Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Observational identification of a sample of likely recent common-envelope events

Abstract

One of the most poorly understood stellar evolutionary paths is that of binary systems undergoing common-envelope evolution, when the envelope of a giant star engulfs the orbit of a companion. The interaction that ensues leads to a great variety of astrophysical systems and associated phenomena, but happens over a very short timescale. Unfortunately, direct empirical studies of this momentous and complex phase are difficult at present because few objects experiencing, or having just experienced, common-envelope evolution are known. Here we present Atacama Large Millimeter/submillimeter Array observations of minor CO isotopologues towards a sample of sources known as water fountains, which reveal that almost all of them recently lost a substantial fraction of their initial mass over a timescale of less than a few tens to a few hundreds of years. The only known mechanism able to explain such rapid mass ejection, corresponding to a large fraction of the stellar mass, is the common-envelope evolution. A stellar population analysis shows that the number of water-fountain sources in the Milky Way is comparable to the expected number of common-envelope events that involve low-mass evolved stars. Thus, the known sample of water-fountain sources accounts for a large fraction of the systems undergoing a common-envelope phase in our Galaxy. As one of the distinguishing characteristics of water-fountain sources is their fast bipolar outflow, we conclude that outflows and jets play an important role right before, during or immediately after the common-envelope phase.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: 12C18O spectra towards the sources with detection.
Fig. 2: Images of the integrated intensity of the 12C16O, J = 2–1 line towards the water fountain sources.
Fig. 3: Images of the integrated intensity of the 12C18O, J = 2–1 line towards the water fountain sources with detection.
Fig. 4: Moment-zero map of the 13C16O, J = 3–2 line towards IRAS 15445−5449 and IRAS 18043−2116.

Data availability

The reduced data employed in this study is publicly available through the ALMA archive with Project IDs 2018.1.00250.S and 2016.1.01032.S.

References

  1. Paczynski, B. Common envelope binaries. In Proc. International Astronomical Union Symposium on Structure and Evolution of Close Binary Systems Vol. 73 (eds Eggleton, P. et al.) 75–80 (D. Reidel, 1976).

  2. Iben, I.Jr & Livio, J. Common envelopes in binary star evolution. Publ. Astron. Soc. Pac. 105, 1373 (1993).

    ADS  Google Scholar 

  3. Ivanova, N. et al. Common envelope evolution: where we stand and how we can move forward. Astron. Astrophys. Rev. 21, 59 (2013).

    ADS  Google Scholar 

  4. Iben, I.Jr & Tutukov, A. V. Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass. Astrophys. J. Suppl. Ser. 54, 335–372 (1984).

    ADS  Google Scholar 

  5. Han, Z., Podsiadlowski, P. & Eggleton, P. P. The formation of bipolar planetary nebulae and close white dwarf binaries. Mon. Not. R. Astron. Soc. 272, 800–820 (1995).

    ADS  Google Scholar 

  6. Taam, R. E. & Sandquist, E. L. Common envelope evolution of massive binary stars. Annu. Rev. Astron. Astrophys. 38, 113–141 (2000).

    ADS  Google Scholar 

  7. Belczynski, K., Kalogera, V. & Bulik, T. A comprehensive study of binary compact objects as gravitational wave sources: evolutionary channels, rates, and physical properties. Astrophys. J. 572, 407–431 (2002).

    ADS  Google Scholar 

  8. Villaver, E. & Livio, M. The orbital evolution of gas giant planets around giant stars. Astrophys. J. Lett. 705, L81–L85 (2009).

    ADS  Google Scholar 

  9. Ivanova, N., Justham, S. & Podsiadlowski, P. On the role of recombination in common-envelope ejections. Mon. Not. R. Astron. Soc. 447, 2181–2197 (2015).

    ADS  Google Scholar 

  10. Soker, N. Final common envelope ejection by migration and jets. Preprint at https://arxiv.org/abs/1404.5234 (2014).

  11. Moreno Méndez, E., López-Cámara, D. & De Colle, F. Dynamics of jets during the common-envelope phase. Mon. Not. R. Astron. Soc. 470, 2929–2937 (2017).

    ADS  Google Scholar 

  12. Chamandy, L. et al. Accretion in common envelope evolution. Mon. Not. R. Astron. Soc. 480, 1898–1911 (2018).

    ADS  Google Scholar 

  13. Glanz, H. & Perets, H. B. Efficient common-envelope ejection through dust-driven winds. Mon. Not. R. Astron. Soc. Lett. 478, L12–L17 (2018).

    ADS  Google Scholar 

  14. Sahai, R., Vlemmings, W. H. T. & Nyman, L.-Å. The coldest place in the Universe: probing the ultra-cold outflow and dusty disk in the Boomerang Nebula. Astrophys. J. 841, 110 (2017).

    ADS  Google Scholar 

  15. Olofsson, H. et al. HD 101584: circumstellar characteristics and evolutionary status. Astron. Astrophys. 623, A153 (2019).

    Google Scholar 

  16. Kamiński, T. et al. Molecular remnant of Nova 1670 (CK Vulpeculae). II. A three-dimensional view of the gas distribution and velocity field. Astron. Astrophys. 646, A1 (2021).

    Google Scholar 

  17. Jones, D. in Reviews in Frontiers of Modern Astrophysics (eds Kabáth, P. et al.) 123–153. (Springer, 2020).

  18. Ivanova, N., Justham, S., Avendano Nandez, J. L. & Lombardi, J. C.Jr Identification of the long-sought common-envelope events. Science 339, 433–435 (2013).

    ADS  Google Scholar 

  19. Howitt, G. et al. Luminous Red Novae: population models and future prospects. Mon. Not. R. Astron. Soc. 492, 3229–3240 (2020).

    ADS  Google Scholar 

  20. Vlemmings, W. H. T., Diamond, P. J. & Imai, H. A magnetically collimated jet from an evolved star. Nature 440, 58–60 (2006).

    ADS  Google Scholar 

  21. Pérez-Sánchez, A. F., Vlemmings, W. H. T., Tafoya, D. & Chapman, J. M. A synchrotron jet from a post-asymptotic giant branch star. Mon. Not. R. Astron. Soc. Lett. 436, L79–L83 (2013).

    ADS  Google Scholar 

  22. Suárez, O. et al. Time-variable non-thermal emission in the planetary nebula IRAS 15103−5754. Astrophys. J. 806, 105 (2015).

    ADS  Google Scholar 

  23. Sahai, R. et al. ALMA observations of the water fountain pre-planetary nebula IRAS 16342-3814: high-velocity bipolar jets and an expanding torus. Astrophys. J. Lett. 835, L13 (2017).

    ADS  Google Scholar 

  24. Gómez, J. F. et al. ALMA imaging of the nascent planetary nebula IRAS 15103−5754. Mon. Not. R. Astron. Soc. 480, 4991–5009 (2018).

    ADS  Google Scholar 

  25. Tafoya, D. et al. Shaping the envelope of the asymptotic giant branch star W43A with a collimated fast jet. Astrophys. J. Lett. 890, L14 (2020).

    ADS  Google Scholar 

  26. Rizzo, J. R. et al. Sensitive CO and 13CO survey of water fountain stars. Detections towards IRAS 18460-0151 and IRAS 18596+0315. Astron. Astrophys. 560, A82 (2013).

    Google Scholar 

  27. Imai, H. et al. Extremely strong 13CO J = 3 → 2 line in the ‘water fountain’ IRAS 16342−3814: evidence for the hot-bottom burning. Publ. Astron. Soc. Jpn 64, 98 (2012).

    ADS  Google Scholar 

  28. Yung, B. H. K., Nakashima, J.-i, Hsia, C.-H. & Imai, H. Do water fountain jets really indicate the onset of the morphological metamorphosis of circumstellar envelopes? Mon. Not. R. Astron. Soc. 465, 4482–4499 (2017).

    ADS  Google Scholar 

  29. Boothroyd, A. I., Sackmann, I.-J. & Wasserburg, G. J. Hot bottom burning in asymptotic giant branch stars and its effect on oxygen isotopic abundances. Astrophys. J. Lett. 442, L21 (1995).

    ADS  Google Scholar 

  30. Karakas, A. I. & Lugaro, M. Stellar yields from metal-rich asymptotic giant branch models. Astrophys. J. 825, 26 (2016).

    ADS  Google Scholar 

  31. Karakas, A. I. & Lattanzio, J. C. The Dawes Review 2: nucleosynthesis and stellar yields of low- and intermediate-mass single stars. Publ. Astron. Soc. Aust. 31, e030 (2014).

    ADS  Google Scholar 

  32. Abia, C., Hedrosa, R. P., Domínguez, I. & Straniero, O. The puzzle of the CNO isotope ratios in asymptotic giant branch carbon stars. Astron. Astrophys. 599, A39 (2017).

    ADS  Google Scholar 

  33. Bloecker, T. Stellar evolution of low and intermediate-mass stars. I. Mass loss on the AGB and its consequences for stellar evolution. Astron. Astrophys. 297, 727 (1995).

    ADS  Google Scholar 

  34. Imai, H., Obara, K., Diamond, P. J., Omodaka, T. & Sasao, T. A collimated jet of molecular gas from the AGB star W43A. In Proc. 6th European VLBI Network Symposium (eds Ros, E. et al.) 215 (Max-Planck-Institut für Radioastronomie, 2002).

  35. Sahai, R., Le Mignant, D., Sánchez Contreras, C., Campbell, R. D. & Chaffee, F. H. Sculpting a pre-planetary nebula with a precessing jet: IRAS 16342−3814. Astrophys. J. Lett. 622, L53–L56 (2005).

    ADS  Google Scholar 

  36. Suárez, O., Gómez, J. F. & Miranda, L. F. VLA observations of the ‘water fountain’ IRAS 16552−3050. Astrophys. J. 689, 430–435 (2008).

    ADS  Google Scholar 

  37. Yung, B. H. K. et al. High velocity precessing jets from the water fountain IRAS 18286−0959 revealed by Very Long Baseline Array observations. Astrophys. J. 741, 94 (2011).

    ADS  Google Scholar 

  38. Papaloizou, J. C. B. & Terquem, C. On the dynamics of tilted discs around young stars. Mon. Not. R. Astron. Soc. 274, 987–1001 (1995).

    ADS  Google Scholar 

  39. Raga, A. C. et al. Mirror and point symmetries in a ballistic jet from a binary system. Astrophys. J. Lett. 707, L6–L11 (2009).

    ADS  Google Scholar 

  40. Terquem, C., Eislöffel, J., Papaloizou, J. C. B. & Nelson, R. P. Precession of collimated outflows from young stellar objects. Astrophys. J. Lett. 512, L131–L134 (1999).

    ADS  Google Scholar 

  41. Soker, N. Close stellar binary systems by grazing envelope evolution. Astrophys. J. 800, 114 (2015).

    ADS  Google Scholar 

  42. Boboltz, D. A. & Marvel, K. B. Water maser kinematics in the jet of OH 12.8–0.9. Astrophys. J. 665, 680–689 (2007).

    ADS  Google Scholar 

  43. Vickers, S. B., Frew, D. J., Parker, Q. A. & Bojičić, I. S. New light on Galactic post-asymptotic giant branch stars – I. First distance catalogue. Mon. Not. R. Astron. Soc. 447, 1673–1691 (2015).

    ADS  Google Scholar 

  44. Orosz, G. et al. Rapidly evolving episodic outflow in IRAS 18113-2503: clues to the ejection mechanism of the fastest water fountain. Mon. Not. R. Astron. Soc. Lett. 482, L40–L45 (2019).

    ADS  Google Scholar 

  45. Imai, H., Kurayama, T., Honma, M. & Miyaji, T. Annual parallax distance and secular motion of the water fountain source IRAS 18286−0959. Publ. Astron. Soc. Jpn 65, 28 (2013).

    ADS  Google Scholar 

  46. Imai, H., Sahai, R. & Morris, M. The spatio-kinematical structure and distance of the preplanetary nebula IRAS 19134+2131. Astrophys. J. 669, 424–434 (2007).

    ADS  Google Scholar 

  47. Lattanzio, J. C. & Boothroyd, A. I. Nucleosynthesis of elements in low to intermediate mass stars through the AGB phase. AIP Conf. Ser. 402, 85–114 (1997).

    ADS  Google Scholar 

  48. Lebzelter, T., Straniero, O., Hinkle, K. H., Nowotny, W. & Aringer, B. Oxygen isotopic ratios in intermediate-mass red giants. Astron. Astrophys. 578, A33 (2015).

    ADS  Google Scholar 

  49. Hinkle, K. H., Lebzelter, T. & Straniero, O. Carbon and oxygen isotopic ratios for nearby Miras. Astrophys. J. 825, 38 (2016).

    ADS  Google Scholar 

  50. Lebzelter, T. et al. Carbon and oxygen isotopic ratios. II. Semiregular variable M giants. Astrophys. J. 886, 117 (2019).

    ADS  Google Scholar 

  51. Tafoya, D., Orosz, G., Vlemmings, W. H. T., Sahai, R. & Pérez-Sánchez, A. F. Spatio-kinematical model of the collimated molecular outflow in the water-fountain nebula IRAS 16342−3814. Astron. Astrophys. 629, A8 (2019).

    ADS  Google Scholar 

  52. Bujarrabal, V., Castro-Carrizo, A., Alcolea, J. & Sánchez Contreras, C. Mass, linear momentum and kinetic energy of bipolar flows in protoplanetary nebulae. Astron. Astrophys. 377, 868–897 (2001).

    ADS  Google Scholar 

  53. Walsh, A. J., Breen, S. L., Bains, I. & Vlemmings, W. H. T. High-velocity H2O maser emission from the post-asymptotic-giant-branch star OH 009.1-0.4. Mon. Not. R. Astron. Soc. Lett. 394, L70–L73 (2009).

    ADS  Google Scholar 

  54. Imai, H., Deguchi, S., Nakashima, J.-i, Kwok, S. & Diamond, P. J. The spatiokinematical structure of H2O and OH masers in the ‘water fountain’ source IRAS 18460−0151. Astrophys. J. 773, 182 (2013).

    ADS  Google Scholar 

  55. De Nutte, R. et al. Nucleosynthesis in AGB stars traced by oxygen isotopic ratios. I. Determining the stellar initial mass by means of the 17O/18O ratio. Astron. Astrophys. 600, A71 (2017).

    Google Scholar 

  56. Prantzos, N., Aubert, O. & Audouze, J. Evolution of the carbon and oxygen isotopes in the Galaxy. Astron. Astrophys. 309, 760–774 (1996).

    ADS  Google Scholar 

  57. Walsh, A. J. et al. The H2O Southern Galactic Plane Survey (HOPS) – I. Techniques and H2O maser data. Mon. Not. R. Astron. Soc. 416, 1764–1821 (2011).

    ADS  Google Scholar 

  58. Engels, D. & Lewis, B. M. A survey for 22 GHz water maser emission from the Arecibo set of OH/IR stars. Astron. Astrophys. Suppl. Ser. 116, 117–155 (1996).

    ADS  Google Scholar 

  59. Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).

    ADS  Google Scholar 

  60. Ruiz-Lara, T., Gallart, C., Bernard, E. J. & Cassisi, S. The recurrent impact of the Sagittarius dwarf on the star formation history of the Milky Way. Nat. Astron. 4, 965–973 (2020).

    ADS  Google Scholar 

  61. Licquia, T. C. & Newman, J. A. Improved estimates of the Milky Way’s stellar mass and star formation rate from hierarchical Bayesian meta-analysis. Astrophys. J. 806, 96 (2015).

    ADS  Google Scholar 

  62. Moe, M. & Di Stefano, R. Early-type eclipsing binaries with intermediate orbital periods. Astrophys. J. 810, 61 (2015).

    ADS  Google Scholar 

  63. Kochanek, C. S., Adams, S. M. & Belczynski, K. Stellar mergers are common. Mon. Not. R. Astron. Soc. 443, 1319–1328 (2014).

    ADS  Google Scholar 

  64. Cumming, A. et al. The Keck Planet Search: detectability and the minimum mass and orbital period distribution of extrasolar planets. Publ. Astron. Soc. Pac. 120, 531 (2008).

    ADS  Google Scholar 

  65. Herwig, F. Evolution of asymptotic giant branch stars. Annu. Rev. Astron. Astrophys. 43, 435–479 (2005).

    ADS  Google Scholar 

  66. El Eid, M. F. CNO isotopes in red giants: theory versus observations. Astron. Astrophys. 285, 915–928 (1994).

    ADS  Google Scholar 

  67. Boothroyd, A. I. & Sackmann, I.-J. The CNO isotopes: deep circulation in red giants and first and second dredge-up. Astrophys. J. 510, 232–250 (1999).

    ADS  Google Scholar 

  68. Busso, M. et al. On the need for deep-mixing in asymptotic giant branch stars of low mass. Astrophys. J. Lett. 717, L47–L51 (2010).

    ADS  Google Scholar 

  69. Palmerini, S., La Cognata, M., Cristallo, S. & Busso, M. Deep mixing in evolved stars. I. The effect of reaction rate revisions from C to Al. Astrophys. J. 729, 3 (2011).

    ADS  Google Scholar 

  70. Straniero, O. et al. The impact of the revised 17O(p, α)14N reaction rate on 17O stellar abundances and yields. Astron. Astrophys. 598, A128 (2017).

    Google Scholar 

  71. Tsuji, T. Isotopic abundances of carbon and oxygen in oxygen-rich giant stars. In Proc. International Astronomical Union on Convection in Astrophysics (IAU S239) Vol. 2 (eds Kupka, F. et al.) 307–310 (Cambridge Univ. Press, 2007).

  72. Ramstedt, S. & Olofsson, H. The 12CO/13CO ratio in AGB stars of different chemical type. Connection to the 12C/13C ratio and the evolution along the AGB. Astron. Astrophys. 566, A145 (2014).

    ADS  Google Scholar 

  73. Danilovich, T. et al. Water isotopologues in the circumstellar envelopes of M-type AGB stars. Astron. Astrophys. 602, A14 (2017).

    Google Scholar 

  74. Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

    ADS  Google Scholar 

  75. Boothroyd, A. I., Sackmann, I.-J. & Ahern, S. C. Prevention of high-luminosity carbon stars by hot bottom burning. Astrophys. J. 416, 762 (1993).

    ADS  Google Scholar 

  76. Doherty, C. L., Gil-Pons, P., Lau, H. H. B., Lattanzio, J. C. & Siess, L. Super and massive AGB stars – II. Nucleosynthesis and yields – Z = 0.02, 0.008 and 0.004. Mon. Not. R. Astron. Soc. 437, 195–214 (2014).

    ADS  Google Scholar 

  77. Justtanont, K. et al. Herschel observations of extreme OH/IR stars. The isotopic ratios of oxygen as a sign-post for the stellar mass. Astron. Astrophys. 578, A115 (2015).

    Google Scholar 

  78. Nollett, K. M., Busso, M. & Wasserburg, G. J. Cool bottom processes on the thermally pulsing asymptotic giant branch and the isotopic composition of circumstellar dust grains. Astrophys. J. 582, 1036–1058 (2003).

    ADS  Google Scholar 

  79. Abia, C. et al. Understanding AGB carbon star nucleosynthesis from observations. Publ. Astron. Soc. Aust. 20, 314–323 (2003).

    ADS  Google Scholar 

  80. Kobayashi, C., Karakas, A. I. & Umeda, H. The evolution of isotope ratios in the Milky Way Galaxy. Mon. Not. R. Astron. Soc. 414, 3231–3250 (2011).

    ADS  Google Scholar 

  81. Reid, M. J. et al. Trigonometric parallaxes of high-mass star-forming regions: our view of the Milky Way. Astrophys. J. 885, 131 (2019).

    ADS  Google Scholar 

  82. Orosz, G. et al. Bow shocks in water fountain jets. In Proc. International Astronomical Union on Astrophysical Masers: Unlocking the Mysteries of the Universe (IAU S336) Vol. 13 (eds Tarchi, A. et al.) 351–354 (Cambridge Univ. Press, 2018).

  83. Vlemmings, W. H. T., Amiri, N., van Langevelde, H. J. & Tafoya, D. From the ashes: JVLA observations of water fountain nebula candidates show the rebirth of IRAS 18455+0448. Astron. Astrophys. 569, A92 (2014).

    Google Scholar 

  84. Gómez, J. F. et al. Interferometric confirmation of ‘water fountain’ candidates. Mon. Not. R. Astron. Soc. 468, 2081–2092 (2017).

    ADS  Google Scholar 

  85. Imai, H. et al. FLASHING: new high-velocity H2O masers in IRAS 18286−0959. Publ. Astron. Soc. Jpn 72, 58 (2020).

    ADS  Google Scholar 

  86. Day, F. M., Pihlström, Y. M., Claussen, M. J. & Sahai, R. Proper motions of H2O masers in the water fountain source IRAS 19190+1102. Astrophys. J. 713, 986–991 (2010).

    ADS  Google Scholar 

Download references

Acknowledgements

This study made use of the following ALMA data: ADS/JAO.ALMA 2018.1.00250.S and 2016.1.01032.S. ALMA is a partnership of the European Southern Observatory (ESO) (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan) and KASI (Republic of Korea), and in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. The authors acknowledge support from the Nordic ALMA Regional Centre (ARC) node based at the Onsala Space Observatory. The Nordic ARC node and Swedish observations on APEX are funded through the Swedish Research Council grant no. 2017-00648. This publication is based on data acquired with the Atacama Pathfinder Experiment (APEX) under programme ID 0104.F-9310(A). APEX is a collaboration between the Max-Planck-Institut für Radioastronomie, the ESO and the Onsala Space Observatory. T.K. is supported by Swedish Research Council starting grant no. 2019-03777. W.H.T.V. and T.K. are supported by Swedish Research Council grant no. 2014-05713. C.S.C. is supported by the Spanish MICINN through grant no. PID2019-105203GB-C22. J.F.G. is supported by MCIU-AEI through the ‘Center of Excellence Severo Ochoa’ award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709), from grants AYA2017-84390-C2-1-R and PID2020-114461GB-I00 of AEI (10.13039/501100011033), co-funded by FEDER, and from the Amanogawa Galaxy Astronomy Research Center (AGARC). H.I. is supported by the MEXT KAKENHI programme (16H02167) and i-LINK+2019 programme at IAA/CSIC. J.F.G. and H.I. are supported by the Invitation Program for Foreign Researchers of the Japan Society for Promotion of Science (grant no. S14128).

Author information

Authors and Affiliations

Authors

Contributions

W.H.T.V., D.T., C.S.C., J.F.G., H.I. and R.S. conceived and designed the experiment. T.K., W.H.T.V. and D.T. analysed the data. W.H.T.V., T.K., D.T., A.F.P.-S., C.S.C., J.F.G., H.I. and R.S. contributed materials or analysis tools. T.K., W.H.T.V. and D.T. wrote the paper.

Corresponding author

Correspondence to Theo Khouri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khouri, T., Vlemmings, W.H.T., Tafoya, D. et al. Observational identification of a sample of likely recent common-envelope events. Nat Astron 6, 275–286 (2022). https://doi.org/10.1038/s41550-021-01528-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01528-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing