Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High-resolution detection of neutral oxygen and non-LTE effects in the atmosphere of KELT-9b

Abstract

Oxygen is a constituent of many of the most abundant molecules detected in exoplanetary atmospheres and a key ingredient for tracking how and where a planet formed1. In particular, the O i 777.4 nm triplet is used to probe airglow and aurora on the Earth2 and the oxygen abundance in stellar atmospheres3,4,5,6, but has not been detected in an exoplanet atmosphere before. We present a definite ground-based detection of the neutral oxygen 777.4 nm triplet lines in the transmission spectrum of the ultrahot Jupiter KELT-9b7, the hottest known giant planet. The synthetic spectrum computed employing novel non-local thermodynamic equilibrium radiative transfer calculations8 matches the data significantly better than that computed assuming local thermodynamic equilibrium. These non-local thermodynamic equilibrium radiative transfer calculations imply a mass-loss rate of 108–109 kg s−1, which exceeds the lower limit of 107–108 kg s−1 required to facilitate the escape of oxygen and iron from the atmosphere. Assuming a solar oxygen abundance, the non-local thermodynamic equilibrium model points towards the need for microturbulence and macroturbulence broadening of 3.0 ± 0.7 km s−1 and 13 ± 5 km s−1, respectively, indicative of the presence of fast winds in the middle and upper atmosphere. Present and upcoming high-resolution spectrographs will allow the detection in other exoplanets of the 777.4 nm O i triplet, which is a powerful tool to constrain the key characteristics of exoplanetary atmospheres when coupled with forward modelling accounting for non-local thermodynamic equilibrium effects.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transmission spectrum of KELT-9b around the O i triplet.
Fig. 2: Planetary reference frame confirmation.
Fig. 3: Χ2 minimization map of the NLTE synthetic spectrum.
Fig. 4: Atmospheric sound speed and Jeans escape parameter.

Similar content being viewed by others

Data availability

Data used in this work are publicly available from the Calar Alto archive at http://caha.sdc.cab.inta-csic.es/calto/.

Code availability

The spectral reduction was done with a self-written IDL script. The stellar model spectrum used for the stellar contamination impact was obtained with the Spectroscopy Made Easy tool, which is publicly available from http://www.stsci.edu/~valenti/sme.html. The DE-MCMC routines were taken from EXOFAST, publicly available at https://github.com/jdeast/EXOFASTv2.

References

  1. Madhusudhan, N. Exoplanetary atmospheres: key insights, challenges, and prospects. Annu. Rev. Astron. Astrophys. 57, 617–663 (2019).

    Article  ADS  Google Scholar 

  2. Mendillo, M., Withers, P. & Dalba, P. A. Atomic oxygen ions as ionospheric biomarkers on exoplanets. Nat. Astron. 2, 287–291 (2018).

    Article  ADS  Google Scholar 

  3. Kiselman, D. The 777 nm oxygen triplet in the Sun and solar-type stars, and its use for abundance analysis. Astron. Astrophys. 275, 269–282 (1993).

    ADS  Google Scholar 

  4. Przybilla, N., Butler, K., Becker, S. R., Kudritzki, R. P. & Venn, K. A. Non-LTE line formation for neutral oxygen. Model atom and first results on A-type stars. Astron. Astrophys. 359, 1085–1106 (2000).

    ADS  Google Scholar 

  5. Steffen, M. The photospheric solar oxygen project. IV. 3D-NLTE investigation of the 777 nm triplet lines. Astron. Astrophys. 583, A57 (2015).

    Article  Google Scholar 

  6. Sitnova, T. M. & Mashonkina, L. I. Influence of inelastic collisions with hydrogen atoms on non-LTE oxygen abundance determinations. Astron. Lett. 44, 411–419 (2018).

    Article  ADS  Google Scholar 

  7. Gaudi, B. S. et al. A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host. Nature 546, 514–518 (2017).

    Article  ADS  Google Scholar 

  8. Fossati, L. et al. Non-local thermodynamic equilibrium effects determine the upper atmospheric temperature structure of the ultrahot Jupiter KELT-9b. Astron. Astrophys. 653, A52 (2021).

    Article  Google Scholar 

  9. Yan, F. & Henning, T. An extended hydrogen envelope of the extremely hot giant exoplanet KELT-9b. Nat. Astron. 2, 714–718 (2018).

    Article  ADS  Google Scholar 

  10. Cauley, P. W. et al. Atmospheric dynamics and the variable transit of KELT-9 b. Astrophys. J. 157, 69 (2019).

    Google Scholar 

  11. Turner, J. D. et al. Detection of ionized calcium in the atmosphere of the ultrahot Jupiter KELT-9b. Astrophys. J. 888, L13 (2020).

    Article  ADS  Google Scholar 

  12. Wyttenbach, A. et al. Mass-loss rate and local thermodynamic state of the KELT-9 b thermosphere from the hydrogen Balmer series. Astron. Astrophys. 638, A87 (2020).

    Article  Google Scholar 

  13. Hoeijmakers, H. J. et al. Atomic iron and titanium in the atmosphere of the exoplanet KELT-9b. Nature 560, 453–455 (2018).

    Article  ADS  Google Scholar 

  14. Hoeijmakers, H. J. et al. A spectral survey of an ultrahot Jupiter. Detection of metals in the transmission spectrum of KELT-9 b. Astron. Astrophys. 627, A165 (2019).

    Article  Google Scholar 

  15. Pino, L. et al. Neutral iron emission lines from the dayside of KELT-9b: the GAPS Program with HARPS-N at TNG XX. Astrophys. J. 894, L27 (2020).

    Article  ADS  Google Scholar 

  16. Borsa, F. et al. The GAPS Programme with HARPS-N at TNG. XIX. Atmospheric Rossiter–McLaughlin effect and improved parameters of KELT-9b. Astron. Astrophys. 631, A34 (2019).

    Article  Google Scholar 

  17. Lothringer, J. D., Barman, T. & Koskinen, T. Extremely irradiated hot Jupiters: non-oxide inversions, H opacity, and thermal dissociation of molecules. Astrophys. J. 866, 27 (2018).

    Article  ADS  Google Scholar 

  18. Fossati, L. et al. A data-driven approach to constraining the atmospheric temperature structure of the ultrahot Jupiter KELT-9b. Astron. Astrophys. 643, A131 (2020).

    Article  Google Scholar 

  19. García Muñoz, A. & Schneider, P. C. Rapid escape of ultrahot exoplanet atmospheres driven by hydrogen Balmer absorption. Astrophys. J. 884, L43 (2019).

    Article  ADS  Google Scholar 

  20. Quirrenbach, A. et al. CARMENES instrument overview. Proc. SPIE 9147, 91471F (2014).

    Article  Google Scholar 

  21. Borsa, F. & Zannoni, A. Stellar contributions to the line profiles of high-resolution transmission spectra of exoplanets. Astron. Astrophys. 617, A134 (2018).

    Article  ADS  Google Scholar 

  22. Casasayas-Barris, N. et al. Is there Na i in the atmosphere of HD 209458b? Effect of the centre-to-limb variation and Rossiter–McLaughlin effect in transmission spectroscopy studies. Astron. Astrophys. 635, A206 (2020).

  23. Lecavelier des Etangs, A., Vidal-Madjar, A., McConnell, J. C. & Hébrard, G. Atmospheric escape from hot Jupiters. Astron. Astrophys. 418, L1–L4 (2004).

    Article  ADS  Google Scholar 

  24. Li, S. L., Miller, N., Lin, D. N. C. & Fortney, J. J. WASP-12b as a prolate, inflated and disrupting planet from tidal dissipation. Nature 463, 1054–1056 (2010).

    Article  ADS  Google Scholar 

  25. Guo, J. H. Escaping particle fluxes in the atmospheres of close-in exoplanets. II. Reduced mass-loss rates and anisotropic winds. Astrophys. J. 766, 102 (2013).

    Article  ADS  Google Scholar 

  26. Tan, X. & Komacek, T. D. The atmospheric circulation of ultrahot Jupiters. Astrophys. J. 886, 26 (2019).

    Article  ADS  Google Scholar 

  27. Vidal-Madjar, A. et al. Detection of oxygen and carbon in the hydrodynamically escaping atmosphere of the extrasolar planet HD 209458b. Astrophys. J. 604, L69 (2004).

  28. Ben-Jaffel, L. & Ballester, G. E. Hubble Space Telescope detection of oxygen in the atmosphere of exoplanet HD 189733b. Astron. Astrophys. 553, A52 (2013).

    Article  ADS  Google Scholar 

  29. Caballero, J. A. et al. CARMENES: data flow. Proc. SPIE 9910, 99100E (2016).

  30. Zechmeister, M., Anglada-Escudé, G. & Reiners, A. Flat-relative optimal extraction. A quick and efficient algorithm for stabilised spectrographs. Astron. Astrophys. 561, A59 (2014).

    Article  ADS  Google Scholar 

  31. Bauer, F. F., Zechmeister, M. & Reiners, A. Calibrating echelle spectrographs with Fabry–Pérot etalons. Astron. Astrophys. 581, A117 (2015).

    Article  ADS  Google Scholar 

  32. Wyttenbach, A., Ehrenreich, D., Lovis, C., Udry, S. & Pepe, F. Spectrally resolved detection of sodium in the atmosphere of HD 189733b with the HARPS spectrograph. Astron. Astrophys. 577, A62 (2015).

    Article  ADS  Google Scholar 

  33. Snellen, I. A. G., Albrecht, S., de Mooij, E. J. W. & Le Poole, R. S. Ground-based detection of sodium in the transmission spectrum of exoplanet HD 209458b. Astron. Astrophys. 487, 357–362 (2008).

    Article  ADS  Google Scholar 

  34. Vidal-Madjar, A. et al. The Earth as an extrasolar transiting planet. Earth’s atmospheric composition and thickness revealed by Lunar eclipse observations. Astron. Astrophys. 523, A57 (2010).

    Article  Google Scholar 

  35. Astudillo-Defru, N. & Rojo, P. Ground-based detection of calcium and possibly scandium and hydrogen in the atmosphere of HD 209458b. Astron. Astrophys. 557, A56 (2013).

    Article  ADS  Google Scholar 

  36. Yan, F., Pallé, E., Fosbury, R. A. E., Petr-Gotzens, M. G. & Henning, T. Effect of the stellar absorption line centre-to-limb variation on exoplanet transmission spectrum observations. Astron. Astrophys. 603, A73 (2017).

    Article  ADS  Google Scholar 

  37. Piskunov, N. & Valenti, J. A. Spectroscopy Made Easy: evolution. Astron. Astrophys. 597, A16 (2017).

    Article  ADS  Google Scholar 

  38. Ryabchikova, T. et al. A major upgrade of the VALD database. Phys. Scr. 90, 054005 (2015).

    Article  ADS  Google Scholar 

  39. Brogi, M. et al. Rotation and winds of exoplanet HD 189733 b measured with high-dispersion transmission spectroscopy. Astrophys. J. 817, 106 (2016).

    Article  ADS  Google Scholar 

  40. Palle, E. et al. Transmission spectroscopy and Rossiter–McLaughlin measurements of the young Neptune orbiting AU Mic. Astron. Astrophys. 643, A25 (2020).

    Article  Google Scholar 

  41. Benatti, S. et al. Constraints on the mass and atmospheric composition and evolution of the low-density young planet DS Tuc A b. Astron. Astrophys. 650, A66 (2021).

    Article  Google Scholar 

  42. Ter Braak, C. J. F. A Markov chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces. Stat. Comput. 16, 239 (2006).

    Article  MathSciNet  Google Scholar 

  43. Eastman, J., Gaudi, B. S. & Agol, E. EXOFAST: a fast exoplanetary fitting suite in IDL. Publ. Astron. Soc. Pac. 125, 83–112 (2013).

    Article  ADS  Google Scholar 

  44. Hunten, D. M., Pepin, R. O. & Walker, J. C. G. Mass fractionation in hydrodynamic escape. Icarus 69, 532–549 (1987).

    Article  ADS  Google Scholar 

  45. Koskinen, T. T., Yelle, R. V., Lavvas, P. & Cho, J. Y.-K. Electrodynamics on extrasolar giant planets. Astrophys. J. 796, 16 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

F.B. acknowledges support from PLATO ASI-INAF agreement 2015-019-R.1-2018. This research has made use of the Spanish Virtual Observatory (http://svo.cab.inta-csic.es) supported by the MINECO/FEDER through grant AyA2017-84089.7. T.K. acknowledges support by the NASA Exoplanet Research Program grant 80NSSC18K0569. D.S. acknowledges financial support from the State Agency for Research of the Spanish MCIU through the Center of Excellence Severo Ochoa award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709). M.E.Y. acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement 805445.

Author information

Authors and Affiliations

Authors

Contributions

F.B. carried out the data analysis. L.F. and T.K. performed the theoretical calculations. F.B., L.F. and T.K. contributed to the writing of the manuscript. All authors contributed to the interpretation of the data and the results.

Corresponding author

Correspondence to Francesco Borsa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Matteo Brogi and Fei Yan for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borsa, F., Fossati, L., Koskinen, T. et al. High-resolution detection of neutral oxygen and non-LTE effects in the atmosphere of KELT-9b. Nat Astron 6, 226–231 (2022). https://doi.org/10.1038/s41550-021-01544-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01544-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing