Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transforming gas-rich low-mass disky galaxies into ultra-diffuse galaxies by ram pressure

Abstract

Faint extended elliptically shaped ultra-diffuse galaxies and slightly brighter and more compact dwarf elliptical and lenticular stellar systems are common in galaxy clusters. Their poorly constrained evolutionary paths can be studied by identifying young ultra-diffuse galaxy and dwarf elliptical analogues populated with bright, massive stars. Using data mining we identified 11 such low-mass (2 × 108M < M < 2 × 109M) galaxies with large half-light radii (2.0 kpc < re < 5 kpc) and recently quenched star formation in the Coma and Abell 2147 galaxy clusters. All galaxies happen to have ram-pressure-stripped tails with signs of current or recent star formation. Deep spectroscopic observations revealed rotating stellar disks containing 70–95% dark matter by mass. A large fraction of the disk stars (10–60%) formed in intense star bursts 180–970 Myr ago, probably triggered by ram pressure. Observed global gradients of stellar age corroborate this scenario. Passive evolution in the next 10 Gyr will transform 9 of the 11 galaxies into ultra-diffuse galaxies. If we assume a constant rate of galaxy infall, 44 ± 16% of the most luminous present-day ultra-diffuse galaxies in Coma must have formed via ram-pressure stripping of disky progenitors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Positions of Coma cluster members selected from RCSED and one additional galaxy, GMP 3016.
Fig. 2: Positions of the two Abell 2147 cluster members selected from RCSED and an additional photometrically selected PSG, J160231.45 + 155749.9.
Fig. 3: Internal kinematics and results of dynamical modelling for PSGs from the main sample and one additional object, GMP3016.
Fig. 4: Predicted passive evolution of low-mass PSGs from their SFHs during the next 10 Gyr on the Faber–Jackson σMB (a), [Z/H]–MB (b) and 〈μRc〉–re (c) relations.

Similar content being viewed by others

Data and code availability

Reduced flux calibrated Binospec spectra coadded within 1 re and their best-fitting NBursts+phot spectrophotometric models (Extended Data Figs. 2 and 3), the spatially resolved profiles of internal kinematics and stellar populations and corresponding axisymmetric Jeans models for every galaxy as are available through the Zenodo data repository with the following permanent identifier: https://doi.org/10.5281/zenodo.5031351. Fully reduced Subaru and CFHT images used for the dynamical modelling procedure are available in the corresponding open access data archives (http://jvo.nao.ac.jp/index-e.html; http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/).

References

  1. Sandage, A. & Binggeli, B. Studies of the Virgo cluster. III. A classification system and an illustrated atlas of Virgo cluster dwarf galaxies. Astron. J. 89, 919–931 (1984).

    Article  ADS  Google Scholar 

  2. Ferguson, H. C. & Sandage, A. Population studies in groups and clusters of galaxies. I. The luminosity function of galaxies in the Fornax cluster. Astron. J. 96, 1520–1533 (1988).

    Article  ADS  Google Scholar 

  3. van Dokkum, P. G. et al. Forty-seven Milky Way-sized, extremely diffuse galaxies in the Coma cluster. Astrophys. J. Lett. 798, L45 (2015).

    Article  ADS  Google Scholar 

  4. Koda, J., Yagi, M., Yamanoi, H. & Komiyama, Y. Approximately a thousand ultra-diffuse galaxies in the Coma cluster. Astrophys. J. Lett. 807, L2 (2015).

    Article  ADS  Google Scholar 

  5. Saulder, C., van Kampen, E., Chilingarian, I. V., Mieske, S. & Zeilinger, W. W. The matter distribution in the local Universe as derived from galaxy groups in SDSS DR12 and 2MRS. Astron. Astrophys. 596, A14 (2016).

    Article  Google Scholar 

  6. Román, J. & Trujillo, I. Ultra-diffuse galaxies outside clusters: clues to their formation and evolution. Mon. Not. R. Astron. Soc. 468, 4039–4047 (2017).

    Article  ADS  Google Scholar 

  7. Yozin, C. & Bekki, K. The quenching and survival of ultra diffuse galaxies in the Coma cluster. Mon. Not. R. Astron. Soc. 452, 937–943 (2015).

    Article  ADS  Google Scholar 

  8. Gunn, J. E. & Gott III, J. R. On the infall of matter into clusters of galaxies and some effects on their evolution. Astrophys. J. 176, 1–19 (1972).

    Article  ADS  Google Scholar 

  9. Moore, B., Katz, N., Lake, G., Dressler, A. & Oemler, A. Galaxy harassment and the evolution of clusters of galaxies. Nature 379, 613–616 (1996).

    Article  ADS  Google Scholar 

  10. Dekel, A. & Silk, J. The origin of dwarf galaxies, cold dark matter, and biased galaxy formation. Astrophys. J. 303, 39–55 (1986).

    Article  ADS  Google Scholar 

  11. Ruiz-Lara, T. et al. Spectroscopic characterization of the stellar content of ultra-diffuse galaxies. Mon. Not. R. Astron. Soc. 478, 2034–2045 (2018).

    Article  ADS  Google Scholar 

  12. Carleton, T. et al. The formation of ultra-diffuse galaxies in cored dark matter haloes through tidal stripping and heating. Mon. Not. R. Astron. Soc. 485, 382–395 (2019).

    Article  ADS  Google Scholar 

  13. Jiang, F. et al. Formation of ultra-diffuse galaxies in the field and in galaxy groups. Mon. Not. R. Astron. Soc. 487, 5272–5290 (2019).

    Article  ADS  Google Scholar 

  14. Conselice, C. J. Ultra-diffuse galaxies are a subset of cluster dwarf elliptical/spheroidal galaxies. Res. Notes Am. Astron. Soc. 2, 43 (2018).

    ADS  Google Scholar 

  15. Chilingarian, I. V., Afanasiev, A. V., Grishin, K. A., Fabricant, D. & Moran, S. Internal dynamics and stellar content of nine ultra-diffuse galaxies in the Coma cluster prove their evolutionary link with dwarf early-type galaxies. Astrophys. J. 884, 79 (2019).

    Article  ADS  Google Scholar 

  16. Chilingarian, I. V. et al. RCSED—a value-added reference catalog of spectral energy distributions of 800,299 galaxies in 11 ultraviolet, optical, and near-infrared bands: morphologies, colors, ionized gas, and stellar population properties. Astrophys. J. Suppl. Ser. 228, 14 (2017).

    Article  ADS  Google Scholar 

  17. Abazajian, K. N. et al. The Seventh Data Release of the Sloan Digital Sky Survey. Astrophys. J. Suppl. Ser. 182, 543–558 (2009).

    Article  ADS  Google Scholar 

  18. Poggianti, B. M. et al. A comparison of the galaxy populations in the Coma and distant clusters: the evolution of k + a galaxies and the role of the intracluster medium. Astrophys. J. 601, 197–213 (2004).

    Article  ADS  Google Scholar 

  19. Yagi, M. et al. A dozen new galaxies caught in the act: gas stripping and extended emission line regions in the Coma cluster. Astron. J. 140, 1814–1829 (2010).

    Article  ADS  Google Scholar 

  20. Smith, R. J. et al. Ultraviolet tails and trails in cluster galaxies: a sample of candidate gaseous stripping events in Coma. Mon. Not. R. Astron. Soc. 408, 1417–1432 (2010).

    Article  ADS  Google Scholar 

  21. Poggianti, B. M. et al. GASP. I. Gas stripping phenomena in galaxies with MUSE. Astrophys. J. 844, 48 (2017).

    Article  ADS  Google Scholar 

  22. Gullieuszik, M. et al. GASP. IV. A Muse view of extreme ram-pressure-stripping in the plane of the sky: the case of jellyfish galaxy JO204. Astrophys. J. 846, 27 (2017).

    Article  ADS  Google Scholar 

  23. Kenney, J. D. P. et al. Transformation of a Virgo cluster dwarf irregular galaxy by ram pressure stripping: IC3418 and its fireballs. Astrophys. J. 780, 119 (2014).

    Article  ADS  Google Scholar 

  24. Arrigoni Battaia, F. et al. Stripped gas as fuel for newly formed H ii regions in the encounter between VCC 1249 and M 49: a unified picture from NGVS and GUViCS. Astron. Astrophys. 543, A112 (2012).

    Article  Google Scholar 

  25. Fujita, Y. & Nagashima, M. Effects of ram pressure from the intracluster medium on the star formation rate of disk galaxies in clusters of galaxies. Astrophys. J. 516, 619–625 (1999).

    Article  ADS  Google Scholar 

  26. Kapferer, W., Sluka, C., Schindler, S., Ferrari, C. & Ziegler, B. The effect of ram pressure on the star formation, mass distribution and morphology of galaxies. Astron. Astrophys. 499, 87–102 (2009).

    Article  ADS  Google Scholar 

  27. Fabricant, D. et al. Binospec: a wide-field imaging spectrograph for the MMT. Publ. Astron. Soc. Pac. 131, 075004 (2019).

    Article  ADS  Google Scholar 

  28. Grishin, K., Chilingarian, I., Afanasiev, A. & Katkov, I. Reconstructing star formation histories of recently formed ultra-diffuse galaxies. In The Realm of the Low-Surface-Brightness Universe (eds Valls-Gabaud, D. et al.) (IAU Symposium Vol. 355, Cambridge Univ. Press). Preprint at: https://arxiv.org/abs/1909.13460 (2019).

  29. Chilingarian, I. V. & Katkov, I. Y. NBursts+phot: parametric recovery of galaxy star formation histories from the simultaneous fitting of spectra and broad-band spectral energy distributions. In The Spectral Energy Distribution of Galaxies—SED 2011 (eds Tuffs, R. J. & Popescu, C. C.) 26–28 (IAU Symposium Vol. 284, Cambridge Univ. Press, 2012).

  30. Chilingarian, I. V. Evolution of dwarf early-type galaxies—I. Spatially resolved stellar populations and internal kinematics of Virgo cluster dE/dS0 galaxies. Mon. Not. R. Astron. Soc. 394, 1229–1248 (2009).

    Article  ADS  Google Scholar 

  31. Cappellari, M. Measuring the inclination and mass-to-light ratio of axisymmetric galaxies via anisotropic Jeans models of stellar kinematics. Mon. Not. R. Astron. Soc. 390, 71–86 (2008).

    Article  ADS  Google Scholar 

  32. Safarzadeh, M. & Scannapieco, E. The fate of gas-rich satellites in clusters. Astrophys. J. 850, 99 (2017).

    Article  ADS  Google Scholar 

  33. Tremmel, M. et al. The formation of ultradiffuse galaxies in the Romulus c galaxy cluster simulation. Mon. Not. R. Astron. Soc. 497, 2786–2810 (2020).

    Article  ADS  Google Scholar 

  34. Faber, S. M. & Jackson, R. E. Velocity dispersions and mass-to-light ratios for elliptical galaxies. Astrophys. J. 204, 668–683 (1976).

    Article  ADS  Google Scholar 

  35. Kormendy, J. Brightness distributions in compact and normal galaxies. II. Structure parameters of the spheroidal component. Astrophys. J. 218, 333–346 (1977).

    Article  ADS  Google Scholar 

  36. Yagi, M., Koda, J., Komiyama, Y. & Yamanoi, H. Catalog of ultra-diffuse galaxies in the Coma clusters from Subaru imaging data. Astrophys. J. Suppl. Ser. 225, 11 (2016).

    Article  ADS  Google Scholar 

  37. Jaffé, Y. L. et al. GASP. IX. Jellyfish galaxies in phase-space: an orbital study of intense ram-pressure stripping in clusters. Mon. Not. R. Astron. Soc. 476, 4753–4764 (2018).

    Article  ADS  Google Scholar 

  38. Vulcani, B. et al. GASP XXX. The spatially resolved SFR–mass relation in stripping galaxies in the local Universe. Astrophys. J. 899, 98 (2020).

    Article  ADS  Google Scholar 

  39. Jackson, R. A. et al. The origin of low-surface-brightness galaxies in the dwarf regime. Mon. Not. R. Astron. Soc. 502, 4262–4276 (2021).

    Article  ADS  Google Scholar 

  40. Cramer, W. J. et al. ALMA evidence for ram pressure compression and stripping of molecular gas in the Virgo cluster galaxy NGC 4402. Astrophys. J. 901, 95 (2020).

    Article  ADS  Google Scholar 

  41. Hunter, D. A. et al. LITTLE THINGS. Astron. J. 144, 134 (2012).

    Article  ADS  Google Scholar 

  42. Oh, S.-H. et al. High-resolution mass models of dwarf galaxies from LITTLE THINGS. Astron. J. 149, 180 (2015).

    Article  ADS  Google Scholar 

  43. van Dokkum, P. et al. A high stellar velocity dispersion and 1̃00 globular clusters for the ultra-diffuse galaxy Dragonfly 44. Astrophys. J. 828, L6 (2016).

    Article  ADS  Google Scholar 

  44. Dey, A. et al. Overview of the DESI Legacy Imaging Surveys. Astron. J. 157, 168 (2019).

    Article  ADS  Google Scholar 

  45. Chilingarian, I. V. & Zolotukhin, I. Y. A universal ultraviolet–optical colour–colour–magnitude relation of galaxies. Mon. Not. R. Astron. Soc. 419, 1727–1739 (2012).

    Article  ADS  Google Scholar 

  46. Kansky, J. et al. Binospec software system. Publ. Astron. Soc. Pac. 131, 075005 (2019).

    Article  ADS  Google Scholar 

  47. Bertin, E. Automated morphometry with SExtractor and PSFEx. In Astronomical Data Analysis Software and Systems XX (eds Evans, I. N. et al.) 435 (ASP Conf. Series Vol. 442, Astronomical Society of the Pacific, 2011).

  48. Chilingarian, I. V., Melchior, A.-L. & Zolotukhin, I. Y. Analytical approximations of K-corrections in optical and near-infrared bands. Mon. Not. R. Astron. Soc. 405, 1409–1420 (2010).

    ADS  Google Scholar 

  49. Kroupa, P. The initial mass function of stars: evidence for uniformity in variable systems. Science 295, 82–91 (2002).

    Article  ADS  Google Scholar 

  50. Chilingarian, I. V. & Asa’d, R. Using star clusters as tracers of star formation and chemical evolution: the chemical enrichment history of the Large Magellanic Cloud. Astrophys. J. 858, 63 (2018).

    Article  ADS  Google Scholar 

  51. Schmidt, M. The rate of star formation. II. The rate of formation of stars of different mass. Astrophys. J. 137, 758 (1963).

    Article  ADS  MATH  Google Scholar 

  52. Pagel, B. E. J. Nucleosynthesis and Chemical Evolution of Galaxies. (Cambridge Univ. Press, 1997).

  53. Matteucci, F. Introduction to galactic chemical evolution. J. Phys. Conf. Ser. 703, 012004 (2016).

  54. Matteucci, F. & Chiosi, C. Stochastic star formation and chemical evolution of dwarf irregular galaxies. Astron. Astrophys. 123, 121–134 (1983).

    ADS  Google Scholar 

  55. Matteucci, F. Chemical Evolution of Galaxies. (Springer-Verlag, 2012).

  56. Matteucci, F., Spitoni, E., Recchi, S. & Valiante, R. The effect of different type Ia supernova progenitors on galactic chemical evolution. Astron. Astrophys. 501, 531–538 (2009).

    Article  ADS  Google Scholar 

  57. Barbosa, C. E. et al. One hundred SMUDGes in S-PLUS: ultra-diffuse galaxies flourish in the field. Astrophys. J. Suppl. Ser. 247, 46 (2020).

    Article  ADS  Google Scholar 

  58. Martín-Navarro, I. et al. Extreme chemical abundance ratio suggesting an exotic origin for an ultradiffuse galaxy. Mon. Not. R. Astron. Soc. 484, 3425–3433 (2019).

    Article  ADS  Google Scholar 

  59. Ferré-Mateu, A. et al. Origins of ultradiffuse galaxies in the Coma cluster—II. Constraints from their stellar populations. Mon. Not. R. Astron. Soc. 479, 4891–4906 (2018).

    Article  ADS  Google Scholar 

  60. Danieli, S., van Dokkum, P., Conroy, C., Abraham, R. & Romanowsky, A. J. Still missing dark matter: KCWI high-resolution stellar kinematics of NGC1052-DF2. Astrophys. J. Lett. 874, L12 (2019).

    Article  ADS  Google Scholar 

  61. Trujillo, I. et al. A distance of 13 Mpc resolves the claimed anomalies of the galaxy lacking dark matter. Mon. Not. R. Astron. Soc. 486, 1192–1219 (2019).

    Article  ADS  Google Scholar 

  62. Danieli, S. et al. A tip of the red giant branch distance to the dark matter deficient galaxy NGC 1052-DF4 from deep Hubble Space Telescope data. Astrophys. J. 895, L4 (2020).

    Article  ADS  Google Scholar 

  63. Chilingarian, I., Prugniel, P., Sil’chenko, O. & Koleva, M. NBursts: simultaneous extraction of internal kinematics and parametrized SFH from integrated light spectra. In Stellar Populations as Building Blocks of Galaxies (eds Vazdekis, A. & R. Peletier, R.) 175–176 (IAU Symposium Vol. 241, Cambridge Univ. Press, 2007).

  64. Chilingarian, I. V. & Grishin, K. A. Estimating statistical uncertainties of internal kinematics of galaxies and star clusters derived using full spectrum fitting. Publ. Astron. Soc. Pac. 132, 064503 (2020).

    Article  ADS  Google Scholar 

  65. Smith, R., Fellhauer, M. & Assmann, P. Ram pressure drag—the effects of ram pressure on dark matter and stellar disc dynamics. Mon. Not. R. Astron. Soc. 420, 1990–2005 (2012).

    Article  ADS  Google Scholar 

  66. Miyazaki, S. et al. Subaru Prime Focus Camera—Suprime-Cam. Publ. Astron. Soc. Jpn. 54, 833–853 (2002).

    Article  ADS  Google Scholar 

  67. Miyazaki, S. et al. Hyper Suprime-Cam: system design and verification of image quality. Publ. Astron. Soc. Jpn. 70, S1 (2018).

    Article  Google Scholar 

  68. Peng, C. Y., Ho, L. C., Impey, C. D. & Rix, H.-W. Detailed decomposition of galaxy images. II. Beyond axisymmetric models. Astron. J. 139, 2097–2129 (2010).

    Article  ADS  Google Scholar 

  69. Jeans, J. H. The motions of stars in a Kapteyn universe. Mon. Not. R. Astron. Soc. 82, 122–132 (1922).

    Article  ADS  Google Scholar 

  70. Burkert, A. The structure of dark matter halos in dwarf galaxies. Astrophys. J. 447, L25–L28 (1995).

    Article  ADS  Google Scholar 

  71. Hills, J. G. The effect of mass loss on the dynamical evolution of a stellar system—analytic approximations. Astrophys. J. 235, 986–991 (1980).

    Article  ADS  Google Scholar 

  72. Li, P., Lelli, F., McGaugh, S. & Schombert, J. A comprehensive catalog of dark matter halo models for SPARC galaxies. Astrophys. J. Suppl. Ser. 247, 31 (2020).

    Article  ADS  Google Scholar 

  73. Mowla, L. et al. Evidence of absence of tidal features in the outskirts of ultra diffuse galaxies in the Coma cluster. Astrophys. J. 851, 27 (2017).

    Article  ADS  Google Scholar 

  74. Binney, J. & Tremaine, S. Galactic Dynamics: Second Edition. (Princeton Univ. Press, 2008).

  75. Lisker, T., Weinmann, S. M., Janz, J. & Meyer, H. T. Dwarf galaxy populations in present-day galaxy clusters—II. The history of early-type and late-type dwarfs. Mon. Not. R. Astron. Soc. 432, 1162–1177 (2013).

    Article  ADS  Google Scholar 

  76. Alabi, A. B., Romanowsky, A. J., Forbes, D. A., Brodie, J. P. & Okabe, N. An expanded catalogue of low surface brightness galaxies in the Coma cluster using Subaru/Suprime-Cam. Mon. Not. R. Astron. Soc. 496, 3182–3197 (2020).

    Article  ADS  Google Scholar 

  77. Graham, A. W. & Soria, R. Expected intermediate-mass black holes in the Virgo cluster—I. Early-type galaxies. Mon. Not. R. Astron. Soc. 484, 794–813 (2019).

    ADS  Google Scholar 

  78. Chilingarian, I. V. et al. Kinematics and stellar populations of low-luminosity early-type galaxies in the Abell 496 cluster. Astron. Astrophys. 486, 85–97 (2008).

    Article  ADS  Google Scholar 

  79. Binggeli, B. & Jerjen, H. Is the shape of the luminosity profile of dwarf elliptical galaxies an useful distance indicator? Astron. Astrophys. 333, 17–26 (1998).

    ADS  Google Scholar 

  80. van Dokkum, P. G. et al. Forming compact massive galaxies. Astrophys. J. 813, 23 (2015).

    Article  ADS  Google Scholar 

  81. Gu, M. et al. Low metallicities and old ages for three ultra-diffuse galaxies in the Coma cluster. Astrophys. J. 859, 37 (2018).

    Article  ADS  Google Scholar 

  82. Gannon, J. S. et al. On the stellar kinematics and mass of the Virgo ultradiffuse galaxy VCC 1287. Mon. Not. R. Astron. Soc. 495, 2582–2598 (2020).

    Article  ADS  Google Scholar 

  83. Gannon, J. S. et al. A photometric and kinematic analysis of UDG1137 + 16 (dw1137 + 16): probing ultradiffuse galaxy formation in a group environment. Mon. Not. R. Astron. Soc. 502, 3144–3157 (2021).

    Article  ADS  Google Scholar 

  84. McConnachie, A. W. The observed properties of dwarf galaxies in and around the Local Group. Astron. J. 144, 4 (2012).

    Article  ADS  Google Scholar 

  85. Bender, R., Burstein, D. & Faber, S. M. Dynamically hot galaxies. I—Structural properties. Astrophys. J. 399, 462–477 (1992).

    Article  ADS  Google Scholar 

  86. Godwin, J. G., Metcalfe, N. & Peach, J. V. The Coma cluster—I. A catalogue of magnitudes, colours, ellipticies and position angles for 6724 galaxies in the field of the Coma cluster. Mon. Not. R. Astron. Soc. 202, 113–124 (1983).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

K.A.G., I.V.C., A.V.A. and I.Y.K. acknowledge the Russian Science Foundation (RScF) grants no. 19-12-00281 for supporting the search of UDG progenitors and data analysis of a multiwavelength spectrophotometric dataset, and no. 17-72-20119 for supporting the development of stellar population models used in the data analysis; and the Interdisciplinary Scientific and Educational School of Moscow University ‘Fundamental and Applied Space Research’. K.A.G. acknowledges support from the foundation of development of theoretical physics and mathematics ‘Basis’. I.V.C.’s research is supported by the Telescope Data Center at Smithsonian Astrophysical Observatory. We thank D. Eisenstein, F. Combes, G. Mamon and O. Sil’chenko for fruitful discussions related to this project. We are grateful to the staff of the MMT Observatory jointly operated by the Smithsonian Astrophysical Observatory and the University of Arizona for their support of Binospec operations and service mode observations. This study is based in part on data collected at the Subaru Telescope and retrieved from the Suprime-Cam and Hyper Suprime-Cam data archive system, which is operated by the Subaru Telescope and Astronomy Data Center at the National Astronomical Observatory of Japan and on observations obtained at the international Gemini Observatory (proposal GN-2017A-FT-22), a programme of NSF’s NOIRLab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation on behalf of the Gemini Observatory partnership: the National Science Foundation (USA), National Research Council (Canada), Agencia Nacional de Investigación y Desarrollo (Chile), Ministerio de Ciencia, Tecnología e Innovación (Argentina), Ministério da Ciência, Tecnologia, Inovações e Comunicações (Brazil) and Korea Astronomy and Space Science Institute (Republic of Korea).

Author information

Authors and Affiliations

Authors

Contributions

K.A.G. computed stellar population models, prepared Binospec observations, analysed Binospec data and wrote the manuscript; I.V.C. formulated PSG search criteria and discovered the galaxies in the RCSED catalogue, reduced Binospec data, modified the full spectrum fitting code to analyse them and wrote the manuscript; A.V.A. performed surface photometry, performed dynamical modelling and wrote the manuscript; D.F. led the development of the Binospec spectrograph and proposed the observational strategy; I.Y.K. jointly with I.V.C. developed the spectrophotometric fitting code NBursts+phot and validated the spectroscopic data analysis; S.M. supported preparation and execution of observations; M.Y. provided cutouts of deep Subaru images and reduced the archival Subaru data for Abell 2147; I.V.C., D.F. and S.M. performed Binospec observations during the commissioning and science verification of the instrument; all authors discussed the manuscript.

Corresponding authors

Correspondence to Kirill A. Grishin or Igor V. Chilingarian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Jeffrey Kenney and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Low-contrast filaments suspected to be ram-pressure-stripped tails for five Coma galaxies.

For GMP 2639 we show an inverted Rc-band image binned with a 4 × 4 pix window. For GMP 4118 and GMP 4348 we show Hα images without continuum subtraction convolved with a 2-D Gaussian kernel having FWHM in range 5…7 pix depending on S/N of input images. For GMP 3176 we show a difference between B and Rc Subaru frames. A spot at the end of the short filament in GMP 4188 pointed by an arrow is a bright Hα source.

Extended Data Fig. 2 Observed data (black) degraded down to correspond template resolution and best-fitting templates (red) for Binospec spectra (left panels) and broad-band SEDs (right panels) for PSGs from the main sample.

For the spectra we also show 1σ uncertainty profiles (magenta) and fitting residuals (grey). SED panels show observations and best-fitting models as black and red dots correspondingly. The residuals are shown with black stars around a cyan line representing zero level in the same scale as SEDs. The upper right corner of each spectrum contains a median signal-to-noise ratio for a degraded spectrum per pixel. Main spectral features and broad-band filter bandpasses are marked in the upper row of panels.

Extended Data Fig. 3 The same as Extended Data Figure 1 for the additional galaxy sample.

n/a.

Extended Data Fig. 4 Resolved stellar population profiles for the PSGs from the main sample and GMP 3016 obtained from full spectral fitting of long-slit spectra using pegase.hr-based templates28.

We perform the χ2 minimization varying the truncation age and final metallicity which describes the metallicity of final starburst while other parameters (wind coefficients and SB fraction) are fixed to values derived from the modelling of the coadded 1D spectra with broadband photometry. For galaxies with non-radial age gradients likely caused by the ram pressure stripping, solid blue lines show the gradient trend sometimes over-imposed on the radial gradient illustrating the outside-in quenching. Dotted and dashed lines mark ± re/2 and ± re respectively.

Extended Data Fig. 5 A number of UDGs from the Subaru Coma cluster survey36 that could pass the SDSS spectroscopic selection criteria and satisfy our PSG selection criteria at some moment during their lifetime as a function of a mass fraction of stars born in the final star burst for three different truncation ages: 5, 8, and 10 Gyr.

n/a.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grishin, K.A., Chilingarian, I.V., Afanasiev, A.V. et al. Transforming gas-rich low-mass disky galaxies into ultra-diffuse galaxies by ram pressure. Nat Astron 5, 1308–1318 (2021). https://doi.org/10.1038/s41550-021-01470-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01470-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing