Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The ramp-up of interstellar medium enrichment at z > 4


Fluorine is one of the most interesting elements for nuclear and stellar astrophysics1,2. Fluorine abundance was first measured for stars other than the Sun in 19921, then for a handful of metal-poor stars3, which are likely to have formed in the early Universe. The main production sites of fluorine are under debate and include asymptotic giant branch stars, the ν-process in core-collapse supernovae, and Wolf–Rayet stars4,5,6,7,8,9,10. Due to the difference in the mass and lifetime of progenitor stars, high-redshift observations of fluorine can help constrain the mechanism of fluorine production in massive galaxies. Here, we report the detection of HF (signal-to-noise ratio of 8) in absorption in a gravitationally lensed dusty star-forming galaxy at redshift z = 4.4 with NHF/\({N}_{{{{{\rm{H}}}}}_{2}}\) as high as ~2 × 10−9, indicating a very quick ramp-up of the chemical enrichment in this high-z galaxy. At z = 4.4, asymptotic giant branch stars of a few solar masses are very unlikely to dominate the enrichment. Instead, we show that Wolf–Rayet stars are required to produce the observed fluorine abundance at this time, with other production mechanisms becoming important at later times. These observations therefore provide an insight into the underlying processes driving the ramp-up phase of chemical enrichment alongside rapid stellar mass assembly in a young massive galaxy.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: ALMA contours of NGP-190387.
Fig. 2: ALMA spectrum of NGP-190387.
Fig. 3: Overlay of the different ALMA lines.
Fig. 4: Evolution of fluorine abundance.

Data availability

This paper makes use of the following ALMA data: ADS/JAO.ALMA#2017.1.00510.S, archived at Tabulated spectral data used in this study are provided at

Code availability

The ALMA data are processed using the CASA ALMA pipeline (v.5.6.1-8) available at The lens model was produced using the VISILENS package publicly available at


  1. 1.

    Jorissen, A., Smith, V. V. & Lambert, D. L. Fluorine in red giant stars: evidence for nucleosynthesis. Astron. Astrophys. 261, 164–187 (1992).

    ADS  Google Scholar 

  2. 2.

    Kobayashi, C., Karakas, A. I. & Umeda, H. The evolution of isotope ratios in the Milky Way Galaxy. Mon. Not. R. Astron. Soc. 414, 3231–3250 (2011).

    ADS  Article  Google Scholar 

  3. 3.

    Cunha, K., Smith, V. V., Lambert, D. L. & Hinkle, K. H. Fluorine abundances in the Large Magellanic Cloud and ω Centauri: evidence for neutrino nucleosynthesis? Astron. J. 126, 1305–1311 (2003).

    ADS  Article  Google Scholar 

  4. 4.

    Forestini, M., Goriely, S., Jorissen, A. & Arnould, M. Fluorine production in thermal pulses on the asymptotic giant branch. Astron. Astrophys. 261, 157–163 (1992).

    ADS  Google Scholar 

  5. 5.

    Woosley, S. E. & Haxton, W. C. Supernova neutrinos, neutral currents and the origin of fluorine. Nature 334, 45–47 (1988).

    ADS  Article  Google Scholar 

  6. 6.

    Meynet, G. & Arnould, M. Synthesis of 19F in Wolf–Rayet stars. Astron. Astrophys. 355, 176–180 (2000).

    ADS  Google Scholar 

  7. 7.

    Renda, A. et al. On the origin of fluorine in the Milky Way. Mon. Not. R. Astron. Soc. 354, 575–580 (2004).

    ADS  Article  Google Scholar 

  8. 8.

    Spitoni, E., Matteucci, F., Jönsson, H., Ryde, N. & Romano, D. Fluorine in the solar neighborhood: chemical evolution models. Astron. Astrophys. 612, A16 (2018).

    ADS  Article  Google Scholar 

  9. 9.

    Grisoni, V. et al. Fluorine in the solar neighbourhood: modelling the Galactic thick and thin discs. Mon. Not. R. Astron. Soc. 498, 1252–1258 (2020).

    ADS  Article  Google Scholar 

  10. 10.

    Kobayashi, C. et al. Evolution of fluorine in the Galaxy with the ν-process. Astrophys. J. Lett. 739, L57 (2011).

    ADS  Article  Google Scholar 

  11. 11.

    Fudamoto, Y. et al. The most distant, luminous, dusty star-forming galaxies: redshifts from NOEMA and ALMA spectral scans. Mon. Not. R. Astron. Soc. 472, 2028–2041 (2017).

    ADS  Article  Google Scholar 

  12. 12.

    Rocca-Volmerange, B., Le Borgne, D., De Breuck, C., Fioc, M. & Moy, E. The radio galaxy Kz relation: the 1012M mass limit. Masses of galaxies from the LK luminosity, up to z > 4. Astron. Astrophys. 415, 931–940 (2004).

    ADS  Article  Google Scholar 

  13. 13.

    Monje, R. R. et al. Hydrogen fluoride toward luminous nearby galaxies: NGC 253 and NGC 4945. Astrophys. J. 785, 22 (2014).

    ADS  Article  Google Scholar 

  14. 14.

    Lehnert, M. D. et al. Etching glass in the early Universe: luminous HF and H2O emission in a QSO–SMG pair at z = 4.7. Astron. Astrophys. 641, A124 (2020).

    Article  Google Scholar 

  15. 15.

    Spilker, J. S. et al. Fast molecular outflow from a dusty star-forming galaxy in the early Universe. Science 361, 1016–1019 (2018).

    ADS  Article  Google Scholar 

  16. 16.

    Neufeld, D. A., Wolfire, M. G. & Schilke, P. The chemistry of fluorine-bearing molecules in diffuse and dense interstellar gas clouds. Astrophys. J. 628, 260–274 (2005).

    ADS  Article  Google Scholar 

  17. 17.

    Sonnentrucker, P. et al. Detection of hydrogen fluoride absorption in diffuse molecular clouds with Herschel/HIFI: an ubiquitous tracer of molecular gas. Astron. Astrophys. 521, L12 (2010).

    ADS  Article  Google Scholar 

  18. 18.

    Emprechtinger, M. et al. Hydrogen fluoride in high-mass star-forming regions. Astrophys. J. 756, 136 (2012).

    ADS  Article  Google Scholar 

  19. 19.

    Kavak, Ü., van der Tak, F. F. S., Tielens, A. G. G. M. & Shipman, R. F. Origin of hydrogen fluoride emission in the Orion Bar. An excellent tracer for CO-dark H2 gas clouds. Astron. Astrophys. 631, A117 (2019).

    Article  Google Scholar 

  20. 20.

    Gerin, M., Neufeld, D. A. & Goicoechea, J. R. Interstellar hydrides. Annu. Rev. Astron. Astrophys. 54, 181–225 (2016).

    ADS  Article  Google Scholar 

  21. 21.

    Neufeld, D. A., Zmuidzinas, J., Schilke, P. & Phillips, T. G. Discovery of interstellar hydrogen fluoride. Astrophys. J. 488, L141–L144 (1997).

    ADS  Article  Google Scholar 

  22. 22.

    Kawaguchi, K. et al. Detection of HF toward PKS 1830-211, search for interstellar H2F+, and laboratory study of H2F+ and H2Cl+ dissociative recombination. Astrophys. J. 822, 115 (2016).

    ADS  Article  Google Scholar 

  23. 23.

    Monje, R. R. et al. Discovery of hydrogen fluoride in the Cloverleaf quasar at z = 2.56. Astrophys. J. Lett. 742, L21 (2011).

    ADS  Article  Google Scholar 

  24. 24.

    Papadopoulos, P. P., Thi, W. F. & Viti, S. C i lines as tracers of molecular gas, and their prospects at high redshifts. Mon. Not. R. Astron. Soc. 351, 147–160 (2004).

    ADS  Article  Google Scholar 

  25. 25.

    Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

    ADS  Article  Google Scholar 

  26. 26.

    Indriolo, N., Neufeld, D. A., Seifahrt, A. & Richter, M. J. Direct determination of the HF/H2 abundance ratio in interstellar gas. Astrophys. J. 764, 188 (2013).

    ADS  Article  Google Scholar 

  27. 27.

    Pereira-Santaella, M. et al. Herschel/SPIRE submillimeter spectra of local active galaxies. Astrophys. J. 768, 55 (2013).

    ADS  Article  Google Scholar 

  28. 28.

    Neufeld, D. A. et al. Strong absorption by interstellar hydrogen fluoride: Herschel/HIFI observations of the sight-line to G10.6-0.4 (W31C). Astron. Astrophys. 518, L108 (2010).

    ADS  Article  Google Scholar 

  29. 29.

    Tacconi, L. J. et al. PHIBSS: unified scaling relations of gas depletion time and molecular gas fractions. Astrophys. J. 853, 179 (2018).

    ADS  Article  Google Scholar 

  30. 30.

    Lugaro, M. et al. Reaction rate uncertainties and the production of 19F in asymptotic giant branch stars. Astrophys. J. 615, 934–946 (2004).

    ADS  Article  Google Scholar 

  31. 31.

    Kobayashi, C., Karakas, A. I. & Lugaro, M. The origin of elements from carbon to uranium. Astrophys. J. 900, 179 (2020).

    ADS  Article  Google Scholar 

  32. 32.

    Kobayashi, C., Tsujimoto, T. & Nomoto, K. The history of the cosmic supernova rate derived from the evolution of the host galaxies. Astrophys. J. 539, 26–38 (2000).

    ADS  Article  Google Scholar 

  33. 33.

    Limongi, M. & Chieffi, A. Presupernova evolution and explosive nucleosynthesis of rotating massive stars in the metallicity range −3 ≤ [Fe/H] ≤ 0. Astrophys. J. Suppl. Ser. 237, 13 (2018).

    ADS  Article  Google Scholar 

  34. 34.

    Ramírez-Agudelo, O. H. et al. The VLT-FLAMES Tarantula Survey. XII. Rotational velocities of the single O-type stars. Astron. Astrophys. 560, A29 (2013).

    Article  Google Scholar 

  35. 35.

    Wiescher, M., Gorres, J., Thielemann, F. K. & Ritter, H. Explosive hydrogen burning in novae. Astron. Astrophys. 160, 56–72 (1986).

    ADS  Google Scholar 

  36. 36.

    Ivison, R. J. et al. The space density of luminous dusty star-forming galaxies at z > 4: SCUBA-2 and LABOCA imaging of ultrared galaxies from Herschel-ATLAS. Astrophys. J. 832, 78 (2016).

    ADS  Article  Google Scholar 

  37. 37.

    Eales, S. et al. The Herschel ATLAS. Publ. Astron. Soc. Pac. 122, 499–515 (2010).

    ADS  Article  Google Scholar 

  38. 38.

    Griffin, M. J. et al. The Herschel-SPIRE instrument and its in-flight performance. Astron. Astrophys. 518, L3 (2010).

    ADS  Article  Google Scholar 

  39. 39.

    Pilbratt, G. L. et al. Herschel Space Observatory. An ESA facility for far-infrared and submillimetre astronomy. Astron. Astrophys. 518, L1 (2010).

    ADS  Article  Google Scholar 

  40. 40.

    Cox, P. et al. Gas and dust in a submillimeter galaxy at z = 4.24 from the Herschel Atlas. Astrophys. J. 740, 63 (2011).

    ADS  Article  Google Scholar 

  41. 41.

    McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. CASA architecture and applications. In Shaw, R. A. et al. (eds.) Astronomical Data Analysis Software and Systems XVI 127 (Astronomical Society of the Pacific Conference Series Vol. 376, 2007).

  42. 42.

    Cornwell, T. J. Multiscale CLEAN deconvolution of radio synthesis images. IEEE J. Sel. Top. Signal Process. 2, 793–801 (2008).

    ADS  Article  Google Scholar 

  43. 43.

    Condon, J. J. Errors in elliptical Gaussian fits. Publ. Astron. Soc. Pac. 109, 166–172 (1997).

    ADS  Article  Google Scholar 

  44. 44.

    Martí-Vidal, I., Pérez-Torres, M. A. & Lobanov, A. P. Over-resolution of compact sources in interferometric observations. Astron. Astrophys. 541, A135 (2012).

    ADS  Article  Google Scholar 

  45. 45.

    Boquien, M. et al. CIGALE: a Python Code Investigating GALaxy Emission. Astron. Astrophys. 622, A103 (2019).

    Article  Google Scholar 

  46. 46.

    Kovács, A. et al. SHARC-2 350 μm observations of distant submillimeter-selected galaxies. Astrophys. J. 650, 592–603 (2006).

    ADS  Article  Google Scholar 

  47. 47.

    Gordon, K. D. et al. Determining dust temperatures and masses in the Herschel era: the importance of observations longward of 200 micron. Astron. Astrophys. 518, L89 (2010).

    ADS  Article  Google Scholar 

  48. 48.

    Kennicutt, J. & Robert, C. The global Schmidt law in star-forming galaxies. Astrophys. J. 498, 541–552 (1998).

    ADS  Article  Google Scholar 

  49. 49.

    Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).

    ADS  Article  Google Scholar 

  50. 50.

    Papadopoulos, P. P. & Greve, T. R. C i emission in ultraluminous infrared galaxies as a molecular gas mass tracer. Astrophys. J. 615, L29–L32 (2004).

    ADS  Article  Google Scholar 

  51. 51.

    Wagg, J., Wilner, D. J., Neri, R., Downes, D. & Wiklind, T. Atomic carbon in APM 08279+5255 at z = 3.91. Astrophys. J. 651, 46–50 (2006).

    ADS  Article  Google Scholar 

  52. 52.

    Weiß, A., Henkel, C., Downes, D. & Walter, F. Gas and dust in the Cloverleaf quasar at redshift 2.5. Astron. Astrophys. 409, L41–L45 (2003).

    ADS  Article  Google Scholar 

  53. 53.

    Bothwell, M. S. et al. ALMA observations of atomic carbon in z ~ 4 dusty star-forming galaxies. Mon. Not. R. Astron. Soc. 466, 2825–2841 (2017).

    ADS  Article  Google Scholar 

  54. 54.

    Jiao, Q. et al. Neutral carbon emission in luminous infrared galaxies: the [C i] lines as total molecular gas tracers. Astrophys. J. Lett. 840, L18 (2017).

    ADS  Article  Google Scholar 

  55. 55.

    Daddi, E. et al. Different star formation laws for disks versus starbursts at low and high redshifts. Astrophys. J. Lett. 714, L118–L122 (2010).

    ADS  Article  Google Scholar 

  56. 56.

    Lagos, C. del P. et al. Molecular hydrogen abundances of galaxies in the EAGLE simulations. Mon. Not. R. Astron. Soc. 452, 3815–3837 (2015).

    ADS  Article  Google Scholar 

  57. 57.

    Solomon, P. M. & Vanden Bout, P. A. Molecular gas at high redshift. Annu. Rev. Astron. Astrophys. 43, 677–725 (2005).

    ADS  Article  Google Scholar 

  58. 58.

    da Cunha, E. et al. On the effect of the cosmic microwave background in high-redshift (sub-)millimeter observations. Astrophys. J. 766, 13 (2013).

    ADS  Article  Google Scholar 

  59. 59.

    Ojha, R. et al. AST/RO observations of atomic carbon near the galactic center. Astrophys. J. 548, 253–257 (2001).

    ADS  Article  Google Scholar 

  60. 60.

    Ikeda, M., Oka, T., Tatematsu, K., Sekimoto, Y. & Yamamoto, S. The distribution of atomic carbon in the Orion Giant Molecular Cloud 1. Astrophys. J. Suppl. Ser. 139, 467–485 (2002).

    ADS  Article  Google Scholar 

  61. 61.

    González-Alfonso, E. et al. Molecular outflows in local ULIRGs: energetics from multitransition OH analysis. Astrophys. J. 836, 11 (2017).

    ADS  Article  Google Scholar 

  62. 62.

    González-Alfonso, E., Fischer, J., Aalto, S. & Falstad, N. Modeling the H2O submillimeter emission in extragalactic sources. Astron. Astrophys. 567, A91 (2014).

    ADS  Article  Google Scholar 

  63. 63.

    Planck Collaborationet al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article  Google Scholar 

  64. 64.

    Palacios, A., Arnould, M. & Meynet, G. The thermonuclear production of 19F by Wolf–Rayet stars revisited. Astron. Astrophys. 443, 243–250 (2005).

    ADS  Article  Google Scholar 

  65. 65.

    Prantzos, N., Abia, C., Limongi, M., Chieffi, A. & Cristallo, S. Chemical evolution with rotating massive star yields—I. The solar neighbourhood and the s-process elements. Mon. Not. R. Astron. Soc. 476, 3432–3459 (2018).

    ADS  Article  Google Scholar 

  66. 66.

    Jönsson, H. et al. Chemical evolution of fluorine in the bulge. High-resolution K-band spectra of giants in three fields. Astron. Astrophys. 564, A122 (2014).

    Article  Google Scholar 

  67. 67.

    Hezaveh, Y. D. et al. ALMA observations of SPT-discovered, strongly lensed, dusty, star-forming galaxies. Astrophys. J. 767, 132 (2013).

    ADS  Article  Google Scholar 

  68. 68.

    Spilker, J. S. et al. ALMA imaging and gravitational lens models of South Pole Telescope—selected dusty, star-forming galaxies at high redshifts. Astrophys. J. 826, 112 (2016).

    ADS  Article  Google Scholar 

  69. 69.

    van der Wiel, M. H. D., Naylor, D. A., Makiwa, G., Satta, M. & Abergel, A. Three-dimensional distribution of hydrogen fluoride gas toward NGC 6334 I and I(N). Astron. Astrophys. 593, A37 (2016).

    Article  Google Scholar 

  70. 70.

    Rodgers, S. D. & Charnley, S. B. Chemical evolution in protostellar envelopes: cocoon chemistry. Astrophys. J. 585, 355–371 (2003).

    ADS  Article  Google Scholar 

  71. 71.

    Jørgensen, J. K., Schöier, F. L. & van Dishoeck, E. F. Molecular freeze-out as a tracer of the thermal and dynamical evolution of pre- and protostellar cores. Astron. Astrophys. 435, 177–182 (2005).

    ADS  Article  Google Scholar 

  72. 72.

    Rangwala, N. et al. Observations of Arp 220 using Herschel-SPIRE: an unprecedented view of the molecular gas in an extreme star formation environment. Astrophys. J. 743, 94 (2011).

    ADS  Article  Google Scholar 

  73. 73.

    Pickett, H. M. et al. Submillimeter, millimeter and microwave spectral line catalog. J. Quant. Spectrosc. Radiat. Transf. 60, 883–890 (1998).

    ADS  Article  Google Scholar 

  74. 74.

    Phillips, T. G. et al. Herschel observations of EXtra-Ordinary Sources (HEXOS): detection of hydrogen fluoride in absorption towards Orion KL. Astron. Astrophys. 518, L109 (2010).

    ADS  Article  Google Scholar 

  75. 75.

    van der Werf, P. P. et al. Black hole accretion and star formation as drivers of gas excitation and chemistry in Markarian 231. Astron. Astrophys. 518, L42 (2010).

    ADS  Article  Google Scholar 

  76. 76.

    Agúndez, M. et al. HIFI detection of hydrogen fluoride in the carbon star envelope IRC +10216. Astron. Astrophys. 533, L6 (2011).

    ADS  Article  Google Scholar 

  77. 77.

    van der Tak, F. F. S. et al. Detection of HF emission from the Orion Bar. Astron. Astrophys. 537, L10 (2012).

    ADS  Article  Google Scholar 

  78. 78.

    Kamenetzky, J. et al. Herschel-SPIRE imaging spectroscopy of molecular gas in M82. Astrophys. J. 753, 70 (2012).

    ADS  Article  Google Scholar 

  79. 79.

    Lu, N. et al. A Herschel Space Observatory spectral line survey of local luminous infrared galaxies from 194 to 671 microns. Astrophys. J. Suppl. Ser. 230, 1 (2017).

    ADS  Article  Google Scholar 

  80. 80.

    Pérez-Beaupuits, J. P. et al. A thorough view of the nuclear region of NGC 253: combined Herschel, SOFIA, and APEX data set. Astrophys. J. 860, 23 (2018).

    ADS  Article  Google Scholar 

Download references


M.F. is grateful to Y. Hezaveh for his advice on the lens model. M.F. and K.E.K.C. acknowledge support from the UK Science and Technology Facilities Council (STFC) (grant ST/R000905/1). K.E.K.C. acknowledges support from a Royal Society Leverhulme Trust Senior Research Fellowship (grant RSLT SRF/R1/191013). J.E.G. acknowledges support from a Royal Society University Research Fellowship. C.K. acknowledges funding from the UK STFC through grants ST/M000958/1 and ST/ R000905/1. S.C.C. acknowledges the Natural Sciences and Engineering Research Council of Canada (NSERC). C.Y. acknowledges support from an ESO Fellowship. J.S.S. is a NHFP Hubble Fellow supported by NASA Hubble Fellowship grant HF2-51446 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, for NASA, under contract NAS5-26555. E.G.-A. thanks the Spanish Ministerio de Economía y Competitividad for support under projects ESP2017-86582-C4-1-R and PID2019-105552RB-C41. M.J.M. acknowledges the support of the National Science Centre, Poland, through SONATA BIS grant 2018/30/E/ST9/00208. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2017.1.00510.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan) and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ.

Author information




M.F. reduced and analysed the data; M.F., K.E.K.C., J.E.G. and C.K. interpreted the results and wrote the paper. C.K. created the chemical evolution models. C.Y. interpreted the results. J.S.S. helped create the lens model. E.G.-A. computed the HF column density and contributed to various aspects of the analysis. S.C.C. provided, and helped analyse the data and contributed to the manuscript. All other authors contributed to the ALMA proposals and to the scientific discussion, and provided comments on the manuscript.

Corresponding author

Correspondence to M. Franco.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Andreas Faisst and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Franco, M., Coppin, K.E.K., Geach, J.E. et al. The ramp-up of interstellar medium enrichment at z > 4. Nat Astron (2021).

Download citation


Quick links