen, Y. The mass of quasars. Bull. Astron. Soc. India 41, 61–115 (2013)
Manzano-King, C. M., Canalizo, G. & Sales, L. V. AGN-driven outflows in dwarf galaxies. Astrophys. J. 884, 54 (2019).
Liu, W. et al. Integral field spectroscopy of fast outflows in dwarf galaxies with AGNs. Astrophys. J. 905, 166 (2020).
Bradford, J. D., Geha, M. C., Greene, J. E., Reines, A. E. & Dickey, C. M. The effect of AGNs on the global H i content of isolated low-mass galaxies. Astrophys. J. 861, 50 (2018).
Dashyan, G., Silk, J., Mamon, G. A., Dubois, Y. & Hartwig, T. AGN feedback in dwarf galaxies? Mon. Not. R. Astron. Soc. 473, 5698–5703 (2018).
Silk, J. Feedback by massive black holes in gas-rich dwarf galaxies. Astrophys. J. 839, L13 (2017).
Barai, P. & de Gouveia Dal Pino, E. M. Intermediate-mass black hole growth and feedback in dwarf galaxies at high redshifts. Mon. Not. R. Astron. Soc. 487, 5549–5563 (2019).
Mockler, B., Guillochon, J. & Ramirez-Ruiz, E. Weighing black holes using tidal disruption events. Astrophys. J. 872, 151 (2019).
van Velzen, S. On the mass and luminosity functions of tidal disruption flares: rate suppression due to black hole event horizons. Astrophys. J. 852, 72 (2018).
Plotkin, R. M. & Reines, A. E. Local constraints on supermassive black hole seeds from a next generation Very Large Array. In Science with a Next Generation Very Large Array (ed. Murphy, E.) 719 (ASP Conference Series Vol. 517, ASP Monograph 7, 2018).
Cann, J. M. et al. The hunt for intermediate-mass black holes in the JWST era. Astrophys. J. 861, 142 (2018).
Cann, J. M. et al. Relics of supermassive black hole seeds: the discovery of an accreting black hole in an optically normal, low metallicity dwarf galaxy. Astrophys. J. 912, L2 (2021).
Satyapal, S., Kamal, L., Cann, J. M., Secrest, N. J. & Abel, N. P. The diagnostic potential of JWST in characterizing elusive AGNs. Astrophys. J. 906, 35 (2021).
Bohn, T., Canalizo, G., Veilleux, S. & Liu, W. Near-infrared coronal line observations of dwarf galaxies hosting AGN-driven outflows. Astrophys. J. 911, 70 (2021).
Volonteri, M., Reines, A. E., Atek, H., Stark, D. P. & Trebitsch, M. High-redshift galaxies and black holes detectable with the JWST: a population synthesis model from infrared to X-rays. Astrophys. J. 849, 155 (2017).
Natarajan, P. et al. Unveiling the first black holes with JWST: multi-wavelength spectral predictions. Astrophys. J. 838, 117 (2017).
Sesana, A., Volonteri, M. & Haardt, F. The imprint of massive black hole formation models on the LISA data stream. Mon. Not. R. Astron. Soc. 377, 1711–1716 (2007).
de Vaucouleurs, G. et al. Third Reference Catalogue of Bright Galaxies: Volume I: Explanations and References (Springer, 1991).
Acknowledgements
A.E.R. acknowledges support for this work provided by Montana State University and NASA through EPSCoR grant number 80NSSC20M0231.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing interests.
Peer review
Peer review information
Nature Astronomy thanks Jillian Bellovary, Igor Chilingarian and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Reines, A.E. Hunting for massive black holes in dwarf galaxies. Nat Astron 6, 26–34 (2022). https://doi.org/10.1038/s41550-021-01556-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41550-021-01556-0
This article is cited by
-
Observational constraints on stellar feedback in dwarf galaxies
Nature Astronomy (2022)