Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rapid contraction of giant planets orbiting the 20-million-year-old star V1298 Tau

Subjects

Abstract

Current theories of planetary evolution predict that infant giant planets have large radii and very low densities before they slowly contract to reach their final size after about several hundred million years1,2. These theoretical expectations remain untested so far as the detection and characterization of very young planets is extremely challenging due to the intense stellar activity of their host stars3,4. Only the recent discoveries of young planetary transiting systems allow initial constraints to be placed on evolutionary models5,6,7. With an estimated age of 20 million years, V1298 Tau is one of the youngest solar-type stars known to host transiting planets; it harbours a system composed of four planets, two Neptune-sized, one Saturn-sized and one Jupiter-sized8,9. Here we report a multi-instrument radial velocity campaign of V1298 Tau, which allowed us to determine the masses of two of the planets in the system. We find that the two outermost giant planets, V1298 Tau b and e (0.64 ± 0.19 and 1.16 ± 0.30 Jupiter masses, respectively), seem to contradict our knowledge of early-stages planetary evolution. According to models, they should reach their mass–radius combination only hundreds of millions of years after formation. This result suggests that giant planets can contract much more quickly than usually assumed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phase-folded plots of the RV signals for the two planets of the V1298 Tau planetary system with significant mass measurements.
Fig. 2: Planets of V1298 Tau in the context of the known planets.
Fig. 3: Planets of V1298 Tau in the context of the models of planetary evolution.

Similar content being viewed by others

Data availability

The RV, LCOGT and K2 time series are available at https://cloud.iac.es/index.php/s/jto2dxfHRF2Aw2B. The public high-resolution spectroscopic raw data used in the study can be freely downloaded from the corresponding facility archives. Proprietary raw data are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

The SERVAL template-matching radial velocity measurement tool, celerite, George, emcee, dynesty, RadVel, PyTransit, AstroImageJ, SYNPLE, StePar, FERRE and MOOG are easily accessible open-source projects. Additional software is available upon request.

References

  1. Mordasini, C. et al. Characterization of exoplanets from their formation. II. The planetary mass-radius relationship. Astron. Astrophys. 547, A112 (2012).

    Article  Google Scholar 

  2. D’Angelo, G., Weidenschilling, S. J., Lissauer, J. J. & Bodenheimer, P. Growth of Jupiter: formation in disks of gas and solids and evolution to the present epoch. Icarus 355, 114087 (2021).

    Article  Google Scholar 

  3. Donati, J. F. et al. A hot Jupiter orbiting a 2-million-year-old solar-mass T Tauri star. Nature 534, 662–666 (2016).

    Article  ADS  Google Scholar 

  4. Damasso, M. et al. The GAPS Programme at TNG. XXVII. Reassessment of a young planetary system with HARPS-N: is the hot Jupiter V830 Tau b really there? Astron. Astrophys. 642, A133 (2020).

    Article  Google Scholar 

  5. David, T. J., Hillenbrand, L. A., Cody, A. M., Carpenter, J. M. & Howard, A. W. K2 discovery of young eclipsing binaries in Upper Scorpius: direct mass and radius determinations for the lowest mass stars and initial characterization of an eclipsing brown dwarf binary. Astrophys. J. 816, 21 (2016).

    Article  ADS  Google Scholar 

  6. Plavchan, P. et al. A planet within the debris disk around the pre-main-sequence star AU Microscopii. Nature 582, 497–500 (2020).

    Article  ADS  Google Scholar 

  7. Klein, B. et al. Investigating the young AU Mic system with SPIRou: large-scale stellar magnetic field and close-in planet mass. Mon. Not. R. Astron. Soc. 502, 188–205 (2021).

    Article  ADS  Google Scholar 

  8. David, T. J. et al. A warm Jupiter-sized planet transiting the pre-main-sequence star V1298 Tau. Astron. J. 158, 79 (2019).

    Article  ADS  Google Scholar 

  9. David, T. J. et al. Four newborn planets transiting the young solar analog V1298 Tau. Astrophys. J. Lett. 885, L12 (2019).

    Article  ADS  Google Scholar 

  10. Oh, S., Price-Whelan, A. M., Hogg, D. W., Morton, T. D. & Spergel, D. N. Comoving stars in Gaia DR1: an abundance of very wide separation comoving pairs. Astron. J. 153, 257 (2017).

    Article  ADS  Google Scholar 

  11. Howell, S. B. et al. The K2 mission: characterization and early results. Publ. Astron. Soc. Pac. 126, 398 (2014).

    Article  ADS  Google Scholar 

  12. Beichman, C. et al. A mass limit for the young transiting planet V1298 Tau b. Res. Notes AAS 3, 89 (2019).

    Article  ADS  Google Scholar 

  13. Brown, T. M. et al. Las Cumbres Observatory Global Telescope network. Publ. Astron. Soc. Pac. 125, 1031 (2013).

    Article  ADS  Google Scholar 

  14. Rasmussen, C. E. & Williams, C. K. I. Gaussian Processes for Machine Learning (MIT Press, 2006).

  15. David, T. J. et al. Age determination in Upper Scorpius with eclipsing binaries. Astrophys. J. 872, 161 (2019).

    Article  ADS  Google Scholar 

  16. Brahm, R. et al. HATS-17b: a transiting compact warm Jupiter in a 16.3 day circular orbit. Astron. J. 151, 89 (2016).

    Article  ADS  Google Scholar 

  17. Mancini, L. et al. Kepler-539: a young extrasolar system with two giant planets on wide orbits and in gravitational interaction. Astron. Astrophys. 590, A112 (2016).

    Article  Google Scholar 

  18. Fortney, J. J., Marley, M. S. & Barnes, J. W. Planetary radii across five orders of magnitude in mass and stellar insolation: application to transits. Astrophys. J. 659, 1661–1672 (2007).

    Article  ADS  Google Scholar 

  19. Baraffe, I., Chabrier, G. & Barman, T. Structure and evolution of super-Earth to super-Jupiter exoplanets. I. Heavy element enrichment in the interior. Astron. Astrophys. 482, 315–332 (2008).

    Article  ADS  Google Scholar 

  20. Emsenhuber, A. et al. The New Generation Planetary Population Synthesis (NGPPS). II. Planetary population of solar-like stars and overview of statistical results. Preprint at https://arxiv.org/abs/2007.05562 (2020).

  21. Poppenhaeger, K., Ketzer, L. & Mallonn, M. X-ray irradiation and evaporation of the four young planets around V1298 Tau. Mon. Not. R. Astron. Soc. 500, 4560–4572 (2021).

    Article  ADS  Google Scholar 

  22. Thorngren, D. P., Fortney, J. J., Murray-Clay, R. A. & Lopez, E. D. The mass–metallicity relation for giant planets. Astrophys. J. 831, 64 (2016).

    Article  ADS  Google Scholar 

  23. Wahl, S. M. et al. Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core. Geophys. Res. Lett. 44, 4649–4659 (2017).

    Article  ADS  Google Scholar 

  24. Turrini, D. et al. Tracing the formation history of giant planets in protoplanetary disks with carbon, oxygen, nitrogen, and sulfur. Astrophys. J. 909, 40 (2021).

    Article  ADS  Google Scholar 

  25. Cosentino, R. et al. Harps-N: the new planet hunter at TNG. Proc. SPIE 8446, 84461V (2012).

    Article  Google Scholar 

  26. Covino, E. et al. The GAPS programme with HARPS-N at TNG. I. Observations of the Rossiter-McLaughlin effect and characterisation of the transiting system Qatar-1. Astron. Astrophys. 554, A28 (2013).

    Article  Google Scholar 

  27. Carleo, I. et al. The GAPS Programme at TNG. XXI. A GIARPS case study of known young planetary candidates: confirmation of HD 285507 b and refutation of AD Leonis b. Astron. Astrophys. 638, A5 (2020).

    Article  Google Scholar 

  28. Noyes, R. W., Hartmann, L. W., Baliunas, S. L., Duncan, D. K. & Vaughan, A. H. Rotation, convection, and magnetic activity in lower main-sequence stars. Astrophys. J. 279, 763–777 (1984).

    Article  ADS  Google Scholar 

  29. Gomes da Silva, J. et al. Long-term magnetic activity of a sample of M-dwarf stars from the HARPS program. I. Comparison of activity indices. Astron. Astrophys. 534, A30 (2011).

    Article  Google Scholar 

  30. Díaz, R. F., Cincunegui, C. & Mauas, P. J. D. The Na i D resonance lines in main-sequence late-type stars. Mon. Not. R. Astron. Soc. 378, 1007–1018 (2007).

    Article  ADS  Google Scholar 

  31. Azizi, F. & Mirtorabi, M. T. A survey of TiOλ567 nm absorption in solar-type stars. Mon. Not. R. Astron. Soc. 475, 2253–2268 (2018).

    Article  ADS  Google Scholar 

  32. Quirrenbach, A. et al. CARMENES instrument overview. Proc. SPIE 9147, 91471F (2014).

    Article  Google Scholar 

  33. Zechmeister, M., Anglada-Escudé, G. & Reiners, A. Flat-relative optimal extraction. A quick and efficient algorithm for stabilised spectrographs. Astron. Astrophys. 561, A59 (2014).

    Article  ADS  Google Scholar 

  34. Raskin, G. et al. HERMES: a high-resolution fibre-fed spectrograph for the Mercator telescope. Astron. Astrophys. 526, A69 (2011).

    Article  Google Scholar 

  35. Baranne, A. et al. ELODIE: A spectrograph for accurate radial velocity measurements. Astron. Astrophys. Suppl. Ser. 119, 373–390 (1996).

    Article  ADS  Google Scholar 

  36. Strassmeier, K. G. et al. The STELLA robotic observatory. Astron. Nachr. 325, 527–532 (2004).

    Article  ADS  Google Scholar 

  37. Collins, K. A., Kielkopf, J. F., Stassun, K. G. & Hessman, F. V. AstroImageJ: image processing and photometric extraction for ultra-precise astronomical light curves. Astron. J. 153, 77 (2017).

    Article  ADS  Google Scholar 

  38. Luger, R., Kruse, E., Foreman-Mackey, D., Agol, E. & Saunders, N. An update to the EVEREST K2 pipeline: short cadence, saturated stars, and Kepler-like photometry down to Kp = 15. Astron. J. 156, 99 (2018).

    Article  ADS  Google Scholar 

  39. Deming, D. et al. Infrared transmission spectroscopy of the exoplanets HD 209458b and XO-1b using the Wide Field Camera-3 on the Hubble Space Telescope. Astrophys. J. 774, 95 (2013).

    Article  ADS  Google Scholar 

  40. Luhman, K. L. The stellar membership of the Taurus star-forming region. Astron. J. 156, 271 (2018).

    Article  ADS  Google Scholar 

  41. Andrews, J. J., Chanamé, J. & Agüeros, M. A. Wide binaries in Tycho-Gaia: search method and the distribution of orbital separations. Mon. Not. R. Astron. Soc. 472, 675–699 (2017).

    Article  ADS  Google Scholar 

  42. González Hernández, J. I. et al. The solar gravitational redshift from HARPS-LFC Moon spectra. A test of the general theory of relativity. Astron. Astrophys. 643, A146 (2020).

    Article  Google Scholar 

  43. Suárez Mascareño, A. et al. The RoPES project with HARPS and HARPS-N. I. A system of super-Earths orbiting the moderately active K-dwarf HD 176986. Astron. Astrophys. 612, A41 (2018).

    Article  Google Scholar 

  44. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article  ADS  Google Scholar 

  45. Allende Prieto, C. et al. A spectroscopic study of the ancient Milky Way: F- and G-type stars in the third data release of the Sloan Digital Sky Survey. Astrophys. J. 636, 804–820 (2006).

    Article  ADS  Google Scholar 

  46. Allende Prieto, C. et al. A collection of model stellar spectra for spectral types B to early-M. Astron. Astrophys. 618, A25 (2018).

    Article  Google Scholar 

  47. Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

    Article  ADS  Google Scholar 

  48. Kurucz, R. L., Furenlid, I., Brault, J. & Testerman, L. Solar Flux Atlas from 296 to 1300 nm (Aura, 1984).

  49. Dutra-Ferreira, L., Pasquini, L., Smiljanic, R., Porto de Mello, G. F. & Steffen, M. Consistent metallicity scale for cool dwarfs and giants. A benchmark test using the Hyades. Astron. Astrophys. 585, A75 (2016).

    Article  ADS  Google Scholar 

  50. Castelli, F. & Kurucz, R. L. in Modelling of Stellar Atmospheres Vol. 210 (eds Piskunov, N. et al.) A20 (Astronomical Society of the Pacific, 2003).

  51. González Hernández, J. I. & Bonifacio, P. A new implementation of the infrared flux method using the 2MASS catalogue. Astron. Astrophys. 497, 497–509 (2009).

    Article  ADS  Google Scholar 

  52. Henden, A. A., Levine, S. E., Terrell, D., Smith, T. C. & Welch, D. Data Release 3 of the AAVSO All-Sky Photometric Survey (APASS). J. Am. Assoc. Var. Star Obs. 40, 430 (2012).

    ADS  Google Scholar 

  53. Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998).

    Article  ADS  Google Scholar 

  54. Bonifacio, P., Monai, S. & Beers, T. C. A search for stars of very low metal abundance. V. Photoelectric UBV photometry of metal-weak candidates from the northern HK survey. Astron. J. 120, 2065–2081 (2000).

    Article  ADS  Google Scholar 

  55. Sneden, C. A. Carbon and Nitrogen Abundances in Metal-Poor Stars. PhD thesis, Univ. Texas at Austin (1973).

  56. Lind, K., Asplund, M. & Barklem, P. S. Departures from LTE for neutral Li in late-type stars. Astron. Astrophys. 503, 541–544 (2009).

    Article  ADS  Google Scholar 

  57. Peacock, M. B., Zepf, S. E. & Finzell, T. Signatures of multiple stellar populations in unresolved extragalactic globular/young massive star clusters. Astrophys. J. 769, 126 (2013).

    Article  ADS  Google Scholar 

  58. Bayo, A. et al. VOSA: virtual observatory SED analyzer. An application to the Collinder 69 open cluster. Astron. Astrophys. 492, 277–287 (2008).

    Article  ADS  Google Scholar 

  59. Baraffe, I., Homeier, D., Allard, F. & Chabrier, G. New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit. Astron. Astrophys. 577, A42 (2015).

    Article  ADS  Google Scholar 

  60. Tognelli, E., Prada Moroni, P. G. & Degl’Innocenti, S. The Pisa pre-main sequence tracks and isochrones. A database covering a wide range of Z, Y, mass, and age values. Astron. Astrophys. 533, A109 (2011).

    Article  ADS  Google Scholar 

  61. Bressan, A. et al. PARSEC: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code. Mon. Not. R. Astron. Soc. 427, 127–145 (2012).

    Article  ADS  Google Scholar 

  62. del Burgo, C. & Allende Prieto, C. Testing models of stellar structure and evolution – I. Comparison with detached eclipsing binaries. Mon. Not. R. Astron. Soc. 479, 1953–1973 (2018).

    Article  ADS  Google Scholar 

  63. Miret-Roig, N. et al. Dynamical traceback age of the β Pictoris moving group. Astron. Astrophys. 642, A179 (2020).

    Article  Google Scholar 

  64. Rebull, L. M. et al. Rotation of low-mass stars in Taurus with K2. Astron. J. 159, 273 (2020).

    Article  ADS  Google Scholar 

  65. Dahm, S. E. Reexamining the lithium depletion boundary in the Pleiades and the inferred age of the cluster. Astrophys. J. 813, 108 (2015).

    Article  ADS  Google Scholar 

  66. Gossage, S. et al. Age determinations of the Hyades, Praesepe, and Pleiades via MESA models with rotation. Astrophys. J. 863, 67 (2018).

    Article  ADS  Google Scholar 

  67. Gutiérrez Albarrán, M. L. et al. The Gaia-ESO Survey: calibrating the lithium-age relation with open clusters and associations. I. Cluster age range and initial membership selections. Astron. Astrophys. 643, A71 (2020).

    Article  Google Scholar 

  68. Barrado y Navascués, D., Stauffer, J. R. & Patten, B. M. The lithium-depletion boundary and the age of the young open cluster IC 2391. Astrophys. J. 522, L53–L56 (1999).

    Article  ADS  Google Scholar 

  69. Wichmann, R. et al. New weak-line T Tauri stars in Taurus-Auriga. Astron. Astrophys. 312, 439–454 (1996).

    ADS  Google Scholar 

  70. Micela, G. et al. Deep ROSAT HRI observations of the Pleiades. Astron. Astrophys. 341, 751–767 (1999).

    ADS  Google Scholar 

  71. Fang, X.-S., Zhao, G., Zhao, J.-K. & Bharat Kumar, Y. Stellar activity with LAMOST – II. Chromospheric activity in open clusters. Mon. Not. R. Astron. Soc. 476, 908–926 (2018).

    Article  ADS  Google Scholar 

  72. Findeisen, K., Hillenbrand, L. & Soderblom, D. Stellar activity in the broadband ultraviolet. Astron. J. 142, 23 (2011).

    Article  ADS  Google Scholar 

  73. Foreman-Mackey, D., Agol, E., Ambikasaran, S. & Angus, R. Fast and scalable Gaussian process modeling with applications to astronomical time series. Astron. J. 154, 220 (2017).

    Article  ADS  Google Scholar 

  74. Haywood, R. D. et al. Planets and stellar activity: hide and seek in the CoRoT-7 system. Mon. Not. R. Astron. Soc. 443, 2517–2531 (2014).

    Article  ADS  Google Scholar 

  75. Suárez Mascareño, A. et al. Revisiting Proxima with ESPRESSO. Astron. Astrophys. 639, A77 (2020).

    Article  Google Scholar 

  76. Feng, F., Tuomi, M., Jones, H. R. A., Butler, R. P. & Vogt, S. A Goldilocks principle for modelling radial velocity noise. Mon. Not. R. Astron. Soc. 461, 2440–2452 (2016).

    Article  ADS  Google Scholar 

  77. Parviainen, H. PYTRANSIT: fast and easy exoplanet transit modelling in PYTHON. Mon. Not. R. Astron. Soc. 450, 3233–3238 (2015).

    Article  ADS  Google Scholar 

  78. Mandel, K. & Agol, E. Analytic light curves for planetary transit searches. Astrophys. J. 580, L171–L175 (2002).

    Article  ADS  Google Scholar 

  79. Fulton, B. J., Petigura, E. A., Blunt, S. & Sinukoff, E. RadVel: the radial velocity modeling toolkit. Publ. Astron. Soc. Pac. 130, 044504 (2018).

    Article  ADS  Google Scholar 

  80. Skilling, J. Nested sampling. AIP Conf. Proc. 735, 395–405 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  81. Speagle, J. S. DYNESTY: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).

    Article  ADS  Google Scholar 

  82. Ambikasaran, S., Foreman-Mackey, D., Greengard, L., Hogg, D. W. & O’Neil, M. Fast direct methods for Gaussian processes. IEEE Trans. Pattern Anal. Mach. Intell. 38, 252–265 (2015).

    Article  ADS  Google Scholar 

  83. Benatti, S. et al. Constraints on the mass and atmospheric composition and evolution of the low-density young planet DS Tuc A b. Astron. Astrophys. 650, A66 (2021).

    Article  Google Scholar 

  84. Zechmeister, M. & Kürster, M. The generalised Lomb-Scargle periodogram. A new formalism for the floating-mean and Keplerian periodograms. Astron. Astrophys. 496, 577–584 (2009).

    Article  ADS  Google Scholar 

  85. Gaia Collaboration et al. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 649, A1 (2021).

  86. Gaia Collaboration et al. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

  87. Nguyen, D. C., Brandeker, A., van Kerkwijk, M. H. & Jayawardhana, R. Close companions to young stars. I. A large spectroscopic survey in Chamaeleon I and Taurus-Auriga. Astrophys. J. 745, 119 (2012).

    Article  ADS  Google Scholar 

  88. Nesterov, V. V. et al. The Henry Draper extension charts: a catalogue of accurate positions, proper motions, magnitudes and spectral types of 86933 stars. Astron. Astrophys. Suppl. Ser. 110, 367 (1995).

    ADS  Google Scholar 

  89. Høg, E. et al. The Tycho-2 catalogue of the 2.5 million brightest stars. Astron. Astrophys. 355, L27–L30 (2000).

    ADS  Google Scholar 

  90. Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J. 131, 1163–1183 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.S.M. acknowledges financial support from the Spanish Ministry of Science and Innovation (MICINN) under the 2019 Juan de la Cierva Programme. J.I.G.H. acknowledges financial support from the Spanish MICINN under the 2013 Ramón y Cajal programme RYC-2013-14875. A.S.M., J.I.G.H., R.R., B.T.-P., N.L., M.R.Z.O., E.G.-A., J.A.C., P.J.A. and I.R. acknowledge financial support from the Spanish Ministry of Science and Innovation through projects AYA2017-86389-P, PID2019-109522GB-C53, PID2019-109522GB-C51, AYA2016-79425-C3-3-P, PID2019-109522GB-C52 and PGC2018-098153-B-C33. M.D. acknowledges financial support from the FP7-SPACE Project ETAEARTH (GA no. 313014). A.M., D.L., G.M., A.S. and S.D. acknowledge partial contribution from the agreement ASI-INAF no. 2018-16-HH.0. S.B., D.L., G.M. and D.T. acknowledge partial contribution from the agreement ASI-INAF no. 2021-5-HH.0. P.J.A. acknowledges financial support from the project SEV-2017-0709. S.D., V.D., S.B. and D.T. acknowledge support from the PRIN-INAF 2019 ‘Planetary systems at young ages’ (PLATEA). D.S.A. thanks the Leverhulme Trust for financial support. I.R. acknowledges the support of the Generalitat de Catalunya/CERCA programme. E.G.-A acknowledges support from the Spanish State Research Agency (AEI) project no. MDM-2017-0737 Unidad de Excelencia ‘María de Maeztu’ Centro de Astrobiología (CAB, CSIC/INTA). D.T. acknowledges the support of the Italian National Institute of Astrophysics (INAF) through the INAF Main Stream project ‘Ariel and the astrochemical link between circumstellar discs and planets’ (CUP: C54I19000700005). E.E.-B. acknowledges financial support from the European Union and the State Agency of Investigation of the Spanish Ministry of Science and Innovation (MICINN) under grant PRE2020-093107 of the Pre-Doc Program for the Training of Doctors (FPI-SO) through FEDER, FSE and FDCAN funds. This work is based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated by the Fundación Galileo Galilei (FGG) of the Istituto Nazionale di Astrofisica (INAF) at the Observatorio del Roque de los Muchachos (La Palma, Canary Islands, Spain). CARMENES is an instrument at the Centro Astronómico Hispano-Alemán (CAHA) at Calar Alto (Almería, Spain), operated jointly by the Junta de Andalucía and the Instituto de Astrofísica de Andalucía (CSIC). This work is based on data obtained with the STELLA robotic telescopes in Tenerife, an AIP facility jointly operated by AIP and IAC. This work makes use of observations from the LCOGT network. This work is based on observations made with the Nordic Optical Telescope, owned in collaboration by the University of Turku and Aarhus University, and operated jointly by Aarhus University, the University of Turku and the University of Oslo (representing Denmark, Finland and Norway), the University of Iceland and Stockholm University; the telescope is located at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias.

Author information

Authors and Affiliations

Authors

Contributions

A.S.M. wrote the main text of the manuscript. A.S.M., V.J.S.B., J.I.G.H., M.R.Z.O. and C.d.B. wrote the methods section of the manuscript. A.S.M. and M.D. performed the radial velocity analysis. N.L., A.S., V.J.S.B., G.M., R.R., S.B., C.C.G., G.N., R.L., E.P., A.S.M., M.D., P.J.A., E.G.-A. and M.W. coordinated the acquisition of the radial velocities. V.J.S.B., F. Murgas, E.P., H.P., E.E.-B. and M.M. coordinated the acquisition of the photometry. A.S.M., B.T.-P., F.F.B. and T.G. performed the extraction of radial velocities. F. Murgas performed the extraction of the photometry. V.J.S.B., M.R.Z.O., J.I.G.H., C.d.B., H.M.T., D.S.A., N.L., E.L.M. and P.C. determined the stellar properties of V1298 Tau and HD 284154. R.C., A.M. and D.T. contributed to the discussion on planetary evolution. R.R., A.S., M.R.Z.O., V.J.S.B. and G.M. organized the collaboration between the different teams. M.D., A.S., S.B., G.M., S.D., R.C., L.M., V.D., D.L., F. Marzari, D.T. and A.M. are members of the GAPS consortium. P.J.A., J.A., J.A.C., A.Q., A.R., I.R., M.R.Z.O., V.J.S.B., J.I.G.H., N.L, G.N., R.L., E.P., M.O., E.L.M. and R.R. are members of the CARMENES consortium. L.M. participated in the discussion of stellar activity. T.G., K.G.S. and M.W. are members of the STELLA consortium. All authors were given the opportunity to review the results and comment on the manuscript.

Corresponding author

Correspondence to A. Suárez Mascareño.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Best synthetic spectral fit of the HARPS-N spectrum of V1298 Tau.

The interpolated SYNPLE synthetic spectrum without rotational broadening computed for the derived best-fit stellar parameters and metallicity (a), the broadened spectrum with a rotational velocity of 24 km s−1 (b) and the observed HARPS-N 1D spectrum of V1298 Tau (black line) together with the best-fit synthetic spectrum (purple line) are displayed in the spectral range 5350–5850 Å (c).

Source data

Extended Data Fig. 2 The lithium spectral region of V1298 Tau and HD 284154.

Spectral region of the lithium doublet around 6708 Å of the solar ATLAS spectrum broadened with a rotation profile of 24 km s−1 (a), the HARPS-N spectrum of V1298 Tau (b), and the FIES spectrum of the double-lined spectroscopic binary HD 284154 (c), together with the best-fit MOOG synthetic spectra.

Source data

Extended Data Fig. 3 Position of V1298 Tau and HD 284154 in the colour-magnitude and Hertzsprung-Russel diagrams.

a: Colour-magnitude diagram of V1298 Tau and HD 284154A and B (separate components) and the other group 29 members along with various PARSEC isochrones. The 20-Myr isochrone nicely reproduces the sequence of stars with colours G − Ks < 3.5 mag while the 10- and 30-Myr isochrones provide acceptable upper and lower envelopes to the observed dispersion of the Group 29 sequence. b: Location of V1298 Tau (red) and HD 284154 (blue) in the Hertzsprung-Russel diagram. HD 284154 is decomposed into two equal mass and equal luminosity stars. The tracks for masses between 1.0 and 1.9 M are also shown and are labeled with the mass value in solar units. Note that the luminosity axis is in logarithmic scale. The error bar in luminosity is of the size of the symbol.

Extended Data Fig. 4 Phase-folded plots of the RV signals for the two planets of the V1298 Tau planetary system for which we could not confirm the RV signals.

a: Phase-folded representation of the best-fitting Keplerian orbit (red line) for V1298 Tau c. b: Same for V1298 Tau d. c and d: Residuals after the fit for both cases. For a better visualisation, only HARPS and CARMENES data have been included. In all cases, 1σ error bars (internal RV uncertainties) of the measurements are shown.

Source data

Extended Data Fig. 5 Accuracy of the recovered planetary amplitudes of the different methods.

Recovered planetary amplitude against injected planetary amplitude in the simulated datasets for the four planets in the system.

Source data

Extended Data Fig. 6 Corner plot of the parameters of the best model fit (PQP2).

Posterior distributions of all the parameters sampled for the best model fit along with the correlation maps between them.

Source data

Extended Data Fig. 7 RV time series with the best model fit of V1298 Tau and their periodograms.

a: Full time series with the best fit model combining stellar activity and planetary signals. The stellar activity model represented is a weighted average of the models used for the different spectral ranges. b: Activity induced RV after subtracting the planetary signal. c: Planetary RV component, after subtracting the stellar induced signal. d: Residuals after the fit. 1σ error bars (internal RV uncertainties) of the measurements are shown. The right panel of each figure shows the periodogram of the data with their associated levels of false alarm probability. The positions of the activity, and planetary, signals are indicated with red and blue vertical lines, respectively.

Source data

Extended Data Fig. 8 RV time series of the activity component of V1298 Tau for all instruments.

Zoom to the section of the campaign with the largest density of observations. Panel a shows the HARPS-N data after subtracting the planetary component along with the best fit model for the activity component. Panels b, c and d show the CARMENES data, SES data and HERMES data, respectively. 1σ error bars (internal RV uncertainties) of the measurements are shown.

Source data

Extended Data Fig. 9 LCOGT V-band photometry.

Time series of the LCOGT V-band photometry with the best fit obtained from the global analysis. b: Zoom to a well-sampled section. 1σ error bars (internal uncertainties) of the measurements are shown.

Source data

Extended Data Fig. 10 K2 photometry.

Time series of the K2 photometry with the best fit obtained from the global analysis. a: K2 data with the full fit. b: Data detrended from stellar activity with the best fit to the transits. c,d,e and f: Phase-folded plots of the transits of the four planets.

Source data

Supplementary information

Supplementary Information

Supplementary Table 1.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 8

Statistical source data.

Source Data Extended Data Fig. 9

Statistical source data.

Source Data Extended Data Fig. 10

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suárez Mascareño, A., Damasso, M., Lodieu, N. et al. Rapid contraction of giant planets orbiting the 20-million-year-old star V1298 Tau. Nat Astron 6, 232–240 (2022). https://doi.org/10.1038/s41550-021-01533-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01533-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing