Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Common feedstocks of late accretion for the terrestrial planets

Abstract

Abundances of the highly siderophile elements (HSEs) in silicate portions of Earth and the Moon provide constraints on the impact flux to both bodies, but only since ~100 Myr after the beginning of the Solar System (hereafter tCAI). The earlier impact flux to the inner Solar System remains poorly constrained. The former dwarf planet Vesta offers the possibility to probe this early history, because it underwent rapid core formation ~1 Myr after tCAI and its silicate portions possess elevated chondritic HSE abundances. Here we quantify the material accreted into Vesta’s mantle and crust and find that the HSE abundances can only be explained by the bombardments of planetesimals from the terrestrial planet region. The Vestan mantle accreted HSEs within the first 60 Myr; its crust accreted HSEs throughout the Solar System history, with asteroid impacts dominating only since ~4.1 billion years ago. Our results indicate that all major bodies in the inner Solar System accreted planetesimals predominantly from the terrestrial planet region. The asteroid belt was either never significantly more massive than today, or it rapidly lost most of its mass early in the Solar System history.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Re/Os versus Os plot for the HED meteorites used to estimate Os abundances in Vesta’s mantle and crust.
Fig. 2: Impactor-retention ratios as a function of the impactor-to-target size ratio, impact angle and velocity.
Fig. 3: Cumulative accreted mass as a function of time in different bombardment models with consideration of impactor-retention ratios.
Fig. 4: Late-accreted mass from leftover planetesimals and inferred from HSEs for Vesta, Moon, Mars and Earth.

Data availability

The data that support the findings of this study are all included in the manuscript (Methods). Source data are provided with this paper.

Code availability

At present, iSALE is not fully open source. It is distributed on a case-by-case basis to academic users in the impact community, strictly for non-commercial use. Scientists interested in using or developing iSALE should see http://www.isale-code.de for a description of application requirements.

References

  1. 1.

    Hartmann, W. K. Early lunar cratering. Icarus 5, 406–418 (1966).

    ADS  Google Scholar 

  2. 2.

    Rubie, D. C. et al. Highly siderophile elements were stripped from Earth’s mantle by iron sulfide segregation. Science 353, 1141–1144 (2016).

    ADS  Google Scholar 

  3. 3.

    Morbidelli, A. et al. The timeline of the lunar bombardment: revisited. Icarus 305, 262–276 (2018).

    ADS  Google Scholar 

  4. 4.

    Zhu, M.-H. et al. Reconstructing the late-accretion history of the Moon. Nature 571, 226–229 (2019).

    ADS  Google Scholar 

  5. 5.

    Kleine, T. et al. Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (2009).

    ADS  Google Scholar 

  6. 6.

    Thiemens, M. M. et al. Early Moon formation inferred from hafnium–tungsten systematics. Nat. Geosci. 12, 696–700 (2019).

    ADS  Google Scholar 

  7. 7.

    Borg, L. E. et al. Chronological evidence that the Moon is either young or did not have a global magma ocean. Nature 477, 70–72 (2011).

    ADS  Google Scholar 

  8. 8.

    Connelly, J. N. et al. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651–655 (2012).

    ADS  Google Scholar 

  9. 9.

    Binzel, R. P. & Xu, S. Chips off of Asteroid 4 Vesta: evidence for the parent body of basaltic achnodrite. Science 250, 186–191 (2003).

    Google Scholar 

  10. 10.

    Touboul, M. et al. Hf–W chronology of the eucrite parent body. Geochim. Cosmochim. Acta 156, 106–121 (2015).

    ADS  Google Scholar 

  11. 11.

    Hublet, G. et al. Differentiation and magmatic activity in Vesta evidenced by 26Al–26Mg dating in eucrites and diogenites. Geochim. Cosmochim. Acta 218, 73–97 (2017).

    ADS  Google Scholar 

  12. 12.

    Day, J. M. D. et al. Late accretion as a natural consequence of planetary growth. Nat. Geosci. 5, 614–617 (2012).

    ADS  Google Scholar 

  13. 13.

    Dale, C. W. et al. Late accretion on the earliest planetesimals revealed by the highly siderophile elements. Science 336, 72–75 (2012).

    ADS  Google Scholar 

  14. 14.

    Zuber, M. T. et al. Origin, internal structure and evolution of 4 Vesta. Space Sci. Rev. 163, 77–93 (2011).

    ADS  Google Scholar 

  15. 15.

    Horan, M. F. et al. Highly siderophile elements in chondrites. Chem. Geol. 196, 27–42 (2003).

    ADS  Google Scholar 

  16. 16.

    Fischer-Godde, M. et al. Rhodium, gold and other highly siderophile element abundances in chondritic meteorites. Geochim. Cosmochim. Acta 74, 356–379 (2010).

    ADS  Google Scholar 

  17. 17.

    Day, J. M. D., Brandon, A. D. & Walker, R. J. Highly siderophile elements in Earth, Mars, the Moon, and Asteroids. Rev. Mineral. Geochem. 81, 161–238 (2016).

    Google Scholar 

  18. 18.

    Genda, H. et al. Ejection of iron-bearing giant-impact fragments and the dynamical and geochemical influence of the fragment re-accretion. Earth Planet. Sci. Lett. 470, 87–95 (2017).

    ADS  Google Scholar 

  19. 19.

    Lambrechts, M. & Johansen, A. Rapid growth of gas-giant cores by pebble accretion. Astron. Astrophys. 544, A32 (2012).

    ADS  Google Scholar 

  20. 20.

    Lambrechts, M. & Johansen, A. Forming the cores of giant planets from the radial pebble flux in protoplanetary discs. Astron. Astrophys. 572, A107 (2014).

    ADS  Google Scholar 

  21. 21.

    Levision, H. F., Kretke, K. A. & Duncan, M. J. Growing the gas-giant planets by the gradual accumulation of pebbles. Nature 524, 322–324 (2015).

    ADS  Google Scholar 

  22. 22.

    Schiller, M., Bizzarro, M. & Fernandes, V. A. Isotopic evolution of the protoplanetary disk and the building blocks of Earth and Moon. Nature 555, 507–150 (2018).

    ADS  Google Scholar 

  23. 23.

    Popovas, A., Nordlund, A. & Ramsey, J. P. Pebble dynamics and accretion on to rocky planets—II. Radiative model. Mon. Not. R. Astron. Soc. 482, L107–L111 (2019).

    ADS  Google Scholar 

  24. 24.

    Lambrechts, M. et al. Formation of planetary systems by pebble accretion and migration. How the radial pebble flux determines a terrestrialplanete or super-Earth growth model. Astron. Astrophys. 627, A83 (2019).

    Google Scholar 

  25. 25.

    O’Brien, D. P. et al. Constraining the cratering chronology of Vesta. Planet. Space Sci. 103, 131–142 (2014).

    ADS  Google Scholar 

  26. 26.

    Gomes, R. et al. Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. Nature 435, 466–469 (2005).

    ADS  Google Scholar 

  27. 27.

    Schmedemann, N. et al. The cratering record, chronology and surface age of (4) Vesta in comparison to smaller asteroids and the ages of HED meteorites. Planet. Space Sci. 103, 104–130 (2014).

    ADS  Google Scholar 

  28. 28.

    Bottke, W. F. et al. in Asteroids IV (eds Michel, P. et al.) 701–724 (Univ. Arizona Press, 2015).

  29. 29.

    Elbeshausen, D. et al. The transition from circular to elliptical impact crater. J. Geophys. Res. 118, 2295–2309 (2013).

    Google Scholar 

  30. 30.

    Bottke, W. F. et al. The fossilized size distribution of the main asteroid belt. Icarus 175, 111–140 (2005).

    ADS  Google Scholar 

  31. 31.

    Nesvorny, D. et al. Evidence for very early migration of the solar system planets from the Patroclus–Menoetius binary Jupiter Trojan. Nat. Astron. 2, 878–882 (2018).

    ADS  Google Scholar 

  32. 32.

    Morbidelli, A. et al. A sawtooth-like timeline for the first billion years of lunar bombardment. Earth Planet. Sci. Lett. 355, 144–151 (2012).

    ADS  Google Scholar 

  33. 33.

    Hansen, B. M. S. Formation of the terrestrial planets from a narrow annulus. Astrophys. J. 703, 1131–1140 (2009).

    ADS  Google Scholar 

  34. 34.

    Walsh, K. J. et al. A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011).

    ADS  Google Scholar 

  35. 35.

    Izidoro, A. et al. Terrestrial planet formation constrained by Mars and the structure of the asteroid belt. Mon. Not. R. Astron. Soc. 453, 3619–3634 (2015).

    ADS  Google Scholar 

  36. 36.

    Neukum, G., Ivanov, B. A. & Hartmann, W. K. Cratering records in the inner Solar System in relation to the lunar reference system. Space Sci. Rev. 96, 55–86 (2001).

    ADS  Google Scholar 

  37. 37.

    Artemieva, N. & Ivanov, B. Launch of martian meteorites in oblique impacts. Icarus 171, 84–101 (2004).

    ADS  Google Scholar 

  38. 38.

    Holsapple, K. A. & Housen, K. R. A crater and its ejecta: an interpretation of Deep Impact. Icarus 191, 586–597 (2007).

    ADS  Google Scholar 

  39. 39.

    Mandler, B. E. & Elkins-Tanton, L. T. The origin of eucrites, diogenites, and olivine diogenits: magma ocean crystallization and shallow magma chamber processes on Vesta. Meteorit. Planet. Sci. 48, 2,333–2,349 (2013).

    Google Scholar 

  40. 40.

    Neumann, W., Breuer, D. & Spohn, T. Differentiation of Vesta: implications for a shallow magma ocean. Earth Planet. Sci. Lett. 395, 267–280 (2014).

    ADS  Google Scholar 

  41. 41.

    McSween, H. Y. et al. Composition of the Rheasilvia Basin, a window into Vesta’s interior. J. Geophys. Res. 118, 335–346 (2013).

    Google Scholar 

  42. 42.

    Neumann, W. Towards 3D modelling of convection in planetesimals and meteorite parent bodies. Mon. Not. R. Astron. Soc. 490, L47–L51 (2019).

    ADS  Google Scholar 

  43. 43.

    Minton, D. A. & Malhotra, R. Dynamical erosion of the asteroid belt and implications for large impacts in the inner Solar System. Icarus 207, 744–757 (2010).

    ADS  Google Scholar 

  44. 44.

    Russell, C. T. et al. Dawn at Vesta: testing the protoplanetary paradigm. Science 336, 684–686 (2012).

    ADS  Google Scholar 

  45. 45.

    Marchi, S. et al. The violent collisional history of asteroid 4 Vesta. Science 336, 690–694 (2012).

    ADS  Google Scholar 

  46. 46.

    Spoto, F., Milani, A. & Kenzevic, Z. Asteroid family ages. Icarus 257, 275–289 (2015).

    ADS  Google Scholar 

  47. 47.

    Jutzi, M. et al. The structure of the asteroid 4 Vesta as revealed by models of planet-scale collisions. Nature 494, 207–210 (2013).

    ADS  Google Scholar 

  48. 48.

    Consolmagno, G. J. et al. Is Vesta an intact and pristine protoplanet? Icarus 254, 190–201 (2015).

    ADS  Google Scholar 

  49. 49.

    Bottke, W. F. et al. Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature 439, 821–824 (2006).

    ADS  Google Scholar 

  50. 50.

    Raymond, S. N. & Izidoro, A. The empty primordial asteroid belt. Sci. Adv. 3, e1701138 (2017).

    ADS  Google Scholar 

  51. 51.

    Walker, R. J. Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Chem. Erde Geochem. 69, 101–125 (2009).

    ADS  Google Scholar 

  52. 52.

    Marchi, S., Canup, R. M. & Walker, R. J. Heterogeneous delivery of silicate and metal to the Earth by large planetesimals. Nat. Geosci. 11, 77–81 (2018).

    ADS  Google Scholar 

  53. 53.

    Tait, K. T. & Day, J. M. D. Chondritic late accretion to Mars and the nature of shergottite reservoirs. Earth Planet. Sci. Lett. 494, 99–108 (2018).

    ADS  Google Scholar 

  54. 54.

    Marchi, S., Walker, R. J. & Canup, R. M. A compositionally heterogeneous martian mantle due to late accretion. Sci. Adv. 6, eaay2338 (2020).

    ADS  Google Scholar 

  55. 55.

    Day, J. M. D., Pearson, D. G. & Taylor, L. A. Highly siderophile element constraints on accretion and differentiation of the Earth–Moon system. Science 315, 217–219 (2007).

    ADS  Google Scholar 

  56. 56.

    Hayashi, C. Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl. 70, 35–53 (1981).

    ADS  Google Scholar 

  57. 57.

    Izidoro, A. et al. Terrestrial planet formation in a protoplanetary disk with a local mass depletion: a successful scenario for the formation of Mars. Astrophys. J. 782, 31 (2014).

    ADS  Google Scholar 

  58. 58.

    Andrews, S. M. et al. The disk substructures at high angular resolution project (DSHARP). I. Motivation, sample, calibration, and overview. Astrophys. J. Lett. 869, L41 (2018).

    ADS  Google Scholar 

  59. 59.

    Drazkowska, J., Windmark, F. & Dullemond, C. P. Modeling dust growth in protoplanetary disks: the breakthrough case. Astron. Astrophys. 567, A38 (2014).

    ADS  Google Scholar 

  60. 60.

    Clement, M. S. et al. Mars’ growth stunted by an early giant planet instability. Icarus 311, 340–356 (2018).

    ADS  Google Scholar 

  61. 61.

    Warren, P. H. et al. Siderophile and other geochemical constraints on mixing relationships among HED-meteoritic breccias. Geochim. Cosmochim. Acta 73, 5918–5943 (2009).

    ADS  Google Scholar 

  62. 62.

    Birck, J. L. & Allegre, C. J. Constrasting Re/Os magmatic fractionation in planetary basalts. Earth Planet. Sci. Lett. 124, 139–148 (1994).

    ADS  Google Scholar 

  63. 63.

    McSween, H. Y. et al. Dawn; the Vesta-HED connection; and the geologic context for eucrites, diogenites, and howardites. Meteorit. Planet. Sci. 48, 2,090–2,104 (2013).

    Google Scholar 

  64. 64.

    Steenstra, E. S. et al. An experimental assessment of the potential of sulfide saturation of the source region of eucritex and angrites: implications for asteroidal models of core formation, late accretion and volatile element depletions. Geochim. Cosmochim. Acta 269, 39–62 (2019).

    ADS  Google Scholar 

  65. 65.

    Fu, R. R. et al. Efficient early global relaxation of asteroid Vesta. Icarus 240, 133–145 (2014).

    ADS  Google Scholar 

  66. 66.

    Warren, P. H. Ejecta-megaregolith accumulation on planetesimals and large asteroids. Meteorit. Planet. Sci. 46, 53–78 (2011).

    ADS  Google Scholar 

  67. 67.

    Day, J. M. D. & Walker, R. J. Highly siderophile element depletion in the Moon. Earth Planet. Sci. Lett. 423, 114–124 (2015).

    ADS  Google Scholar 

  68. 68.

    Day, J. M. D. et al. Osmium isotope and highly siderophile element systematics of the lunar crust. Earth Planet. Sci. Lett. 289, 595–605 (2010).

    ADS  Google Scholar 

  69. 69.

    Russell, C. T., McSween, H. Y., Jaumann, R. & Raymond, C. A. in Asteroids IV (eds Michel, P. et al.) 419–432 (Univ. Arizona Press, 2015).

  70. 70.

    Kobayashi, H. et al. Planetary growth with collisional fragmentation and gas drag. Icarus 209, 836–847 (2010).

    ADS  Google Scholar 

  71. 71.

    Lee, D.-C. & Halliday, A. N. Core formation on Mars and differentiated asteroids. Nature 388, 854–857 (1997).

    ADS  Google Scholar 

  72. 72.

    Righter, K. & Drake, M. J. Core formation in Earth’s Moon, Mars, and Vesta. Icarus 124, 513–529 (1996).

    ADS  Google Scholar 

  73. 73.

    Ghosh, A. & McSween, H. Y. A thermal model for the differentiation of asteroid 4 Vesta, based on radiogenic heating. Icarus 134, 187–206 (1998).

    ADS  Google Scholar 

  74. 74.

    Drake, M. J. The eucrite/Vesta story. Meteorit. Planet. Sci. 36, 501–513 (2001).

    ADS  Google Scholar 

  75. 75.

    Gupta, G. & Sahijpal, S. Differentiation of Vesta and the parent bodies of other achondrites. J. Geophys. Res. 115, E8 (2010).

    Google Scholar 

  76. 76.

    Hahn, T. M. et al. Mg-rich harzburgites from Vesta: mantle residua or cumulates from planetary differentiation? Meteorit. Planet. Sci. 53, 514–546 (2018).

    ADS  Google Scholar 

  77. 77.

    Schiller, M. et al. Tracking the formation of magma oceans in the Solar System using stable magnesium isotopes. Geochem. Persp. Lett. 3, 22–31 (2017).

    Google Scholar 

  78. 78.

    Barrat, J. A. & Yamaguchi, A. Comment on ‘The origin of eucrites, diogenites, and olivine diogenites: magma ocean crystallization and shallow magma processes on Vesta’ by B. E. Mandler and L. T. Elkins-Tanton. Meteorit. Planet. Sci. 49, 468–472 (2014).

    ADS  Google Scholar 

  79. 79.

    Jaumann, R. et al. The geological nature of dark material on Vesta and implications for the subsurface structure. Icarus 240, 3–19 (2014).

    ADS  Google Scholar 

  80. 80.

    Kawabata, Y. & Nagahara, H. Crystallization and cooling conditions for diogenite formation in the turbulent magma ocean of asteroid 4 Vesta. Icarus 281, 379–387 (2017).

    ADS  Google Scholar 

  81. 81.

    Lunning, N. G. et al. Olivine and pyroxene from the mantle of asteroid 4 Vesta. Earth Planet. Sci. Lett. 418, 126–135 (2015).

    ADS  Google Scholar 

  82. 82.

    Lichtenberg, T. et al. Magma ascent in planetesimals: control by grain size. Earth Planet. Sci. Lett. 507, 154–165 (2019).

    ADS  Google Scholar 

  83. 83.

    Young, E. D. et al. Near-equilibrium isotope fractionation during planetesimal evaporation. Icarus 323, 1–15 (2019).

    ADS  Google Scholar 

  84. 84.

    Zhang, A. C. et al. Evidence of metasomatism in the interior of Vesta. Nat. Commun. 11, 1289 (2020).

    ADS  Google Scholar 

  85. 85.

    Neumann, W., Breuer, D. & Spohn, T. Differentiation and core formation in accreting planetesimals. Astron. Astrophys. 543, A141 (2012).

    ADS  Google Scholar 

  86. 86.

    Schubert, G., Turcotte, D. L. & Olson, P. Mantle Convection in the Earth and Planets (Cambridge Univ. Press, 2001).

  87. 87.

    Yoshino, T., Walter, M. J. & Katsure, T. Core formation in planetesimals triggered by permeable flow. Nature 422, 154–157 (2003).

    ADS  Google Scholar 

  88. 88.

    Cerantola, V., Walte, N. P. & Rubie, D. C. Deformation of a crystalline olivine aggregate containing two immiscible liquids: implications for early core-mantle differentiation. Earth Planet. Sci. Lett. 417, 67–77 (2015).

    ADS  Google Scholar 

  89. 89.

    Terasaki, H. et al. Percolative core formation in planetesimals. Earth Planet. Sci. Lett. 273, 132–137 (2008).

    ADS  Google Scholar 

  90. 90.

    Pierazzo, E. & Melosh, H. J. Hydrocode modeling of oblique impacts: the fate of the projectile. Meteorit. Planet. Sci. 35, 117–130 (2000).

    ADS  Google Scholar 

  91. 91.

    Pierazzo, E. & Melosh, H. J. Melt production in oblique impacts. Icarus 145, 252–261 (2000).

    ADS  Google Scholar 

  92. 92.

    Davison, T. M. et al. The effect of impact obliquity on shock heating in planetesimal collisions. Meteorit. Planet. Sci. 49, 2252–2265 (2014).

    ADS  Google Scholar 

  93. 93.

    Ricard, Y., Sramek, O. & Dubuffet, F. A multi-phase model of runaway core-mantle segregation in planeteary embryos. Earth Planet. Sci. Lett. 284, 144–150 (2009).

    ADS  Google Scholar 

  94. 94.

    Rubie, D. C., Nimmo, F. & Melosh, H. J. in Treatise on Geophysics 2nd edn (ed. Schubert, G.) 43–79 (Elsevier, 2015).

  95. 95.

    Melosh, H. J. Impact Cratering: A Geological Process (Oxford Univ. Press, 1989).

  96. 96.

    Schenk, P. et al. The geologically recent giant impact basins at Vesta’s south pole. Science 336, 694–697 (2012).

    ADS  Google Scholar 

  97. 97.

    Williams, D. A. et al. Lobate and flow-like features on asteroid Vesta. Planet. Space Sci. 103, 24–35 (2014).

    ADS  Google Scholar 

  98. 98.

    Borisov, A., Palme, H. & Spettel, B. Solubility of palladium in silicate melts: implications for core formation in the Earth. Geochim. Cosmochim. Acta 58, 705–716 (1994).

    ADS  Google Scholar 

  99. 99.

    Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973).

    ADS  Google Scholar 

  100. 100.

    Daly, R. T. & Shultz, P. H. Predictions for impactor contamination on Ceres based on hypervelocity impact experiments. Geophys. Res. Lett. 42, 7890–7898 (2015).

    ADS  Google Scholar 

  101. 101.

    Daly, R. T. & Shultz, P. H. Delivering a projectile component to the Vestan regolith. Icarus 264, 9–19 (2016).

    ADS  Google Scholar 

  102. 102.

    Daly, R. T. & Schultz, P. H. Projectile preservation during oblique hypervelocity impacts. Meteorit. Planet. Sci. 53, 1364–1390 (2018).

    ADS  Google Scholar 

  103. 103.

    Ivanov, B. A. & Melosh, H. J. Two-dimensional numerical modeling of the Rheasilvia impact formation. J. Geophys. Res. 118, 1545–1557 (2013).

    Google Scholar 

  104. 104.

    Thompson, S. L. & Lauson, H. S. Improvements in the CHART D Radiation-Hydrodynamic Code III: Revised Analytic Equations of State SC-RR-71 0714 (Sandia National Laboratory, 1972).

  105. 105.

    Greenwood, R. C. et al. Widespread magma oceans on asteroidal bodies in the early Solar System. Nature 435, 916–918 (2005).

    ADS  Google Scholar 

  106. 106.

    Marchi, S. et al. Small crater populations on Vesta. Planet. Space Sci. 102, 96–103 (2014).

    ADS  Google Scholar 

  107. 107.

    Collins, G. S., Melosh, H. J. & Ivanov, B. A. Modeling damage and deformation in impact simulations. Meteorit. Planet. Sci. 39, 217–231 (2004).

    ADS  Google Scholar 

  108. 108.

    Morbidelli, A. et al. A plausible cause of the late heavy bombardment. Meteorit. Planet. Sci. 36, 371–380 (2001).

    ADS  Google Scholar 

  109. 109.

    Bottke, W. F. et al. Can planetesimals left over from terrestrial planet formation produce the lunar late heavy bombardment? Icarus 190, 203–223 (2007).

    ADS  Google Scholar 

  110. 110.

    Barboni, M. et al. Early formation of the Moon 4.51 billion years ago. Sci. Adv. 3, e1602365 (2017).

    ADS  Google Scholar 

  111. 111.

    Broz, M. et al. Constraining the cometary flux through the asteroid belt during the late heavy bombardment. Astron. Astrophys. 551, A117 (2013).

    Google Scholar 

  112. 112.

    Bottke, W. F. et al. Velocity distribution among colliding asteroids. Icarus 107, 255–268 (1994).

    ADS  Google Scholar 

  113. 113.

    Gault, D. E. & Wedekind, J. A. Experimental studies of oblique impact. In Proc. Lunar and Planetary Science Conference Vol. 3 3843–3875 (1978).

  114. 114.

    Kendall, J. D. & Melosh, H. J. Differentiated planetesimal impacts into a terrestrial magma ocean: fate of the iron core. Earth Planet. Sci. Lett. 448, 24–33 (2016).

    ADS  Google Scholar 

  115. 115.

    Rohlen, R. et al. The fate of iron cores upon impact of differentiated bodies into magma oceans. In Proc. 52nd Lunar and Planetary Science Conference 1854 (Lunar and Planetary Institute, 2021).

  116. 116.

    Spudis, P. D. The Geology of Multi-Ring Basins (Cambridge Univ. Press, 1993).

  117. 117.

    Elbeshausen, D., Wünnemann, K. & Collins, G. S. Scaling of oblique impacts in frictional targets: implications for crater size and formation mechanisms. Icarus 204, 716–731 (2009).

    ADS  Google Scholar 

  118. 118.

    Jaumann, R. et al. Vesta’s shape and morphology. Science 336, 687–690 (2012).

    ADS  Google Scholar 

  119. 119.

    Walker, R. J., Horan, M. F., Shearer, C. K. & Papike, J. J. Low abundances of highly siderophile elements in the lunar mantle: evidence for prolonged late accretion. Earth Planet. Sci. Lett. 224, 399–413 (2004).

    ADS  Google Scholar 

  120. 120.

    Kruijer, T. S. et al. The early differentiation of Mars inferred from Hf–W chronometry. Earth Planet. Sci. Lett. 474, 345–354 (2017).

    ADS  Google Scholar 

  121. 121.

    Dauphas, N. & Pourmand, A. Hf–W–Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473, 489–492 (2011).

    ADS  Google Scholar 

  122. 122.

    Ivanov, B. A. Mars/Moon cratering rate ratio estimates. Space Sci. Rev. 96, 87–104 (2001).

    ADS  Google Scholar 

  123. 123.

    Elkins-Tanton, L. T., Burgess, S. & Yin, Q. –Z. The lunar magma ocean: reconciling the solidification process with lunar petrology and geochronology. Earth Planet. Sci. Lett. 304, 326–336 (2011).

    ADS  Google Scholar 

  124. 124.

    Puchtel, I. S. et al. Osmium isotope and highly siderophile element systematics of lunar impact melt breccias: implications for the late accretion history of the Moon and Earth. Geochim. Cosmochim. Acta 72, 3022–3042 (2008).

    ADS  Google Scholar 

  125. 125.

    Liu, J. G. et al. Diverse impactors in Apollo 15 and 16 impact melt rocks: evidence from osmium isotopes and highly siderophile elements. Geochim. Cosmochim. Acta 155, 122–153 (2015).

    ADS  Google Scholar 

  126. 126.

    Gleißner, P. & Beck, H. Formation of Apollo 16 impactites and the composition of late accreted material: constraints from Os isotopes, highly siderophile elements and sulfur abundances. Geochim. Cosmochim. Acta 200, 1–24 (2017).

    ADS  Google Scholar 

  127. 127.

    Jedicke, R., Larsen, J. & Spahr, T. in Asteroids III (eds Bottke, W. F. et al.) 71–88 (Univ. Arizona Press, 2002).

  128. 128.

    Benz, W. et al. The origin of the Moon and the single-impact hypothesis III. Icarus 81, 113–131 (1989).

    ADS  Google Scholar 

  129. 129.

    Potter, R. W. K. et al. Constraining the size of the South Pole–Aitken Bsin impact. Icarus 220, 730–743 (2012).

    ADS  Google Scholar 

  130. 130.

    Neumann, W. et al. Modeling the evolution of the parent body of acapulcoites and lodranites: a case study for partially differentiated asteroids. Icarus 311, 146–169 (2018).

    ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the developers of iSALE (www.isale-code.de), in particular D. Elbeshausen for developing the iSALE-3D. M.-H.Z. is supported by the Science and Technology Development Fund, Macau (0079/2018/A2). K.W., H.B., G.J.A., N.A. and M.-H.Z. acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 263649064 – TRR 170. This is TRR publication no. 137. W.N. acknowledges support by Klaus Tschira foundation. J.M.D.D. acknowledges support by NASA Emerging Worlds programme (80NSSC19K0932).

Author information

Affiliations

Authors

Contributions

M.-H.Z. and A.M. conceived the idea and discussed every step of this work. M.-H.Z. performed the impact simulations and Monte Carlo modelling with discussion with N.A. and K.W. W.N. performed the thermal evolution simulation. W.N., D.C.R., Q.-Z.Y., A.M. and M.-H.Z. discussed the HSE transports in Vesta. M.-H.Z., A.M., J.M.D.D., G.J.A., H.B. and Q.-Z.Y. analysed the measured HSE datasets and calculated the late-accreted mass to Vesta. The manuscript was written by M.-H.Z. and A.M. with detailed reviews and contributions by all authors.

Corresponding authors

Correspondence to Meng-Hua Zhu or Alessandro Morbidelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Mario Fischer-Gödde, Simone Marchi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Parameters of the exponent functions (f = a*exp(−b*x)) for the fit of impactor retention ratio derived from the oblique impact simulations.

Here x represents the ratio of diameter between impactor and Vesta.

Extended Data Fig. 2 Compilation of available concentrations of Re, Os, Ir, Ru, Pt, Pd, and 187Re/188Os, 187Os/188Os from the studied HED meteorites used in this work.

References: (1). ref. 13; (2). ref. 12.

Extended Data Fig. 3 Rhenium/Os versus Os plot for lunar samples.

The Re and Os measurements of lunar samples are for pristine crustal rocks68, glass119, mare basalts55,67, impact breccias124, and impact melts125,126. The horizontal line represents the average Re/Os value of 0.075 of the chondrites15.

Source data

Extended Data Fig. 4 Cumulative number of impactors with diameters larger than 1 km colliding with Vesta and the size-frequency distribution of the impactors.

The details of estimating the cumulative impactor (d > 1 km) number as a function of time are discussed in the Methods. In (a), the black line represents the combined estimates of the number of impactors from the main belt (green line) and the leftover planetesimals from the terrestrial planet region (red line). Here, we did not include any cometary contribution to the bombardment that may have been delivered to Vesta during the migration of the giant planets. In (b), the data points represent the incremental size-frequency distribution for the current main belt that is derived from the absolute magnitude distribution (see refs. 30,127,128,129).

Extended Data Fig. 5 Average impactor retention ratio as a function of the integrated time for three impact scenarios of Vesta.

The average impactor retention ratio is defined as the ratio between the total mass accreted to Vesta and total impactor mass colliding with Vesta. Each data point represents the average impactor retention ratio for impacts occurring cumulatively from a start time to the present day. The average impactor retention ratios for three impact scenarios are almost similar within a range between 0.065 and 0.075 (shadow area) and do not vary significantly within the considered time interval from the present day to the start time between 4,100 Ma and 4560 Ma.

Extended Data Fig. 6 Vesta’s thermal evolution for shallow magma ocean and global magma ocean scenarios.

The thermal evolution is calculated with partitioning of 26Al for shallow magma ocean (a), but without the partitioning of 26Al for the global magma ocean (c). (b) is a zoom into Vesta’s subsurface with the shallow magma ocean (a) showing a life-time of ~ 0.07 Myr and a depth of a few hundred metres. In each panel, the horizontal axis represents the time since CAI formation, whereas the vertical axis represents the radius variation during the thermal evolution. Vesta was assumed to accrete instantaneously and form an initially porous structure with a larger size, then underwent sintering from an unconsolidated and highly porous state to a consolidated state arriving at the current asteroid size thereafter (see ref. 85). For the shallow magma ocean scenario, the mantle crystallizes completely within ~ 200 Myr after CAI formation, when the temperature falls below the silicate solidus of ~ 1425 K (a). For the global magma ocean scenario, complete mantle crystallization occurs within ~ 300 Myr after CAI formation (c). The model is from Neumann et al.40, with the parameters adopted for the calculation of melting and heat sources from Neumann et al.130.

Extended Data Fig. 7 Late-accreted mass inferred from the HSEs for Earth, Mars, Moon, and Vesta and the estimated mass accreted from leftover planetesimals.

from refs. 51,52,119; from refs. 53,54; § from refs. 17,51,55,68; from this work.

Supplementary information

Supplementary Information

Supplementary Fig. 1.

Source data

Source Data Fig. 1

The HSE data source of HED meteorites for Fig. 1.

Source Data Fig. 2

The individual impactor retention ratio from the iSALE simulation.

Source Data Fig. 3

The cumulative accreted mass for different bombardment models.

Source Data Extended Data Fig. 3

The HSE data source of lunar samples for Extended Data Fig. 3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, MH., Morbidelli, A., Neumann, W. et al. Common feedstocks of late accretion for the terrestrial planets. Nat Astron (2021). https://doi.org/10.1038/s41550-021-01475-0

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing