Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Multi-scale feedback and feeding in the closest radio galaxy Centaurus A

Abstract

Supermassive black holes and supernova explosions at the centres of active galaxies power cycles of outflowing and inflowing gas that affect galactic evolution and the overall structure of the Universe1,2. While simulations and observations show that this must be the case, the range of physical scales (over ten orders of magnitude) and paucity of available tracers make both the simulation and observation of these effects difficult3,4. By serendipity, there lies an active galaxy, Centaurus A (NGC 5128)5,6, at such a close proximity as to allow its observation over this entire range of scales and across the entire electromagnetic spectrum. In the radio band, however, details on scales of 10–100 kpc from the supermassive black hole have so far been obscured by instrumental limitations7,8. Here we report low-frequency radio observations that overcome these limitations and show evidence for a broad, bipolar outflow with velocity of 1,100 km s−1 and mass-outflow rate of 2.9 M yr−1 on these scales. We combine our data with the plethora of multiscale, multi-wavelength, historical observations of Centaurus A to probe a unified view of feeding and feedback, which we show to be consistent with the chaotic cold accretion self-regulation scenario9,10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Our nearest neighbouring radio galaxy, Centaurus A, as seen at 185 MHz with the Murchison Widefield Array.
Fig. 2: The northern transition region with multifrequency data overlaid.
Fig. 3: Density map of RGB stars.

Similar content being viewed by others

Data availability

The raw visibility data from the MWA that support the findings of this study (as detailed in Table 1) are publicly available from the MWA All-Sky Virtual Observatory; https://asvo.mwatelescope.org/. The MWA radio image data (as displayed in Figs. 1 and 2 and Extended Data Fig. 1) can be accessed through the Strasbourg Astronomical Data Center (CDS) via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via https://cdsarc.unistra.fr/viz-bin/cat/J/other/NatAs. Optical image data require specialist instrumental knowledge for accurate interpretation and will be made available upon reasonable request to the corresponding author, so that additional guidance can be provided.

Code availability

No custom code or algorithm was developed as part of this work, apart from simple scripting routines written in the Python language and used to run standard astronomy software tools, as described in the text.

References

  1. King, A. & Pounds, K. Powerful outflows and feedback from active galactic nuclei. Annu. Rev. Astron. Astrophys. 53, 115–154 (2015).

    Article  ADS  Google Scholar 

  2. Veilleux, S., Maiolino, R., Bolatto, A. & Aalto, S. Cool outflows in galaxies and their implications. Astron. Astrophys. Rev. 28, 2 (2020).

    Article  ADS  Google Scholar 

  3. Nelson, D. et al. First results from the TNG50 simulation: galactic outflows driven by supernovae and black hole feedback. Mon. Not. R. Astron. Soc. 490, 3234–3261 (2019).

    Article  ADS  Google Scholar 

  4. Heckman, T. et al. COS-burst: observations of the impact of starburst-driven winds on the properties of the circum-galactic medium. Astrophys. J. 846, 151 (2017).

    Article  ADS  Google Scholar 

  5. Israel, F. P. & Centaurus, A.- Centaurus A–NGC 5128. Astron. Astrophys. Rev. 8, 237–278 (1998).

    Article  ADS  Google Scholar 

  6. Feain, I. J. (ed.) The many faces of Centaurus A. Publ. Astron. Soc. Aust. 27(Special issue), 379-495 (2010).

  7. Feain, I. J. et al. The radio continuum structure of Centaurus A at 1.4 GHz. Astrophys. J. 740, 17 (2011).

    Article  ADS  Google Scholar 

  8. Neff, S. G., Eilek, J. A. & Owen, F. N. The complex north transition region of Centaurus A: radio structure. Astrophys. J. 802, 87 (2015).

    Article  ADS  Google Scholar 

  9. Gaspari, M., Tombesi, F. & Cappi, M. Linking macro, meso, and micro scales in multiphase AGN feeding and feedback. Nat. Astron. 4, 10–13 (2020).

    Article  ADS  Google Scholar 

  10. Gaspari, M., Ruszkowski, M. & Oh, S. P. Chaotic cold accretion on to black holes. Mon. Not. R. Astron. Soc. 432, 3401–3422 (2013).

    Article  ADS  Google Scholar 

  11. Harris, G. L. H., Rejkuba, M. & Harris, W. E. The distance to NGC 5128 (Centaurus A). Publ. Astron. Soc. Aust. 27, 457–462 (2010).

    Article  ADS  Google Scholar 

  12. Clarke, D. A., Burns, J. O. & Norman, M. L. VLA observations of the inner lobes of Centaurus A. Astrophys. J. 395, 444 (1992).

    Article  ADS  Google Scholar 

  13. Tingay, S. J. et al. The subparsec-scale structure and evolution of Centaurus A: the nearest active radio galaxy. Astron. J. 115, 960–974 (1998).

    Article  ADS  Google Scholar 

  14. Janssen, M. et al. Event Horizon Telescope observations of the jet launching and collimation in Centaurus A. Nat. Astron. 5, 1017–1028 (2021).

    Article  ADS  Google Scholar 

  15. Tingay, S. J. et al. The Murchison Widefield Array: the Square Kilometre Array precursor at low radio frequencies. Publ. Astron. Soc. Aust. 30, 7 (2013).

    Article  ADS  Google Scholar 

  16. Gaspari, M., Brighenti, F., D’Ercole, A. & Melioli, C. AGN feedback in galaxy groups: the delicate touch of self-regulated outflows. Mon. Not. R. Astron. Soc. 415, 1549–1568 (2011).

    Article  ADS  Google Scholar 

  17. Gaspari, M. & Sądowski, A. Unifying the micro and macro properties of AGN feeding and feedback. Astrophys. J. 837, 149 (2017).

    Article  ADS  Google Scholar 

  18. Krause, M. et al. A new connection between the jet opening angle and the large-scale morphology of extragalactic radio sources. Mon. Not. R. Astron. Soc. 427, 3196–3208 (2012).

    Article  ADS  Google Scholar 

  19. Morganti, R., Killeen, N. E. B., Ekers, R. D. & Oosterloo, T. A. Centaurus A: multiple outbursts or bursting bubble? Mon. Not. R. Astron. Soc. 307, 750–760 (1999).

    Article  ADS  Google Scholar 

  20. Kraft, R. P. et al. The jet heated X-ray filament in the Centaurus A northern middle radio lobe. Astrophys. J. 698, 2036–2047 (2009).

    Article  ADS  Google Scholar 

  21. Neff, S. G., Eilek, J. A. & Owen, F. N. The complex north transition region of Centaurus A: a galactic wind. Astrophys. J. 802, 88 (2015).

    Article  ADS  Google Scholar 

  22. Struve, C., Oosterloo, T. A., Morganti, R. & Saripalli, L. Centaurus A: morphology and kinematics of the atomic hydrogen. Astron. Astrophys. 515, 67 (2010).

    Article  ADS  Google Scholar 

  23. Junkes, N., Haynes, R. F., Harnett, J. I. & Jauncey, D. L. Radio polarization surveys of Centaurus A (NGC 5128). I. The complete radio source at lambda 6.3 cm. Astron. Astrophys. 269, 29–38 (1993).

    ADS  Google Scholar 

  24. Cooper, J. L., Bicknell, G. V., Sutherland, R. S. & Bland-Hawthorn, J. Starburst-driven galactic winds: filament formation and emission processes. Astrophys. J. 703, 330–347 (2009).

    Article  ADS  Google Scholar 

  25. Gronke, M. & Oh, S. P. The growth and entrainment of cold gas in a hot wind. Mon. Not. R. Astron. Soc. 480, 111–115 (2018).

    Article  ADS  Google Scholar 

  26. Santoro, F. et al. The outer filament of Centaurus A as seen by MUSE. Astron. Astrophys. 575, 4 (2015).

    Article  Google Scholar 

  27. Hamer, S. et al. MUSE discovers perpendicular arcs in the inner filament of Centaurus A. Astron. Astrophys. 575, 3 (2015).

    Article  Google Scholar 

  28. Crockett, R. M. et al. Triggered star formation in the inner filament of Centaurus A. Mon. Not. R. Astron. Soc. 421, 1603–1623 (2012).

    Article  ADS  Google Scholar 

  29. Crnojević, D. et al. The extended halo of Centaurus A: uncovering satellites, streams, and substructures. Astrophys. J. 823, 19 (2016).

    Article  ADS  Google Scholar 

  30. Wang, J., Hammer, F., Rejkuba, M., Crnojević, D. & Yang, Y. A recent major merger tale for the closest giant elliptical galaxy Centaurus A. Mon. Not. R. Astron. Soc. 498, 2766–2777 (2020).

    Article  ADS  Google Scholar 

  31. Bowman, J. D. et al. Science with the Murchison Widefield Array. Publ. Astron. Soc. Aust. 30, 31 (2013).

    Article  ADS  Google Scholar 

  32. Turner, W. et al. Technical Report SKA-TEL-SKO-0000008, SKA Phase 1 System Requirements Specification (SKA Organisation, 2016).

  33. Wayth, R. B. et al. The Phase II Murchison Widefield Array: design overview. Publ. Astron. Soc. Aust. 35, 33 (2018).

    Article  ADS  Google Scholar 

  34. Beardsley, A. P. et al. Science with the Murchison Widefield Array: Phase I results and Phase II opportunities. Publ. Astron. Soc. Aust. 36, 50 (2019).

    Article  ADS  Google Scholar 

  35. Offringa, A. R. et al. Post-correlation radio frequency interference classification methods. Mon. Not. R. Astron. Soc. 405, 155–167 (2010).

    ADS  Google Scholar 

  36. Offringa, A. R., van de Gronde, J. J. & Roerdink, J. B. T. M. A morphological algorithm for improving radio-frequency interference detection. Astron. Astrophys. 539, 95 (2012).

    Article  Google Scholar 

  37. Offringa, A. R. et al. Parametrizing epoch of reionization foregrounds: a deep survey of low-frequency point-source spectra with the Murchison Widefield Array. Mon. Not. R. Astron. Soc. 458, 1057–1070 (2016).

    Article  ADS  Google Scholar 

  38. Offringa, A. R. et al. WSCLEAN: an implementation of a fast, generic wide-field imager for radio astronomy. Mon. Not. R. Astron. Soc. 444, 606–619 (2014).

    Article  ADS  Google Scholar 

  39. van der Tol, S., Veenboer, B. & Offringa, A. R. Image domain gridding: a fast method for convolutional resampling of visibilities. Astron. Astrophys. 616, 27 (2018).

    Article  Google Scholar 

  40. Sokolowski, M. et al. Calibration and stokes imaging with full embedded element primary beam model for the Murchison Widefield Array. Publ. Astron. Soc. Aust. 34, 62 (2017).

    Article  ADS  Google Scholar 

  41. McKinley, B. et al. The jet/wind outflow in Centaurus A: a local laboratory for AGN feedback. Mon. Not. R. Astron. Soc. 474, 4056–4072 (2018).

    Article  ADS  Google Scholar 

  42. Anderson, C. et al. The extraordinary linear polarisation structure of the southern Centaurus A lobe revealed by ASKAP. Galaxies 6, 127 (2018).

    Article  ADS  Google Scholar 

  43. Veilleux, S. et al. MMTF: The Maryland-Magellan Tunable Filter. Astron. J. 139, 145–157 (2010).

    Article  ADS  Google Scholar 

  44. Magnier, E. A. & Cuillandre, J.-C. The Elixir system: data characterization and calibration at the Canada–France–Hawaii Telescope. Publ. Astron. Soc. Pac. 116, 449–464 (2004).

    Article  ADS  Google Scholar 

  45. Gwyn, S. D. J. MegaPipe: the MegaCam image stacking pipeline at the Canadian Astronomical Data Centre. Publ. Astron. Soc. Pac. 120, 212 (2008).

    Article  ADS  Google Scholar 

  46. Bertin, E. et al. The TERAPIX pipeline. In Astronomical Society of the Pacific Conference Proceedings, Astronomical Data Analysis Software and Systems XI Vol. 281 (eds Bohlender, D. A. et al.) 228–237 (Astronomical Society of the Pacific, 2002).

  47. Bertin, E. & Arnouts, S. SExtractor: Software for source extraction. Astron. Astrophys. Suppl. 117, 393–404 (1996).

    Article  ADS  Google Scholar 

  48. Turner, R. J. & Shabala, S. S. Energetics and lifetimes of local radio active galactic nuclei. Astrophys. J. 806, 59 (2015).

    Article  ADS  Google Scholar 

  49. Eisenreich, M., Naab, T., Choi, E., Ostriker, J. P. & Emsellem, E. Active galactic nuclei feedback, quiescence and circumgalactic medium metal enrichment in early-type galaxies. Mon. Not. R. Astron. Soc. 468, 751–768 (2017).

    Article  ADS  Google Scholar 

  50. Yoon, D. et al. Active galactic nucleus feedback in an elliptical galaxy with the most updated AGN physics. II. High angular momentum case. Astrophys. J. 864, 6 (2018).

    Article  ADS  Google Scholar 

  51. Li, Y.-P. et al. Stellar and AGN feedback in isolated early-type galaxies: the role in regulating star formation and ISM properties. Astrophys. J. 866, 70 (2018).

    Article  ADS  Google Scholar 

  52. Su, K.-Y. et al. Which AGN jets quench star formation in massive galaxies? Mon. Not. R. Astron. Soc. 507, 175–204 (2021).

    Article  ADS  Google Scholar 

  53. Bondi, H. On spherically symmetrical accretion. Mon. Not. R. Astron. Soc. 112, 195–204 (1952).

    Article  ADS  MathSciNet  Google Scholar 

  54. Gaspari, M. et al. The X-ray halo scaling relations of supermassive black holes. Astrophys. J. 884, 169 (2019).

    Article  ADS  Google Scholar 

  55. Best, P. N. & Heckman, T. On the fundamental dichotomy in the local radio-AGN population: accretion, evolution and host galaxy properties. Mon. Not. R. Astron. Soc. 421, 1569–1582 (2012).

    Article  ADS  Google Scholar 

  56. Hardcastle, M. Interpreting radiative efficiency in radio-loud AGNs. Nat. Astron. 2, 273–274 (2018).

    Article  ADS  Google Scholar 

  57. Gaspari, M. The self-regulated AGN feedback loop: the role of chaotic cold accretion. Proc. Int. Astron. Union 11, 17–20 (2016).

    Article  Google Scholar 

  58. Gaspari, M. Shaken snow globes: kinematic tracers of the multiphase condensation cascade in massive galaxies, groups, and clusters. Astrophys. J. 854, 167 (2018).

    Article  ADS  Google Scholar 

  59. Gaspari, M., Temi, P. & Brighenti, F. Raining on black holes and massive galaxies: the top-down multiphase condensation model. Mon. Not. R. Astron. Soc. 466, 677–704 (2017).

    Article  ADS  Google Scholar 

  60. Gaspari, M. Shaping the X-ray spectrum of galaxy clusters with AGN feedback and turbulence. Mon. Not. R. Astron. Soc. 451, 60–64 (2015).

    Article  ADS  Google Scholar 

  61. Gaspari, M., Melioli, C., Brighenti, F. & D’Ercole, A. The dance of heating and cooling in galaxy clusters: three-dimensional simulations of self-regulated active galactic nuclei outflows. Mon. Not. R. Astron. Soc. 411, 349–372 (2011).

    Article  ADS  Google Scholar 

  62. Kraft, R. P. et al. X-ray emission from the hot interstellar medium and southwest radio lobe of the nearby radio galaxy Centaurus A. Astrophys. J. 592, 129–146 (2003).

    Article  ADS  Google Scholar 

  63. Heywood, I. et al. Inflation of 430-parsec bipolar radio bubbles in the Galactic Centre by an energetic event. Nature 573, 235–237 (2019).

    Article  ADS  Google Scholar 

  64. Su, M., Slatyer, T. R. & Finkbeiner, D. P. Giant gamma-ray bubbles from Fermi-LAT: active galactic nucleus activity or bipolar galactic wind? Astron. J. 724, 1044–1082 (2010).

    Article  Google Scholar 

  65. Dobler, G. et al. The Fermi haze: A gamma-ray counterpart to the microwave haze. Astron. J. 717, 825–842 (2010).

    Article  Google Scholar 

  66. Carretti, E. et al. Giant magnetized outflows from the centre of the Milky Way. Nature 493, 66–69 (2013).

    Article  ADS  Google Scholar 

  67. Finkbeiner, D. P. Microwave interstellar medium emission observed by the Wilkinson Microwave Anisotropy Probe. Astrophys. J. 614, 186–193 (2004).

    Article  ADS  Google Scholar 

  68. Crocker, R. M., Bicknell, G. V., Taylor, A. M. & Carretti, E. A unified model of the Fermi bubbles, microwave haze, and polarized radio lobes: reverse shocks in the Galactic Center’s giant outflows. Astrophys. J. 808, 107 (2015).

    Article  ADS  Google Scholar 

  69. Merloni, A., Nandra, K. & Predehl, P. eROSITAa’s X-ray eyes on the Universe. Nat. Astron. 4, 634–636 (2020).

    Article  ADS  Google Scholar 

  70. Predehl, P. et al. Detection of large-scale X-ray bubbles in the Milky Way halo. Nature 588, 227–231 (2020).

    Article  ADS  Google Scholar 

  71. Bogdán, Á. & Gilfanov, M. Soft band X/K luminosity ratios for gas-poor early-type galaxies. Astron. Astrophys. 512, 16 (2010).

    Article  ADS  Google Scholar 

  72. Sądowski, A. & Gaspari, M. Kinetic and radiative power from optically thin accretion flows. Mon. Not. R. Astron. Soc. 468, 1398–1404 (2017).

    Article  ADS  Google Scholar 

  73. Gaspari, M., Brighenti, F. & Temi, P. Mechanical AGN feedback: controlling the thermodynamical evolution of elliptical galaxies. Mon. Not. R. Astron. Soc. 424, 190–209 (2012).

    Article  ADS  Google Scholar 

  74. Godfrey, L. E. H. & Shabala, S. S. Mutual distance dependence drives the observed jet-power–radio-luminosity scaling relations in radio galaxies. Mon. Not. R. Astron. Soc. 456, 1172–1184 (2016).

    Article  ADS  Google Scholar 

  75. Eilek, J. A. The dynamic age of Centaurus A. New J. Phys. 16, 045001 (2014).

    Article  ADS  Google Scholar 

  76. Wykes, S. et al. Mass entrainment and turbulence-driven acceleration of ultra-high energy cosmic rays in Centaurus A. Astron. Astrophys. 558, 19 (2013).

    Article  Google Scholar 

  77. O’Sullivan, S. P. et al. Thermal plasma in the giant lobes of the radio galaxy Centaurus A. Astrophys. J. 764, 162 (2013).

    Article  ADS  Google Scholar 

  78. Stawarz, Ł. et al. Giant lobes of Centaurus A radio galaxy observed with the Suzaku X-ray satellite. Astrophys. J. 766, 48 (2013).

    Article  ADS  Google Scholar 

  79. Schiminovich, D., van Gorkom, J. H., van der Hulst, J. M. & Kasow, S. Discovery of neutral hydrogen associated with the diffuse shells of NGC 5128 (Centaurus A). Astrophys. J. Lett. 423, 101 (1994).

    Article  ADS  Google Scholar 

  80. Graham, J. A. & Price, R. M. The gaseous filaments in the northeast halo region of NGC 5128 (Centaurus A). Astrophys. J. 247, 813–822 (1981).

    Article  ADS  Google Scholar 

  81. Morganti, R. et al. The nature of the optical filaments in Centaurus A. Evidence for a beamed ionizing continuum. Mon. Not. R. Astron. Soc. 249, 91–112 (1991).

    Article  ADS  Google Scholar 

  82. Santoro, F. et al. The jet-ISM interaction in the outer filament of Centaurus A. Astron. Astrophys. 574, 89 (2015).

    Article  Google Scholar 

  83. Sutherland, R. S., Bicknell, G. V. & Dopita, M. A. Shock excitation of the emission-line filaments in Centaurus A. Astrophys. J. 414, 510 (1993).

    Article  ADS  Google Scholar 

  84. Gaspari, M., Ruszkowski, M. & Sharma, P. Cause and effect of feedback: multiphase gas in cluster cores heated by AGN jets. Astrophys. J. 746, 94 (2012).

    Article  ADS  Google Scholar 

  85. Kraft, R. P. et al. Evidence for nonhydrostatic gas motions in the hot interstellar medium of Centaurus A. Astrophys. J. 677, 97 (2008).

    Article  Google Scholar 

  86. Król, D. Ł., Marchenko, V., Ostrowski, M. & Stawarz, Ł. An analysis of soft X-ray structures at kiloparsec distances from the active nucleus of Centaurus A galaxy. Astrophys. J. 903, 107 (2020).

    Article  ADS  Google Scholar 

  87. Israel, F. P. et al. The outflow of gas from the Centaurus A circumnuclear disk. Atomic spectral line maps from Herschel/PACS and APEX. Astron. Astrophys. 599, 53 (2017).

    Article  Google Scholar 

  88. Veilleux, S., Cecil, G. & Bland-Hawthorn, J. Galactic winds. Annu. Rev. Astron. Astrophys. 43, 769–826 (2005).

    Article  ADS  Google Scholar 

  89. DeBoer, D. R. et al. Australian SKA Pathfinder: a high-dynamic range wide-field of view survey telescope. Proc. IEEE 97, 1507–1521 (2009).

    Article  ADS  Google Scholar 

  90. Hotan, A. W. et al. The Australian Square Kilometre Array Pathfinder: system architecture and specifications of the Boolardy engineering test array. Publ. Astron. Soc. Aust. 31, 41 (2014).

    Article  ADS  Google Scholar 

  91. Camilo, F. et al. Revival of the magnetar PSR J1622-4950: observations with MeerKAT, Parkes, XMM-Newton, Swift, Chandra, and NuSTAR. Astron. J. 856, 180 (2018).

    Article  Google Scholar 

  92. Jonas, J. et al. The MeerKAT radio telescope. In Proc. of MeerKAT Science: On the Pathway to the SKA Proceedings of Science, Vol. 277 (eds Taylor, R. et al.) Article ID 001 (SISSA, 2018).

  93. Tingay, S. J., Preston, R. A. & Jauncey, D. L. The subparsec-scale structure and evolution of Centaurus A. II. Continued very long baseline array monitoring. Astron. J. 122, 1697–1706 (2001).

    Article  ADS  Google Scholar 

  94. Jones, D. L. et al. Discovery of a sub-parsec radio counterjet in the nucleus of Centaurus A. Astrophys. J. 466, 63 (1996).

    Article  Google Scholar 

  95. Tombesi, F. et al. Ultrafast outflows in radio-loud active galactic nuclei. Mon. Not. R. Astron. Soc. 443, 2154–2182 (2014).

    Article  ADS  Google Scholar 

  96. Nesvadba, N. P. H. et al. Gas kinematics in powerful radio galaxies at z ~ 2: energy supply from star formation, AGN, and radio jets. Astron. Astrophys. 600, 121 (2017).

    Article  Google Scholar 

  97. Morganti, R. Radio jets clearing the way through galaxies: the view from HI and molecular gas. Proc. Int. Astron. Union 313, 283–288 (2015).

    Google Scholar 

  98. Bicknell, G. V. et al. AGN feedback by relativistic jets. Proc. Int. Astron Union 313, 101–107 (2015).

    Google Scholar 

  99. van Gorkom, J. H. et al. H i absorption in radio elliptical galaxies—evidence for infall. Astron. J. 97, 708–719 (1989).

    Article  ADS  Google Scholar 

  100. van der Hulst, J. M. et al. The H i absorption in NGC 5128 (Centaurus A). Astrophys. J. 264, 37–41 (1983).

    Article  Google Scholar 

  101. Best, P. N. The host galaxies of radio-loud active galactic nuclei: mass dependences, gas cooling and active galactic nuclei feedback. Mon. Not. R. Astron. Soc. 362, 25–40 (2005).

    Article  ADS  Google Scholar 

  102. Neumayer, N. The supermassive black hole at the heart of Centaurus A: revealed by the kinematics of gas and stars. Publ. Astron. Soc. Aust. 27, 449–456 (2010).

    Article  ADS  Google Scholar 

  103. Cooper, B. F. C., Price, R. M. & Cole, D. J. A study of the decimetric emission and polarization of Centaurus A. Aust. J. Phys. 18, 589–626 (1965).

    Article  ADS  Google Scholar 

  104. McNamara, B. R. et al. An energetic AGN outburst powered by a rapidly spinning supermassive black hole or an accreting ultramassive black hole. Astrophys. J. 698, 594–605 (2009).

    Article  ADS  Google Scholar 

  105. McDonald, M. et al. Observational evidence for enhanced black hole accretion in giant elliptical galaxies. Astrophys. J. 908, 85 (2021).

    Article  ADS  Google Scholar 

  106. Donnari, M. et al. The star formation activity of IllustrisTNG galaxies: main sequence, UVJ diagram, quenched fractions, and systematics. Mon. Not. R. Astron. Soc. 485, 4817–4840 (2019).

    Article  ADS  Google Scholar 

  107. Zinger, E. et al. Ejective and preventative: the IllustrisTNG black hole feedback and its effects on the thermodynamics of the gas within and around galaxies. Mon. Not. R. Astron. Soc. 499, 768–792 (2020).

    Article  ADS  Google Scholar 

  108. Bassini, L. et al. Black hole mass of central galaxies and cluster mass correlation in cosmological hydro-dynamical simulations. Astron. Astrophys. 630, 144 (2019).

    Article  Google Scholar 

  109. Truong, N., Pillepich, A. & Werner, N. Correlations between supermassive black holes and hot gas atmospheres in IllustrisTNG and X-ray observations. Mon. Not. R. Astron. Soc. 501, 2210–2230 (2021).

    Article  ADS  Google Scholar 

  110. Mitchell, P. D. et al. Galactic outflow rates in the EAGLE simulations. Mon. Not. R. Astron. Soc. 494, 3971–3997 (2020).

    Article  ADS  Google Scholar 

  111. Davé, R. et al. SIMBA: cosmological simulations with black hole growth and feedback. Mon. Not. R. Astron. Soc. 486, 2827–2849 (2019).

    Article  ADS  Google Scholar 

  112. Beckmann, R. S. et al. Cosmic evolution of stellar quenching by AGN feedback: clues from the Horizon-AGN simulation. Mon. Not. R. Astron. Soc. 472, 949–965 (2017).

    Article  ADS  Google Scholar 

  113. Tremmel, M. et al. Introducing ROMULUSC: a cosmological simulation of a galaxy cluster with an unprecedented resolution. Mon. Not. R. Astron. Soc. 483, 3336–3362 (2019).

    Article  ADS  Google Scholar 

  114. Marinacci, F. et al. First results from the IllustrisTNG simulations: radio haloes and magnetic fields. Mon. Not. R. Astron. Soc. 480, 5113–5139 (2018).

    ADS  Google Scholar 

  115. Naiman, J. P. et al. First results from the IllustrisTNG simulations: a tale of two elements—chemical evolution of magnesium and europium. Mon. Not. R. Astron. Soc. 477, 1206–1224 (2018).

    Article  ADS  Google Scholar 

  116. Nelson, D. et al. First results from the IllustrisTNG simulations: the galaxy colour bimodality. Mon. Not. R. Astron. Soc. 475, 624–647 (2018).

    Article  ADS  Google Scholar 

  117. Pillepich, A. et al. First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies. Mon. Not. R. Astron. Soc. 475, 648–675 (2018).

    Article  ADS  Google Scholar 

  118. Springel, V. et al. First results from the IllustrisTNG simulations: matter and galaxy clustering. Mon. Not. R. Astron. Soc. 475, 676–698 (2018).

    Article  ADS  Google Scholar 

  119. Pillepich, A. et al. First results from the TNG50 simulation: the evolution of stellar and gaseous discs across cosmic time. Mon. Not. R. Astron. Soc. 490, 3196–3233 (2019).

    Article  ADS  Google Scholar 

  120. Brennan, R. et al. Momentum-driven winds from radiatively efficient black hole accretion and their impact on galaxies. Astrophys. J. 860, 14 (2018).

    Article  ADS  Google Scholar 

  121. Gofford, J. et al. The Suzaku view of highly ionized outflows in AGN—I. Statistical detection and global absorber properties. Mon. Not. R. Astron. Soc. 430, 60–80 (2013).

    Article  ADS  Google Scholar 

  122. Gofford, J. et al. The Suzaku view of highly ionized outflows in AGN—II. Location, energetics and scalings with bolometric luminosity. Mon. Not. R. Astron. Soc. 451, 4169–4182 (2015).

    Article  ADS  Google Scholar 

  123. Tombesi, F. et al. Feeding and feedback in the powerful radio galaxy 3C 120. Astrophys. J. 838, 16 (2017).

    Article  ADS  Google Scholar 

  124. Harrison, C. M. et al. The KMOS AGN survey at high redshift (KASHz): the prevalence and drivers of ionized outflows in the host galaxies of X-ray AGN. Mon. Not. R. Astron. Soc. 456, 1195–1220 (2016).

    Article  ADS  Google Scholar 

  125. Schmidt, M., Schneider, D. P. & Gunn, J. E. Spectroscopic CCD surveys for quasars at large redshift IV: evolution of the luminosity function from quasars detected by their Lyman-alpha emission. Astron. J. 110, 68–77 (1995).

    Article  ADS  Google Scholar 

  126. Leung, G. C. K. et al. The MOSDEF survey: the prevalence and properties of galaxy-wide AGN-driven outflows at z ~ 2. Astrophys. J. 849, 48 (2017).

    Article  ADS  Google Scholar 

  127. Circosta, C. et al. SUPER I: toward an unbiased study of ionized outflows in z ~ 2 active galactic nuclei: survey overview and sample characterization. Astron. Astrophys. 620, 82 (2018).

    Article  Google Scholar 

  128. Kakkad, D. et al. SUPER II: spatially resolved ionised gas kinematics and scaling relations in z ~ 2 AGN host galaxies. Astron. Astrophys. 642, 147 (2020).

    Article  Google Scholar 

  129. Bischetti, M. et al. Widespread QSO-driven outflows in the early Universe. Astron. Astrophys. 630, 59 (2019).

    Article  Google Scholar 

  130. Croston, J. H. et al. High-energy particle acceleration at the radio-lobe shock of Centaurus A. Mon. Not. R. Astron. Soc. 395, 1999–2012 (2009).

    Article  ADS  Google Scholar 

  131. Keel, W. C. et al. Optical detection of star formation in a cold dust cloud in the counterjet direction of Centaurus A. Astron. J. 157, 66 (2019).

    Article  ADS  Google Scholar 

  132. O’Sullivan, E., Ponman, T. J. & Collins, R. S. X-ray scaling properties of early-type galaxies. Mon. Not. R. Astron. Soc. 340, 1375–1399 (2003).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This scientific work makes use of the Murchison Radio-Astronomy Observatory, operated by the Commonwealth Scientific and Industrial Research Organisation. We acknowledge the Wajarri Yamatji people as the traditional owners of the Observatory site. Support for the operation of the MWA is provided by the Australian Government through the National Collaborative Research Infrastructure Strategy, under a contract to Curtin University administered by Astronomy Australia Limited. We acknowledge the Pawsey Supercomputing Centre, which is supported by the Western Australian and Australian Governments. M.G. acknowledges partial support by National Aeronautics and Space Administration Chandra GO8-19104X/GO9-20114X and Hubble Space Telescope GO-15890.020/023-A, and the BlackHoleWeather programme. M.S.C. and M.M. thank S. Courteau and D. Simons for CFHT Director’s discretionary time via the Mauna Kea Graduate School programme. Research by D.C. is supported by National Science Foundation grant AST-1814208. This work was supported by an Australian Research Council Future Fellowship under grant FT180100321. The authors thank A. Pillepich, R. Morganti, R. Wahl-Olsen and M. Sidonio for useful discussions and guidance during preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Processing of the radio data was performed by B.M. A.R.O. contributed software development crucial to the success of the radio-data processing. Processing of the lower resolution Hα data in Fig. 2 and visualization of the radio data in Extended Data Fig. 1 was performed by C.M. Processing of the CFHT data was performed by M.S.C., M.M. and S.D.J.G. R.P.K. provided the X-ray data and input regarding its role in the analysis. D.C. provided the RGB star map and input regarding the merger history of Centaurus A.M.G., S.S.S., S.V., S.J.T. and J.B-H. provided input on modelling, theoretical aspects and consistency with observations. B.M.G. and M.J-H. played critical roles in the upgrade of the MWA that enabled the radio observations. All authors contributed to the interpretation of the data and the discussion presented, and all were involved in the writing of the paper.

Corresponding author

Correspondence to B. McKinley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Martin Hardcastle, Gene Leung and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Centaurus A with modified intensity and color scale.

Centaurus A as imaged with the MWA at 185 MHz, with the intensity scale manipulated in order to deal with the extreme dynamic range of the image. The intensity scale has been altered in a non-linear fashion, so the greyscale/colorscale range is not meaningful and is not displayed. This is intended as a qualitative representation of the data only. The average restoring beam is a Gaussian of width 1.5 x 1.2 arcmin with a major axis position angle of 155°. Right: The image has been stretched using the astrophotography program PixInsight (see Methods) to effectively identify and label the key features of the radio galaxy. This image was not used for quantitative analyses, but is used here to indicate the positions of various features discussed in the text, including the 71° opening angle estimated for the southern component of the broad AGN outflow (blue lines). Left: Color has been added to the stretched image in the right panel using Photoshop, in order to better show the large-scale diffuse emission along with the finer details of the radio lobes. Yellow and white show higher intensities, while red and magenta show lower intensities.

Extended Data Fig. 2 Centaurus A in Hα emission with radio and X-ray contours.

Widefield Hα image of the central 1° of Centaurus A taken with CFHT. The point spread function is characterised by a two-dimensional Moffat function with a core width of 5.7 arcsec (see Methods). Red contours show the X-ray knots from Fig. 2 at approximately 3σ and 6σ above the background noise, where σ is the standard deviation of a group of background pixels. Blue contours are from the MWA radio image at 0.5, 1, 1.5, 2 Jy/beam. The average restoring beam of the MWA image from which the blue contours were obtained is a Gaussian of width 1.5 x 1.2 arcmin with a major axis position angle of 155°. Top right inset: higher resolution (0.8 arcsec) MMTF image41 zoom in on part of the outer filament showing the arcs of ionised gas which resemble bow shocks. Bottom left inset: higher resolution (0.8 arcsec) MMTF image41 zoom in on inner filament showing a similarly shaped arc of ionised gas, indicating the presence of a wind from the central galaxy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McKinley, B., Tingay, S.J., Gaspari, M. et al. Multi-scale feedback and feeding in the closest radio galaxy Centaurus A. Nat Astron 6, 109–120 (2022). https://doi.org/10.1038/s41550-021-01553-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01553-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing