Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A snapshot of the oldest active galactic nuclei feedback phases

Abstract

Active galactic nuclei inject large amounts of energy into their host galaxies and surrounding environment, shaping their properties and evolution1,2. In particular, active-galactic-nuclei jets inflate cosmic-ray lobes, which can rise buoyantly as light ‘bubbles’ in the surrounding medium3, displacing and heating the encountered thermal gas and thus halting its spontaneous cooling. These bubbles have been identified in a wide range of systems4,5. However, due to the short synchrotron lifetime of electrons, the most advanced phases of their evolution have remained observationally unconstrained, preventing us from fully understand their coupling with the external medium, and thus active galactic nuclei feedback. Simple subsonic hydrodynamic models6,7 predict that the pressure gradients, naturally present around the buoyantly rising bubbles, transform them into toroidal structures, resembling mushroom clouds in a stratified atmosphere. The way and timescales on which these tori will eventually disrupt depend on various factors including magnetic fields and plasma viscosity8,9. Here we report observations below 200 MHz, sensitive to the oldest radio-emitting particles, showing the late evolution of multiple generations of cosmic-ray active-galactic-nuclei bubbles in a galaxy group with unprecedented level of detail. The bubbles’ buoyancy power can efficiently offset the radiative cooling of the intragroup medium. However, the bubbles still have not thoroughly mixed with the thermal gas, after hundreds of million years, probably under the action of magnetic fields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LOFAR images showing the complex non-thermal radio emission in the galaxy group Nest200047.
Fig. 2: Lightly smoothed 0.5–2.3 keV eROSITA X-ray image of the galaxy group Nest200047 showing the fine X-ray substructure in the core of the group.
Fig. 3: Spectral-index map in the range 53–144 MHz of the galaxy group Nest200047.

Similar content being viewed by others

Data availability

The radio observations are available in the LOFAR long-term archive (https://lta.lofar.eu/) and radio images are available at https://doi.org/10.20371/INAF/DS/2021_00002. The X-ray datasets are not yet publicly available. Their proprietary scientific exploitation rights were granted by the project funding agencies (Roscosmos and DLR) to two consortia led by MPE (Germany) and IKI (Russia), respectively. The SRG–eROSITA all-sky survey data will be released publicly after a minimum period of two years. The exact release date for the data belonging to the consortium led by IKI is yet to be decided. All other data and figures within this paper are available from the corresponding author upon reasonable request.

Code availability

The codes that support the figures within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. McNamara, B. R. & Nulsen, P. E. J. Heating hot atmospheres with active galactic nuclei. Ann. Rev. Astron. Astrophys. 45, 117–175 (2007).

    Article  ADS  Google Scholar 

  2. Fabian, A. C. Observational evidence of active galactic nuclei feedback. Ann. Rev. Astron. Astrophys. 50, 455–489 (2012).

    Article  ADS  Google Scholar 

  3. Gull, S. F. & Northover, K. J. E. Bubble model of extragalactic radio sources. Nature 244, 80–83 (1973).

    Article  ADS  Google Scholar 

  4. Werner, N., McNamara, B. R., Churazov, E. & Scannapieco, E. Hot atmospheres, cold gas, AGN feedback and the evolution of early type galaxies: a topical perspective. Space Sci. Rev. 215, 5 (2019).

    Article  ADS  Google Scholar 

  5. Dunn, R. J. H., Fabian, A. C. & Taylor, G. B. Radio bubbles in clusters of galaxies. Mon. Not. R. Astron. Soc. 364, 1343–1353 (2005).

    Article  ADS  Google Scholar 

  6. Churazov, E., Forman, W., Jones, C. & Böhringer, H. Asymmetric, arc minute scale structures around NGC 1275. Astron. Astrophys. 356, 788–794 (2000).

    ADS  Google Scholar 

  7. Brüggen, M. Simulations of buoyant bubbles in galaxy clusters. Astrophys. J. 592, 839–845 (2003).

    Article  ADS  Google Scholar 

  8. Reynolds, C. S., McKernan, B., Fabian, A. C., Stone, J. M. & Vernaleo, J. C. Buoyant radio lobes in a viscous intracluster medium. Mon. Not. R. Astron. Soc. 357, 242–250 (2005).

    Article  ADS  Google Scholar 

  9. Ruszkowski, M., Enßlin, T. A., Brüggen, M., Begelman, M. C. & Churazov, E. Cosmic ray confinement in fossil cluster bubbles. Mon. Not. R. Astron. Soc. 383, 1359–1365 (2008).

    Article  ADS  Google Scholar 

  10. Tully, R. B. Galaxy groups: a 2MASS catalog. Astron. J. 149, 171 (2015).

    Article  ADS  Google Scholar 

  11. Huchra, J. P., Macri, L. M., Masters, K. L., Jarrett, T. H. & Berlind, P. et al. The 2MASS Redshift Survey—description and data release. Astrophys. J. Suppl. 199, 26 (2012).

    Article  ADS  Google Scholar 

  12. van Haarlem, M. P., Wise, M. W., Gunst, A. W., Heald, G. & McKean, J. P. et al. LOFAR: the Low-Frequency Array. Astron. Astrophys. 556, A2 (2013).

    Article  Google Scholar 

  13. Shimwell, T. W., Tasse, C., Hardcastle, M. J., Mechev, A. P. & Williams, W. L. et al. The LOFAR Two-Metre Sky Survey. II. First data release. Astron. Astrophys. 622, A1 (2019).

    Article  Google Scholar 

  14. Predehl, P., Andritschke, R., Arefiev, V., Babyshkin, V. & Batanov, O. et al. The eROSITA X-ray telescope on SRG. Astron. Astrophys. 647, A1 (2021).

    Article  Google Scholar 

  15. Schoenmakers, A. P., de Bruyn, A. G., Röttgering, H. J. A., van der Laan, H. & Kaiser, C. R. Radio galaxies with a ‘double-double morphology’ I. Analysis of the radio properties and evidence for interrupted activity in active galactic nuclei. Mon. Not. R. Astron. Soc. 315, 371–380 (2000).

    Article  ADS  Google Scholar 

  16. Finoguenov, A. & Jones, C. Chandra observation of M84, a radio lobe elliptical galaxy in the Virgo cluster. Astrophys. J. Lett. 547, L107–L110 (2001).

    Article  ADS  Google Scholar 

  17. Owen, F. N., Eilek, J. A. & Kassim, N. E. M87 at 90 centimeters: a different picture. Astrophys. J. 543, 611–619 (2000).

    Article  ADS  Google Scholar 

  18. Churazov, E., Brüggen, M., Kaiser, C. R., Böhringer, H. & Forman, W. Evolution of buoyant bubbles in M87. Astrophys. J. 554, 261–273 (2001).

    Article  ADS  Google Scholar 

  19. Yang, H.-Y. K., Gaspari, M. & Marlow, C. The impact of radio AGN bubble composition on the dynamics and thermal balance of the intracluster medium. Astrophys. J. 871, 6 (2019).

    Article  ADS  Google Scholar 

  20. Markevitch, M., Govoni, F., Brunetti, G. & Jerius, D. Bow shock and radio halo in the merging cluster A520. Astrophys. J. 627, 733–738 (2005).

    Article  ADS  Google Scholar 

  21. Enßlin, T. A. & Brüggen, M. On the formation of cluster radio relics. Mon. Not. R. Astron. Soc. 331, 1011–1019 (2002).

    Article  ADS  Google Scholar 

  22. Rajpurohit, K., Hoeft, M., van Weeren, R. J., Rudnick, L. & Röttgering, H. J. A. et al. Deep VLA observations of the cluster 1RXS J0603.3+4214 in the frequency range of 1–2 GHz. Astrophys. J. 852, 65 (2018).

    Article  ADS  Google Scholar 

  23. de Gasperin, F., van Weeren, R. J., Brüggen, M., Vazza, F. & Bonafede, A. et al. A new double radio relic in PSZ1 G096.89+24.17 and a radio relic mass–luminosity relation. Mon. Not. R. Astron. Soc. 444, 3130–3138 (2014).

    Article  ADS  Google Scholar 

  24. Wise, M. W., McNamara, B. R., Nulsen, P. E. J., Houck, J. C. & David, L. P. X-Ray supercavities in the Hydra A cluster and the outburst history of the central galaxy’s active nucleus. Astrophys. J. 659, 1153–1158 (2007).

    Article  ADS  Google Scholar 

  25. Bîrzan, L., Rafferty, D. A. & McNamara, B. R. A systematic study of radio-induced X-ray cavities in clusters, groups, and galaxies. Astrophys. J. 607, 800–809 (2004).

    Article  ADS  Google Scholar 

  26. O’Neill, S. M., De Young, D. S. & Jones, T. W. Three-dimensional magnetohydrodynamic simulations of buoyant bubbles in galaxy clusters. Astrophys. J. 694, 1317–1330 (2009).

    Article  ADS  Google Scholar 

  27. Sunyaev, R. A., Norman, M. L. & Bryan, G. L. On the detectability of turbulence and bulk flows in X-ray clusters. Astron. Lett. 29, 783–790 (2003).

    Article  ADS  Google Scholar 

  28. Porter, D. H., Jones, T. W. & Ryu, D. Vorticity, shocks, and magnetic fields in subsonic, ICM-like turbulence. Astrophys. J. 810, 93 (2015).

    Article  ADS  Google Scholar 

  29. Xu, S., Ji, S. & Lazarian, A. On the formation of density filaments in the turbulent interstellar medium. Astrophys. J. 878, 157 (2019).

    Article  ADS  Google Scholar 

  30. Zhuravleva, I., Churazov, E., Schekochihin, A. A., Allen, S. W. & Arévalo, P. et al. Turbulent heating in galaxy clusters brightest in X-rays. Nature 515, 85–87 (2014).

    Article  ADS  Google Scholar 

  31. Ehlert, K., Weinberger, R., Pfrommer, C., Pakmor, R. & Springel, V. Simulations of the dynamics of magnetized jets and cosmic rays in galaxy clusters. Mon. Not. R. Astron. Soc. 481, 2878–2900 (2018).

    Article  ADS  Google Scholar 

  32. de Gasperin, F., Dijkema, T. J., Drabent, A., Mevius, M. & Rafferty, D. et al. Systematic effects in LOFAR data: a unified calibration strategy. Astron. Astrophys. 622, A5 (2019).

    Article  Google Scholar 

  33. van Weeren, R. J., Williams, W. L., Hardcastle, M. J., Shimwell, T. W. & Rafferty, D. A. et al. LOFAR facet calibration. Astrophys. J. Suppl. 223, 2 (2016).

    Article  ADS  Google Scholar 

  34. Williams, W. L., van Weeren, R. J., Röttgering, H. J. A., Best, P. & Dijkema, T. J. et al. LOFAR 150-MHz observations of the Boötes Field: catalogue and source counts. Mon. Not. R. Astron. Soc. 460, 2385–2412 (2016).

    Article  ADS  Google Scholar 

  35. Tasse, C., Shimwell, T., Hardcastle, M. J., O’Sullivan, S. P. & van Weeren, R. et al. The LOFAR Two-Meter Sky Survey: deep fields data release 1. I. Direction-dependent calibration and imaging. Astron. Astrophys. 648, A1 (2021).

    Article  Google Scholar 

  36. Tasse, C. Nonlinear Kalman filters for calibration in radio interferometry. Astron. Astrophys. 566, 126 (2014).

    Article  Google Scholar 

  37. Smirnov, O. M. & Tasse, C. Radio interferometric gain calibration as a complex optimization problem. Mon. Not. R. Astron. Soc. 449, 2668–2684 (2015).

    Article  ADS  Google Scholar 

  38. Tasse, C., Hugo, B., Mirmont, M., Smirnov, O. & Atemkeng, M. et al. Faceting for direction-dependent spectral deconvolution. Astron. Astrophys. 611, A87 (2018).

    Article  Google Scholar 

  39. van Weeren, R. J., Shimwell, T. W., Botteon, A., Brunetti, G. & Brüggen, M. LOFAR observations of galaxy clusters in HETDEX. Extraction and self-calibration of individual LOFAR targets. Astron. Astrophys. 651, A115 (2021).

    Article  Google Scholar 

  40. Offringa, A. R., McKinley, B., Hurley-Walker, N., Briggs, F. H. & Wayth, R. B. et al. WSCLEAN: an implementation of a fast, generic wide-field imager for radio astronomy. Mon. Not. R. Astron. Soc. 444, 606–619 (2014).

    Article  ADS  Google Scholar 

  41. Offringa, A. R., van de Gronde, J. J. & Roerdink, J. B. T. M. A morphological algorithm for improving radio-frequency interference detection. Astron. Astrophys. 539, A95 (2012).

    Article  Google Scholar 

  42. de Gasperin, F., Lazio, T. J. W. & Knapp, M. Radio observations of HD 80606 near planetary periastron. II. LOFAR low band antenna observations at 30–78 MHz. Astron. Astrophys. 644, A157 (2020).

    Article  Google Scholar 

  43. Mevius, M., van der Tol, S., Pandey, V. N., Vedantham, H. K. & Brentjens, M. A. et al. Probing ionospheric structures using the LOFAR radio telescope. Radio Sci. 51, 927–941 (2016).

    Article  ADS  Google Scholar 

  44. de Gasperin, F., Mevius, M., Rafferty, D. A., Intema, H. T. & Fallows, R. A. The effect of the ionosphere on ultra-low-frequency radio-interferometric observations. Astron. Astrophys. 615, A179 (2018).

    Article  Google Scholar 

  45. de Gasperin, F., Williams, W. L., Best, P., Brüggen, M. & Brunetti, G. et al. The LOFAR LBA Sky Survey. I. Survey description and preliminary data release. Astron. Astrophys. 648, A104 (2021).

    Article  Google Scholar 

  46. Rossetti, M., Gastaldello, F., Ferioli, G., Bersanelli, M. & De Grandi, S. et al. Measuring the dynamical state of Planck SZ-selected clusters: X-ray peak-BCG offset. Mon. Not. R. Astron. Soc. 457, 4515–4524 (2016).

    Article  ADS  Google Scholar 

  47. HI4PI Collaboration, Ben Bekhti, N., Flöer, L., Keller, R. & Kerp, J. et al. HI4PI: a full-sky H I survey based on EBHIS and GASS. Astron. Astrophys. 594, A116 (2016).

  48. Planck Collaboration, Abergel, A., Ade, P. A. R., Aghanim, N., Alves, M. I. R. & Aniano, G. et al. Planck 2013 results. XI. All-sky model of thermal dust emission. Astron. Astrophys. 571, A11 (2014).

    Article  Google Scholar 

  49. Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998).

    Article  ADS  Google Scholar 

  50. Foster, A. R., Ji, L., Smith, R. K. & Brickhouse, N. S. Updated atomic data and calculations for X-ray spectroscopy. Astrophys. J. 756, 128 (2012).

    Article  ADS  Google Scholar 

  51. Lovisari, L., Reiprich, T. H. & Schellenberger, G. Scaling properties of a complete X-ray selected galaxy group sample. Astron. Astrophys. 573, A118 (2015).

    Article  ADS  Google Scholar 

  52. Hardcastle, M. J. Synchrotron and inverse-Compton emission from radio galaxies with non-uniform magnetic field and electron distributions. Mon. Not. R. Astron. Soc. 433, 3364–3372 (2013).

    Article  ADS  Google Scholar 

  53. Hardcastle, M. J., Birkinshaw, M. & Worrall, D. M. Magnetic field strengths in the hotspots of 3C 33 and 111. Mon. Not. R. Astron. Soc. 294, 615–621 (1998).

    Article  ADS  Google Scholar 

  54. Jaffe, W. J. & Perola, G. C. Dynamical models of tailed radio sources in clusters of galaxies. Astron. Astrophys. 26, 423–435 (1973).

    ADS  Google Scholar 

  55. Fanaroff, B. L. & Riley, J. M. The morphology of extragalactic radio sources of high and low luminosity. Mon. Not. R. Astron. Soc. 167, 36 (1974).

    Article  Google Scholar 

  56. Carilli, C. L., Perley, R. A., Dreher, J. W. & Leahy, J. P. Multifrequency radio observations of Cygnus A: spectral aging in powerful radio galaxies. Astrophys. J. 798, 88 (2015).

    Google Scholar 

  57. Croston, J. H., Ineson, J. & Hardcastle, M. J. Particle content, radio-galaxy morphology, and jet power: all radio-loud AGN are not equal. Mon. Not. R. Astron. Soc. 476, 1614–1623 (2018).

    Article  ADS  Google Scholar 

  58. Binney, J., Tremaine, S. Galactic Dynamics. Princeton Univ. Press (1987).

  59. Zhang, C., Churazov, E. & Schekochihin, A. A. Generation of internal waves by buoyant bubbles in galaxy clusters and heating of intracluster medium. Mon. Not. R. Astron. Soc. 478, 4785–4798 (2018).

    Article  ADS  Google Scholar 

  60. Harwood, J. J., Hardcastle, M. J., Croston, J. H. & Goodger, J. L. Spectral ageing in the lobes of FR-II radio galaxies: new methods of analysis for broad-band radio data. Mon. Not. R. Astron. Soc. 435, 3353–3375 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M. Brienza sincerely thanks F. Santoro, K. Rajpurohit and F. Vazza for their help and very useful discussions. M. Brienza and A. Bonafede acknowledge support from the European Research Council (ERC-Stg) DRANOEL (Deciphering Radio Non-thermal Emission), no 714245. M. Brienza acknowledges support by the ERC-Stg project MAGCOW (The Magnetised Cosmic Web), no 714196. A. Bonafede acknowledges support from the MIUR (Ministero dell'Istruzione dell'Università e della Ricerca) grant FARE (Framework per l'Attrazione e il Rafforzamento Delle Eccellenze) “SMS”. R.J.v.W. acknowledges support from the ERC Starting Grant ClusterWeb 804208. A. Botteon acknowledges support from the VIDI research programme with project number 639.042.729, which is financed by the Netherlands Organisation for Scientific Research (NWO). A.S. is supported by the Women In Science Excel programme of the NWO and acknowledges the World Premier Research Center Initiative and the Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU) for the continued hospitality. The Netherlands Institute for Space Research (SRON) is supported financially by NWO. M. Brüggen acknowledges support from the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy (EXC 2121 “Quantum Universe”) 390833306. S.J.D.P. would like to acknowledge support from the European Research Council advanced grant H2020-ERC-2016-ADG-74302 under the European Union’s Horizon 2020 Research and Innovation programme. F.G. and G.B. acknowledge support from INAF mainstream project ‘Galaxy Clusters Science with LOFAR’ 1.05.01.86.05. I.B., R.B. and R.S. thank TUBITAK (Scientific and Technological Research Council of Turkey), IKI, KFU (Kazan Federal University) and AST for partial support in using RTT150 (the Russian–Turkish 1.5 m telescope in Antalya). The work of I.B. was funded by the grant 671-2020-0052 to Kazan Federal University. LOFAR, designed and constructed by ASTRON, has facilities in several countries, which are owned by various parties (each with their own funding sources), and are collectively operated by the International LOFAR Telescope Foundation under a joint scientific policy. The International LOFAR Telescope Foundation resources have benefited from the following recent major funding sources: CNRS-INSU (Institut National des Sciences de l'Univers), Observatoire de Paris and Université d’Orléans, France; BMBF (Federal Ministry of Education and Research), MIWF-NRW (Ministeriums für Kultur und Wissenschaft in Nordrhein-Westfalen) and MPG (Max Planck Society), Germany; Science Foundation Ireland, Department of Business, Enterprise and Innovation, Ireland; NWO, the Netherlands; the Science and Technology Facilities Council, United Kingdom; Ministry of Science and Higher Education, Poland and The Istituto Nazionale di Astrofisica (INAF), Italy. Part of this work was carried out on the Dutch national e-infrastructure with the support of the SURF Cooperative through grant e-infra 160022 and 160152. The LOFAR software and dedicated reduction packages on https://github.com/apmechev/GRID_LRT were deployed on the e-infrastructure by the LOFAR e-infragroup, consisting of J.B.R. Oonk (ASTRON and Leiden Observatory), A.P. Mechev (Leiden Observatory) and T. Shimwell (ASTRON) with support from N. Danezi (SURFsara) and C. Schrijvers (SURFsara). The Jülich LOFAR Long Term Archive and the German LOFAR network are both coordinated and operated by the Jülich Supercomputing Centre and computing resources on the supercomputer JUWELS at the Jülich Supercomputing Centre were provided by the Gauss Centre for supercomputing e.V (Eingetragener Verein). (grant CHTB00) through the John von Neumann Institute for Computing. This research made use of the University of Hertfordshire high-performance computing facility and the LOFAR UK computing facility located at the University of Hertfordshire and supported by the Science and Technology Facilities Council (STFC) (ST/P000096/1), and of the Italian LOFAR IT computing infrastructure supported and operated by INAF, and by the Physics Department of Turin University (under an agreement with Consorzio Interuniversitario per la Fisica Spaziale) at the C3S Supercomputing Centre, Italy. This work is based on observations with the eROSITA telescope onboard the SRG space observatory. The SRG observatory was built by Roskosmos in the interests of the Russian Academy of Sciences represented by IKI in the framework of the Russian Federal Space Program, with the participation of the Deutsches Zentrum für Luft- und Raumfahrt (DLR). The eROSITA X-ray telescope was built by a consortium of German Institutes led by the Max Planck Institute for Extraterrestrial Physics (MPE), and supported by DLR. The SRG spacecraft was designed, built, launched and is operated by the Lavochkin Association and its subcontractors. The science data are downlinked via the Deep Space Network Antennae in Bear Lakes, Ussurijsk and Baikonur, funded by Roskosmos. The eROSITA data used in this work were converted to calibrated event lists using the eSASS software system developed by the German eROSITA Consortium and analysed using proprietary data reduction software developed by the Russian eROSITA Consortium. This research made use of APLpy, an open-source plotting package for Python hosted at: http://aplpy.github.com.

Author information

Authors and Affiliations

Authors

Contributions

M. Brienza coordinated the research, performed the radio imaging and radio analysis and wrote the manuscript. T.W.S coordinated the LOFAR HBA data processing and helped coordinate the project. F.d.G. led the LOFAR LBA observing proposal and performed the data reduction. A. Bonafede helped with the analysis of the radio data and with coordination of the project. A. Botteon helped with the LOFAR HBA data processing and with manuscript revision. M. Brüggen and G.B. helped with interpretation of the source and with manuscript revision. A.C. contributed to the system identification and the analysis of the optical properties of the system. M.J.H. helped with the LOFAR HBA data processing, with interpretation of the source and with manuscript revision. E.C., I.K. and N.L. analyzed the SRG/eROSITA data and contributed to interpretation of the results and writing the manuscript. I.B. performed the optical observations and analysis of the source and contributed to the interpretation of the results and writing the manuscript. R.B. and R.S. contributed to the interpretation of the results and writing the manuscript. R.J.v.W. helped with the LOFAR HBA data processing and with manuscript revision. F.G. helped with the interpretation of the results and manuscript revision. S.M. and A.S. helped revise the manuscript. C.T.helped with the LOFAR HBA data processing. S.P. led the LOFAR HBA observing proposal.

Corresponding author

Correspondence to M. Brienza.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brienza, M., Shimwell, T.W., de Gasperin, F. et al. A snapshot of the oldest active galactic nuclei feedback phases. Nat Astron 5, 1261–1267 (2021). https://doi.org/10.1038/s41550-021-01491-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01491-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing