Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A relic from a past merger event in the Large Magellanic Cloud

Abstract

According to the standard cosmological scenario, the large galaxies that we observe today have reached their current mass via mergers with smaller galaxy satellites1. This hierarchical process is expected to take place on smaller scales for the satellites themselves, which should build up from the accretion of smaller building blocks2. The best chance we have to test this prediction is by looking at the most massive satellite of the Milky Way: the Large Magellanic Cloud (LMC). Smaller galaxies have been revealed to orbit around the LMC3,4, but so far the only evidence for mutual interactions is related to the orbital interplay with the nearby Small Magellanic Cloud, which is the most massive LMC satellite. In this work, we report the likely discovery of a past merger event that the LMC experienced with a galaxy with a low star formation efficiency and likely a stellar mass similar to those of dwarf spheroidal galaxies. This former LMC satellite has now completely dissolved, depositing the old globular cluster NGC 2005 as part of its debris. This globular cluster, the only surviving witness of this ancient merger event, is recognizable through its peculiar chemical composition. This discovery is observational evidence that the process of hierarchical assembly has worked also in shaping our closest satellites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical abundances of NGC 2005.
Fig. 2: Chemical abundances of the LMC and Milky Way clusters.

Similar content being viewed by others

Data availability

Most of the data used in this work are available in the public archive of the European Southern Observatory (http://archive.eso.org/eso/eso_archive_main.html and http://archive.eso.org/wdb/wdb/adp/phase3_main/form). All the data are available from the corresponding author upon reasonable request.

Code availability

The codes used for the chemical analysis are publicly available: GALA (http://www.cosmic-lab.eu/gala/gala.php), ATLAS9 (https://wwwuser.oats.inaf.it/castelli/sources/atlas9codes.html), SYNTHE (https://wwwuser.oats.inaf.it/castelli/sources/synthe.html) and DAOSPEC (http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/community/STETSON/daospec/). We opt not to make the code used for the chemical evolution modelling publicly available because it is an important asset in the researchers’ tool kits.

References

  1. Moore, B. et al. Dark matter substructure within galactic halos. Astrophys. J. 524, L19 (1999).

    Article  ADS  Google Scholar 

  2. D’Onghia, E. & Lake, G. Small dwarf galaxies within larger dwarfs: why some are luminous while most go dark. Astrophys. J. 686, L61 (2008).

    Article  ADS  Google Scholar 

  3. Erkal, D. & Belokurov, V. A. Limit on the LMC mass from a census of its satellites. Mon. Not. R. Astron. Soc. 495, 2554–2563 (2020).

    Article  ADS  Google Scholar 

  4. Patel, E. et al. The orbital histories of Magellanic satellites using Gaia DR2 proper motions. Astrophys. J. 893, 121 (2020).

    Article  ADS  Google Scholar 

  5. Peñarrubia, J., Gómez, F. A., Besla, G., Erkal, D. & Ma, Y.-Z. A timing constraint on the (total) mass of the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 456, L54–L58 (2016).

    Article  ADS  Google Scholar 

  6. Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. Mon. Not. R. Astron. Soc. 487, 2685–2700 (2019).

    Article  ADS  Google Scholar 

  7. van der Marel, R. P. & Kallivayalil, N. Third-epoch Magellanic Cloud Proper Motions. II. The Large Magellanic Cloud rotation field in three dimensions. Astrophys. J. 781, 121 (2014).

    Article  ADS  Google Scholar 

  8. Guo, Q., White, S., Li, C. & Boylan-Kolchin, M. How do galaxies populate dark matter haloes?. Mon. Not. R. Astron. Soc. 404, 1111–1120 (2010).

    ADS  Google Scholar 

  9. Sales, L. V., Wang, W., White, S. D. M. & Navarro, J. F. Satellites and haloes of dwarf galaxies. Mon. Not. R. Astron. Soc. 428, 573–578 (2013).

    Article  ADS  Google Scholar 

  10. Stanimirović, S., Staveley-Smith, L. & Jones, P. A. A new look at the kinematics of neutral hydrogen in the Small Magellanic Cloud. Astrophys. J. 604, 176 (2004).

    Article  ADS  Google Scholar 

  11. Kallivayalil, N., van der Marel, R. P. & Alcock, C. Is the SMC bound to the LMC? The Hubble Space Telescope proper motion of the SMC. Astrophys. J. 652, 1213–1229 (2006).

    Article  ADS  Google Scholar 

  12. Kallivayalil, N., van der Marel, R. P., Besla, G., Anderson, J. & Alcock, C. Third-epoch Magellanic Cloud proper motions. I. Hubble Space Telescope/WFC3 data and orbit implications. Astrophys. J. 764, 161 (2013).

    Article  ADS  Google Scholar 

  13. Simon, J. D. The faintest dwarf galaxies. Annu. Rev. Astron. Astrophys. 57, 375–415 (2019).

    Article  ADS  Google Scholar 

  14. Gaia Collaboration Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

    Article  Google Scholar 

  15. Gaia Collaboration Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. Astron. Astrophys. 616, A12 (2018).

    Article  Google Scholar 

  16. Simon, J. D. Gaia proper motions and orbits of the ultra-faint Milky Way satellites. Astrophys. J. 863, 89 (2018).

    Article  ADS  Google Scholar 

  17. Kallivayalil, N. et al. The missing satellites of the Magellanic Clouds? Gaia proper motions of the recently discovered ultra-faint galaxies. Astrophys. J. 867, 19 (2018).

    Article  ADS  Google Scholar 

  18. D’Onghia, E. & Fox, A. J. The Magellanic Stream: circumnavigating the Galaxy. Annu. Rev. Astron. Astrophys. 54, 363–400 (2016).

    Article  ADS  Google Scholar 

  19. Olsen, K. A. G., Zaritsky, D., Blum, R. D., Boyer, M. L. & Gordon, K. D. A population of accreted Small Magellanic Cloud stars in the Large Magellanic Cloud. Astrophys. J. 737, 29 (2011).

    Article  ADS  Google Scholar 

  20. Freeman, K. & Bland-Hawthorn, J. The New Galaxy: signatures of its formation. Annu. Rev. Astron. Astrophys. 40, 487–537 (2002).

    Article  ADS  Google Scholar 

  21. Massari, D., Koppelman, H. H. & Helmi, A. Origin of the system of globular clusters in the Milky Way. Astron. Astrophys. 630, L4 (2019).

    Article  ADS  Google Scholar 

  22. Myeong, G. C., Vasiliev, E., Iorio, G., Evans, N. W. & Belokurov, V. Evidence for two early accretion events that built the Milky Way stellar halo. Mon. Not. R. Astron. Soc. 488, 1235–1247 (2019).

    Article  ADS  Google Scholar 

  23. Kruijssen, J. M. D. et al. Kraken reveals itself – the merger history of the Milky Way reconstructed with the E-MOSAICS simulations. Mon. Not. R. Astron. Soc. 498, 2472–2491 (2020).

    Article  ADS  Google Scholar 

  24. Mackey, D. et al. Two major accretion epochs in M31 from two distinct populations of globular clusters. Nature 574, 69–71 (2019).

    Article  ADS  Google Scholar 

  25. Lapenna, E., Mucciarelli, A., Origlia, L. & Ferraro, F. R. Tagging the chemical evolution history of the Large Magellanic Cloud disk. Astrophys. J. 761, 33 (2012).

    Article  ADS  Google Scholar 

  26. Van der Swaelmen, M., Hill, V., Primas, F. & Cole, A. A. Chemical abundances in LMC stellar populations. II. The bar sample. Astron. Astrophys. 560, A44 (2013).

    Article  Google Scholar 

  27. Nidever, D. L. et al. The lazy giants: APOGEE abundances reveal low star formation efficiencies in the Magellanic Clouds. Astrophys. J. 895, 88 (2020).

    Article  ADS  Google Scholar 

  28. Mackey, A. D. & Gilmore, G. F. Surface brightness profiles and structural parameters for 53 rich stellar clusters in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 338, 85–119 (2003).

    Article  ADS  Google Scholar 

  29. Tolstoy, E., Hill, V. & Tosi, M. Star-formation histories, abundances, and kinematics of dwarf galaxies in the Local Group. Annu. Rev. Astron. Astrophys. 47, 371–425 (2009).

    Article  ADS  Google Scholar 

  30. Romano, D., Karakas, A. I., Tosi, M. & Matteucci, F. Quantifying the uncertainties of chemical evolution studies. II. Stellar yields. Astron. Astrophys. 522, A32 (2010).

    Article  ADS  Google Scholar 

  31. Yan, Z., Jerabkova, T. & Kroupa, P. Chemical evolution of ultra-faint dwarf galaxies in the self-consistently calculated integrated galactic IMF theory. Astron. Astrophys. 637, A68 (2020).

    Article  ADS  Google Scholar 

  32. Olszewski, E. W., Suntzeff, N. B. & Mateo, M. Old and intermediate-age stellar populations in the Magellanic Clouds. Annu. Rev. Astron. Astrophys. 34, 511–550 (1996).

    Article  ADS  Google Scholar 

  33. Brocato, E., Castellani, V., Ferraro, F. R., Piersimoni, A. M. & Testa, V. The age of the old Magellanic Cloud clusters – II. NGC 1786, 1841 and 2210 as evidence for an old coeval population of LMC and galactic globular clusters. Mon. Not. R. Astron. Soc. 282, 614–622 (1996).

    Article  ADS  Google Scholar 

  34. Olsen, K. A. G. et al. HST colour–magnitude diagrams of six old globular clusters in the LMC. Mon. Not. R. Astron. Soc. 300, 665–685 (1998).

    Article  ADS  Google Scholar 

  35. Wagner-Kaiser, R. et al. Exploring the nature and synchronicity of early cluster formation in the Large Magellanic Cloud - II. Relative ages and distances for six ancient globular clusters. Mon. Not. R. Astron. Soc. 471, 3347–3358 (2017).

    Article  ADS  Google Scholar 

  36. Hill, V., François, P., Spite, M., Primas, F. & Spite, F. Age-metallicity relation and chemical evolution of the LMC from UVES spectra of Globular Cluster giants. Astrophys. J. 364, L19–L25 (2000).

    Google Scholar 

  37. Johnson, J. A., Ivans, I. I. & Stetson, P. B. Chemical compositions of red giant stars in old Large Magellanic Cloud globular clusters. Astrophys. J. 640, 801 (2006).

    Article  ADS  Google Scholar 

  38. Mucciarelli, A., Origlia, L. & Ferraro, F. R. Chemical composition of the old globular clusters NGC 1786, NGC 2210, and NGC 2257 in the Large Magellanic Cloud. Astrophys. J. 717, 277 (2010).

    Article  ADS  Google Scholar 

  39. Mateluna, R. et al. Chemical abundances in the old LMC globular cluster Hodge 11. Astron. Astrophys. 548, A82 (2012).

    Article  Google Scholar 

  40. Pasquini, L. et al. Installation and commissioning of FLAMES, the VLT Multifibre Facility. Messenger 110, 1–9 (2002).

    ADS  Google Scholar 

  41. Dekker, H., D’Odorico, S., Kaufer, A., Delabre, B. & Kotzlowski, H. Design, construction, and performance of UVES, the echelle spectrograph for the UT2 Kueyen Telescope at the ESO Paranal Observatory. Proc. SPIE 4008, 534–545 (2000).

    Article  ADS  Google Scholar 

  42. Bernstein, R., Shectman, S. A., Gunnels, S. M., Mochnacki, S. & Athey, A. E. MIKE: A double echelle spectrograph for the Magellan Telescopes at Las Campanas Observatory. Proc. SPIE 4841, 1694–1704 (2003).

    Article  ADS  Google Scholar 

  43. Stetson, P. B. & Pancino, E. DAOSPEC: an automatic code for measuring equivalent widths in high-resolution stellar spectra. Publ. Astron. Soc. Pac. 120, 1332 (2008).

    Article  ADS  Google Scholar 

  44. Mucciarelli, A., Pancino, E., Lovisi, L., Ferraro, F. R. & Lapenna, E. GALA: an automatic tool for the abundance analysis of stellar spectra. Astrophys. J. 766, 78 (2013).

    Article  ADS  Google Scholar 

  45. Kurucz, R. L. ATLAS12, SYNTHE, ATLAS9, WIDTH9, et cetera. J. Ital. Astron. Soc. 8, 14 (2005).

    Google Scholar 

  46. Carretta, E. et al. Na-O anticorrelation and HB. VII. The chemical composition of first and second-generation stars in 15 globular clusters from GIRAFFE spectra. Astron. Astrophys. 505, 117–138 (2009).

    Article  ADS  Google Scholar 

  47. Mucciarelli, A., Origlia, L., Ferraro, F. R. & Pancino, E. Looking outside the galaxy: the discovery of chemical anomalies in three old Large Magellanic Cloud clusters. Astrophys. J. 695, L134–L139 (2009).

    Article  ADS  Google Scholar 

  48. Mucciarelli, A. & Bonifacio, P. Facing problems in the determination of stellar temperatures and gravities: Galactic globular clusters. Astron. Astrophys. 640, A87 (2020).

    Article  ADS  Google Scholar 

  49. González Hernández, J. I. & Bonifacio, P. A new implementation of the infrared flux method using the 2MASS catalogue. Astron. Astrophys. 497, 497–509 (2009).

    Article  ADS  Google Scholar 

  50. Stetson, P. B., Pancino, E., Zocchi, A., Sanna, N. & Monelli, M. Homogeneous photometry - VII. Globular clusters in the Gaia era. Mon. Not. R. Astron. Soc. 485, 3042–3063 (2019).

    Article  ADS  Google Scholar 

  51. Dotter, A. et al. The Dartmouth Stellar Evolution Database. Astrophys. J. Suppl. Ser. 178, 89 (2008).

    Article  ADS  Google Scholar 

  52. Mucciarelli, A. Microturbulent velocity from stellar spectra: a comparison between different approaches. Astron. Astrophys. 528, A44 (2011).

    Article  ADS  Google Scholar 

  53. Hanke, M. et al. A high-precision abundance analysis of the nuclear benchmark star HD 20. Astron. Astrophys. 635, A104 (2020).

    Article  Google Scholar 

  54. Lupton, R. Statistics in Theory and Practice (Princeton Univ. Press, 1993).

  55. Cayrel, R. et al. First stars V – abundance patterns from C to Zn and supernova yields in the early Galaxy. Astron. Astrophys. 416, 1117–1138 (2004).

    Article  ADS  Google Scholar 

  56. Chiappini, C., Matteucci, F. & Romano, D. Abundance gradients and the formation of the Milky Way. Astrophys. J. 554, 1044–1058 (2001).

    Article  ADS  Google Scholar 

  57. Romano, D. & Starkenburg, E. Chemical evolution of Local Group dwarf galaxies in a cosmological context – I. A new modelling approach and its application to the Sculptor dwarf spheroidal galaxy. Mon. Not. R. Astron. Soc. 434, 471–487 (2013).

    Article  ADS  Google Scholar 

  58. Romano, D., Bellazzini, M., Starkenburg, E. & Leaman, R. Chemical enrichment in very low metallicity environments: Boötes I. Mon. Not. R. Astron. Soc. 446, 4220–4231 (2015).

    Article  ADS  Google Scholar 

  59. Rezaeikh, S., Javadi, A., Khosroshahi, H. & van Loon, J. T. The star formation history of the Magellanic Clouds derived from long-period variable star counts. Mon. Not. R. Astron. Soc. 445, 2214–2222 (2014).

    Article  ADS  Google Scholar 

  60. Colavitti, E., Matteucci, F. & Murante, G. The chemical evolution of a Milky Way-like galaxy: the importance of a cosmologically motivated infall law. Astron. Astrophys. 483, 401–413 (2008).

    Article  ADS  Google Scholar 

  61. Schmidt, M. The rate of star formation. Astrophys. J. 129, 243 (1959).

    Article  ADS  Google Scholar 

  62. Kennicutt, R. C.Jr The global Schmidt law in star-forming galaxies. Astrophys. J. 498, 541–552 (1998).

    Article  ADS  Google Scholar 

  63. Kroupa, P. in Modes of Star Formation and the Origin of Field Populations Vol. 285 (eds Grebel, E. K. & Brandner, W.) 86–93 (Astronomical Society of the Pacific, 2002).

  64. Karakas, A. I. Updated stellar yields from asymptotic giant branch models. Mon. Not. R. Astron. Soc. 403, 1413–1425 (2010).

    Article  ADS  Google Scholar 

  65. Nomoto, K., Kobayashi, C. & Tominaga, N. Nucleosynthesis in stars and the chemical enrichment of galaxies. Annu. Rev. Astron. Astrophys. 51, 457–509 (2013).

    Article  ADS  Google Scholar 

  66. Iwamoto, K. et al. Nucleosynthesis in Chandrasekhar mass models for Type IA supernovae and constraints on progenitor systems and burning-front propagation. Astrophys. J. Suppl. Ser. 125, 439–462 (1999).

    Article  ADS  Google Scholar 

  67. Matteucci, F. & Greggio, L. Relative roles of type I and II supernovae in the chemical enrichment of the interstellar gas. Astron. Astrophys. 154, 279–287 (1986).

    ADS  Google Scholar 

  68. Matteucci, F. & Recchi, S. On the typical timescale for the chemical enrichment from Type Ia supernovae in galaxies. Astrophys. J. 558, 351–358 (2001).

    Article  ADS  Google Scholar 

  69. Kobayashi, C., Umeda, H., Nomoto, K., Tominaga, N. & Ohkubo, T. Galactic chemical evolution: carbon through zinc. Astrophys. J. 653, 1145–1171 (2006).

    Article  ADS  Google Scholar 

  70. Mucciarelli, A. et al. Chemical abundances in the nucleus of the Sagittarius dwarf spheroidal galaxy. Astron. Astrophys. 605, A46 (2017).

    Article  Google Scholar 

  71. Minelli, A. et al. A homogeneous comparison between the chemical composition of the Large Magellanic Cloud and the Sagittarius dwarf galaxy. Astrophys. J. 910, 114 (2021).

    Article  ADS  Google Scholar 

  72. Shetrone, M. D., Côté, P. & Stetson, P. B. The nature of the red giant branches in the Ursa Minor and Draco dwarf spheroidal galaxies. Publ. Astron. Soc. Pac. 113, 1122–1129 (2001).

    Article  ADS  Google Scholar 

  73. Letarte, B. et al. VLT/UVES spectroscopy of individual stars in three globular clusters in the Fornax dwarf spheroidal galaxy. Astron. Astrophys. 453, 547–554 (2006).

    Article  ADS  Google Scholar 

  74. Cohen, J. G. & Huang, W. The chemical evolution of the Draco dwarf spheroidal galaxy. Astrophys. J. 701, 1053–1075 (2009).

    Article  ADS  Google Scholar 

  75. Cohen, J. G. & Huang, W. The chemical evolution of the Ursa Minor dwarf spheroidal galaxy. Astrophys. J. 719, 931–949 (2010).

    Article  ADS  Google Scholar 

  76. Letarte, B. et al. A high-resolution VLT/FLAMES study of individual stars in the centre of the Fornax dwarf spheroidal galaxy. Astron. Astrophys. 523, A17 (2010).

    Article  Google Scholar 

  77. Lemasle, B. et al. VLT/FLAMES spectroscopy of red giant branch stars in the Fornax dwarf spheroidal galaxy. Astron. Astrophys. 572, A88 (2014).

    Article  Google Scholar 

  78. Ural, U. et al. An inefficient dwarf: chemical abundances and the evolution of the Ursa Minor dwarf spheroidal galaxy. Mon. Not. R. Astron. Soc. 449, 761–770 (2015).

    Article  ADS  Google Scholar 

  79. McConnachie, A. W. The observed properties of dwarf galaxies in and around the Local Group. Astron. J. 144, 4 (2012).

    Article  ADS  Google Scholar 

  80. Leung, G. Y. C., Leaman, R., van de Ven, G. & Battaglia, G. A dwarf–dwarf merger and dark matter core as a solution to the globular cluster problems in the Fornax dSph. Mon. Not. R. Astron. Soc. 493, 320–336 (2020).

    Article  ADS  Google Scholar 

  81. Prole, D. J. et al. Halo mass estimates from the globular cluster populations of 175 low surface brightness galaxies in the Fornax cluster. Mon. Not. R. Astron. Soc. 484, 4865–4880 (2019).

    Article  ADS  Google Scholar 

  82. Bensby, T., Feltzing, S. & Oey, M. S. Exploring the Milky Way stellar disk. A detailed elemental abundance study of 714 F and G dwarf stars in the solar neighbourhood. Astron. Astrophys. 562, A71 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A. Mucciarelli, F.R.F. and L.O. acknowledge the financial support of the project ‘Light-on-Dark’, granted by the Italian MIUR through contract PRIN-2017K7REXT. D.R. gratefully acknowledges the International Space Science Institute (ISSI) in Bern, Switzerland, and the International Space Science Institute Beijing (ISSI-BJ) in Beijing, China, for support provided to the team ‘Chemical abundances in the ISM: the litmus test of stellar IMF variations in galaxies across cosmic time’. D.R. and M.B. acknowledge the financial support of INAF through the Main Stream grant CRA 1.05.01.86.28 assigned to the project ‘SSH: the Smallest Scale of Hierarchy’. A. Mucciarelli thanks J. Johnson for sharing the MIKE spectra. A. Mucciarelli dedicates this work to the memory of his twin brother Simone.

Author information

Authors and Affiliations

Authors

Contributions

A. Mucciarelli designed the study, coordinated the work and performed the data analysis. D.M. led the scientific interpretation. A. Minelli contributed to the spectroscopic analysis. D.R. computed the chemical evolution models and contributed to the scientific interpretation. M.B. contributed to the scientific interpretation and to the writing. F.R.F., F.M. and L.O. contributed to the presentation of the paper. All the authors critically contributed to the work presented here.

Corresponding author

Correspondence to A. Mucciarelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Andres Piatti and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5, Tables 1–3 and references.

Supplementary Data 1

Machine-readable version of Supplementary Table 3. The table lists for the individual LMC globular cluster stars the effective temperature, the logarithm of the surface gravity, the microturbulent velocity, and the iron abundance with the corresponding error calculated as the sum in quadrature of the statistical error and the uncertainty arising from the atmospheric parameters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mucciarelli, A., Massari, D., Minelli, A. et al. A relic from a past merger event in the Large Magellanic Cloud. Nat Astron 5, 1247–1254 (2021). https://doi.org/10.1038/s41550-021-01493-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01493-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing