Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The palaeoinclination of the ancient lunar magnetic field from an Apollo 17 basalt

Abstract

Palaeomagnetic studies of Apollo samples indicate that the Moon generated a magnetic field for at least 2 billion years1,2. However, the geometry of the lunar magnetic field is still largely unknown because the original orientations of essentially all Apollo samples have not been well constrained. Determining the direction of the lunar magnetic field over time could elucidate the mechanism by which the lunar dynamo was powered and whether the Moon experienced true polar wander. Here we present measurements of the lunar magnetic field 3.7 billion years ago as recorded by Apollo 17 mare basalts 75035 and 75055. We find that 75035 and 75055 record a mean palaeointensity of ~50 μT. Furthermore, we could infer from the magnetization direction of 75055 and the layering of its parent boulder that the inclination of the magnetic field at the time was 34 ± 10°. Our recovered inclination is consistent with, but does not require, a selenocentric axial dipole (SAD) field geometry: a dipole in the centre of the Moon and aligned along the spin axis. Additionally, although true polar wander is not required by our data, true polar wander paths inferred from some independent studies of lunar hydrogen deposits and crustal magnetic anomalies4,5,6 are consistent with our measured paleoinclination.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Hypothesized magnetic field sources for lunar palaeomagnetism.
Fig. 2: NRM components in 75035 and 75055 and associated palaeoinclinations.
Fig. 3: Predictions for the palaeoinclination of the lunar field and implications for multipolarity and true polar wander.

Data availability

The palaeomagnetic data that support the findings of this study are available from the Magnetic Information Consortium (MagIC) database at http://www2.earthref.org/MagIC/17123. All other data requests and correspondence should be directed to C.I.O.N. Source data are provided with this paper.

References

  1. Weiss, B. P. & Tikoo, S. M. The lunar dynamo. Science 346, 1246753 (2014).

    Google Scholar 

  2. Tikoo, S. M. et al. A two-billion-year history for the lunar dynamo. Sci. Adv. 3, e1700207 (2017).

    ADS  Google Scholar 

  3. Potter, D. K. Novel magnetic techniques for rapidly detecting palaeomagnetically important single-domain iron particles and obtaining directional palaeomagnetic data from ‘unoriented’ lunar rock samples. Can. Aeronaut. Space J. 57, 12–23 (2011).

    ADS  Google Scholar 

  4. Cournède, C., Gattacceca, J. & Rochette, P. Magnetic study of large Apollo samples: possible evidence for an ancient centered dipolar field on the Moon. Earth Planet. Sci. Lett. 331-332, 31–42 (2012).

    ADS  Google Scholar 

  5. Hood, L. L. Central magnetic anomalies of Nectarian-aged lunar impact basins: probable evidence for an early core dynamo. Icarus 211, 1109–1128 (2011).

    ADS  Google Scholar 

  6. Oliveira, J. S. & Wieczorek, M. A. Testing the axial dipole hypothesis for the Moon by modeling the direction of crustal magnetization. J. Geophys. Res. Planets 122, 383–399 (2017).

    ADS  Google Scholar 

  7. Evans, A. J., Tikoo, S. M. & Andrews-Hanna, J. C. The case against an early lunar dynamo powered by core convection. Geophys. Res. Lett. 45, 98–107 (2018).

    ADS  Google Scholar 

  8. Dwyer, C. A., Stevenson, D. J. & Nimmo, F. A long-lived lunar dynamo driven by continuous mechanical stirring. Nature 479, 212–214 (2011).

    ADS  Google Scholar 

  9. Cébron, D., Laguerre, R., Noir, J. & Schaeffer, N. Precessing spherical shells: flows, dissipation, dynamo and the lunar core. Geophys. J. Int. 219, S34–S57 (2019).

    ADS  Google Scholar 

  10. Stys, C. & Dumberry, M. A past lunar dynamo thermally driven by the precession of its inner core. J. Geophys. Res. Planets 125, e2020JE006396 (2020).

    ADS  Google Scholar 

  11. Le Bars, M., Wieczorek, M. A., Karatekin, Ö., Cébron, D. & Laneuville, M. An impact-driven dynamo for the early Moon. Nature 479, 215–218 (2011).

    ADS  Google Scholar 

  12. Suavet, C. et al. Persistence and origin of the lunar core dynamo. Proc. Natl Acad. Sci. USA 110, 8453–8458 (2013).

    ADS  Google Scholar 

  13. Scheinberg, A. L., Soderlund, K. M. & Elkins-Tanton, L. T. A basal magma ocean dynamo to explain the early lunar magnetic field. Earth Planet. Sci. Lett. 492, 144–151 (2018).

    ADS  Google Scholar 

  14. Olson, P. & Christensen, U. R. Dipole moment scaling for convection-driven planetary dynamos. Earth Planet. Sci. Lett. 250, 561–571 (2006).

    ADS  Google Scholar 

  15. Snape, J. F. et al. The timing of basaltic volcanism at the Apollo landing sites. Geochim. Cosmochim. Acta 266, 29–53 (2019).

    ADS  Google Scholar 

  16. Schmitt, H. H. et al. Revisiting the field geology of Taurus–Littrow. Icarus 298, 2–33 (2017).

    ADS  Google Scholar 

  17. Garrick-Bethell, I., Perera, V., Nimmo, F. & Zuber, M. T. The tidal–rotational shape of the Moon and evidence for polar wander. Nature 512, 181–184 (2014).

    ADS  Google Scholar 

  18. Shea, E. K. et al. A long-lived lunar core dynamo. Science 335, 453–456 (2012).

    ADS  Google Scholar 

  19. Schubert, G. & Soderlund, K. M. Planetary magnetic fields: observations and models. Phys. Earth Planet. Inter. 187, 92–108 (2011).

    ADS  Google Scholar 

  20. Weber, R. C., Lin, P.-Y., Garnero, E. J., Williams, Q. C. & Lognonné, P. Seismic detection of the lunar core. Science 331, 309–312 (2011).

    ADS  Google Scholar 

  21. Christensen, U. R. A deep dynamo generating Mercury’s magnetic field. Nature 444, 1056–1058 (2006).

    ADS  Google Scholar 

  22. Takahashi, F., Shimizu, H. & Tsunakawa, H. Mercury’s anomalous magnetic field caused by a symmetry-breaking self-regulating dynamo. Nat. Commun. 10, 208 (2019).

    ADS  Google Scholar 

  23. Maxwell, R. E. & Garrick-Bethell, I. Evidence for an ancient near-equatorial lunar dipole from higher precision inversions of crustal magnetization. J. Geophys. Res. Planets 125, e06567 (2020).

    Google Scholar 

  24. Siegler, M. A. et al. Lunar true polar wander inferred from polar hydrogen. Nature 531, 480–484 (2016).

    ADS  Google Scholar 

  25. Wolfe, E. W. et al. The Geologic Investigation of the Taurus-Littrow Valley; Apollo 17 Landing Site, with a Section on Apollo 17 Lunar Surface Photography Professional Paper 1080 (Astrogeology Science Center, U.S. Government Publishing Office, 1981).

  26. Meyer, C. Lunar Sample Compendium (Astromaterials Research & Exploration Science, 2010); http://curator.jsc.nasa.gov/lunar/lsc/

  27. Cashman, K. V., Thornber, C. R. & Kauahikaua, J. P. Cooling and crystallization of lava in open channels, and the transition of pāhoehoe lava to ‘a’ā. Bull. Volcanol. 61, 306–323 (1999).

    ADS  Google Scholar 

  28. Self, S., Keszthelyi, L. & Thordarson, T. The importance of pāhoehoe. Annu. Rev. Earth Planet. Sci. 26, 81–110 (1998).

    ADS  Google Scholar 

  29. Donohue, P. H. & Neal, C. R. Quantitative textural analysis of ilmenite in Apollo 17 high-titanium mare basalts. Geochim. Cosmochim. Acta 149, 115–130 (2015).

    ADS  Google Scholar 

  30. Brown, G. M., Peckett, A., Emeleus, C. H., Phillips, R. & Pinsent, R. H. Petrology and mineralogy of Apollo 17 mare basalts. In Proc. 6th Lunar Science Conference (ed. Merrill, R. B.) 1–13 (Pergamon Press, 1975).

  31. Murase, T. & McBirney, A. R. Viscosity of lunar lavas. Science 167, 1491–1493 (1970).

    ADS  Google Scholar 

  32. Head, J. W.III Lunar volcanism in space and time. Rev. Geophys. 14, 265–300 (1976).

    ADS  Google Scholar 

  33. Manga, M. Waves of bubbles in basaltic magmas and lavas. J. Geophys. Res. Solid Earth 101, 17457–17465 (1996).

    Google Scholar 

  34. Wang, H. et al. Lifetime of the solar nebula constrained by meteorite paleomagnetism. Science 627, 623–627 (2017).

    ADS  Google Scholar 

  35. Tikoo, S. M. et al. Magnetic fidelity of lunar samples and implications for an ancient core dynamo. Earth Planet. Sci. Lett. 337-338, 93–103 (2012).

    ADS  Google Scholar 

  36. Suavet, C., Weiss, B. P. & Grove, T. L. Controlled-atmosphere thermal demagnetization and paleointensity analyses of extraterrestrial rocks. Geochem. Geophys. Geosyst. 15, 2733–2743 (2014).

    ADS  Google Scholar 

  37. Garrick-Bethell, I., Weiss, B. P., Shuster, D. L. & Buz, J. Early lunar magnetism. Science 323, 356–359 (2009).

    ADS  Google Scholar 

  38. Kirschvink, J. L. The least-squares line and plane and the analysis of palaeomagnetic data. Geophys. J. Int. 62, 699–718 (1980).

    ADS  Google Scholar 

  39. Tauxe, L. & Staudigel, H. Strength of the geomagnetic field in the Cretaceous Normal Superchron: new data from submarine basaltic glass of the Troodos Ophiolite. Geochem. Geophys. Geosyst. 5, 2003GC000635 (2004).

    Google Scholar 

  40. Tauxe, L. et al. PmagPy: software package for paleomagnetic data analysis and a bridge to the Magnetics Information Consortium (MagIC) Database. Geochem. Geophys. Geosyst. 17, 2450–2463 (2016).

    ADS  Google Scholar 

  41. Allmendinger, R. W., Cardozo, N. C. & Fisher, D. Structural Geology Algorithms: Vectors and Tensors 44–98 (Cambridge Univ. Press, 2013).

  42. Cardozo, N. C. & Allmendinger, R. W. Spherical projections with OSXStereonet. Comput. Geosci. 51, 193–205 (2013).

    ADS  Google Scholar 

  43. Tikoo, S. M. et al. Decline of the lunar core dynamo. Earth Planet. Sci. Lett. 404, 89–97 (2014).

    ADS  Google Scholar 

  44. Paterson, G. A., Heslop, D. & Pan, Y. The pseudo-Thellier palaeointensity method: new calibration and uncertainty estimates. Geophys. J. Int. 207, 1596–1608 (2016).

    ADS  Google Scholar 

  45. Stephenson, A. & Collinson, D. W. Lunar magnetic field palaeointensities determined by an anhysteretic remanent magnetization method. Earth Planet. Sci. Lett. 23, 220–228 (1974).

    ADS  Google Scholar 

  46. Tauxe, L. Essentials of Paleomagnetism (Univ. of California Press, 2010).

  47. Halgedahl, S. L., Day, R. & Fuller, M. The effect of cooling rate on the intensity of weak-field TRM in single-domain magnetite. J. Geophys. Res. Solid Earth 85, 3690–3698 (1980).

    Google Scholar 

  48. Bryson, J. F. J., Weiss, B. P., Harrison, R. J., Herrero-Albillos, J. & Kronast, F. Paleomagnetic evidence for dynamo activity driven by inward crystallisation of a metallic asteroid. Earth Planet. Sci. Lett. 472, 152–163 (2017).

    ADS  Google Scholar 

  49. Press, W., Teukolsky, S., Vertterling, W. & Flannery, B. in Numerical Recipes in C: The Art of Scientific Computing 2nd edn, 650–655 (Cambridge Univ. Press, 1992).

  50. Jelinek, V. Characterization of the magnetic fabric of rocks. Tectonophysics 79, T63–T67 (1981).

    ADS  Google Scholar 

  51. Girdler, R. W. The measurement and computation of anisotropy of magnetic susceptibility of rocks. Geophys. J. Int. 5, 34–44 (1961).

    Google Scholar 

  52. Hood, L. L. & Artemieva, N. A. Antipodal effects of lunar basin-forming impacts: initial 3D simulations and comparisons with observations. Icarus 193, 485–502 (2008).

    ADS  Google Scholar 

  53. Daily, W. D. & Dyal, P. Theories for the origin of lunar magnetism. Phys. Earth Planet. Inter. 20, 255–270 (1979).

    ADS  Google Scholar 

  54. Dyal, P., Parkin, C. W. & Daily, W. D. Global lunar crust: electrical conductivity and thermoelectric origin of remanent magnetism. In Proc. 8th Lunar Science Conference (ed. Merrill, R. B.) 767–783 (Pergamon Press, 1977).

  55. Takahashi, F., Tsunakawa, H., Shimizu, H., Shibuya, H. & Matsushima, M. Reorientation of the early lunar pole. Nat. Geosci. 7, 409–412 (2014).

    ADS  Google Scholar 

  56. Runcorn, S. K. Lunar magnetism, polar displacements and primeval satellites in the Earth–Moon system. Nature 304, 589–596 (1983).

    ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the NASA Solar System Workings Program (grant no. NNX15AL62G) to B.P.W. and from the NASA Solar System Exploration Virtual Institute (grant no. NNA14AB01A) to B.P.W. Additional funding support is acknowledged from the Simons Foundation (grant no. 556352) to C.I.O.N. We thank CAPTEM for the loan of samples. We thank R. Wells for assistance with sample orientation and photogrammetry. We thank L. de Groot, B. de Groot and the Utrecht University glass workshop for assistance with building a customized sample-handling system for anisotropy measurements. We thank S. Stanley for helpful discussions on dynamo theory. We thank F. Vervelidou for independently verifying the paleomagnetic data analysis.

Author information

Authors and Affiliations

Authors

Contributions

C.I.O.N. and B.P.W. wrote the paper. B.P.W. and H.H.S. conceived the study. C.I.O.N., B.L.G., A.B. and J.S. collected the palaeomagnetic data. C.I.O.N., B.P.W. and B.L.G. analysed the data and reconstructed palaeogeographic sample orientations. A.S.P.R. conducted the impact simulations.

Corresponding author

Correspondence to Claire I. O. Nichols.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Beck Strauss, Romain Tartese and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Demagnetization of NRM in 75035 and 75055.

Orthographic projections in laboratory coordinates (Table 1) show the nautral remanent magnetization (NRM) vector during alternating field demagnetization projected along the North-East (closed squares) and Up-East (open symbols) directions. Stable components are shown by blue (low coercivity, LC), purple (medium coercivity, MC) and red (high coercivity, HC) arrows, respectively. Data shown here are not corrected for remanence anisotropy. The peak AF is shown by the colour bar. a, Specimen 75035,242Ae. b, Specimen 75035,242Bg. c, Specimen 75055,127Aa. d, Specimen 75055,127Ae.

Source data

Extended Data Fig. 2 Geographic context of Station 5 where samples 75035 and 75055 were collected.

Figure adapted from ref. 25. (a) Panorama 19 from ref. 25 using astronaut photographs AS17-145-22181, 22183, 22159 and 22160. The panorama shows a north-east view of the Taurus-Littrow valley. (b) Sketch corresponding to the panoramic photograph in (a). The locations of 75035 and 75055 are shown. (c) Map showing the location from which the panorama was taken and the position of 75035 and 75055 relative to Camelot crater.

Extended Data Fig. 3 An example of the planar features in large blocks around Camelot Crater that were used to infer paleohorizontal.

Panorama using astronaut photographs AS17-133-20330 to AS17-133-20335. Astronaut E.A. Cernan is standing next to the block from which 75055 was sampled.

Extended Data Fig. 4 Estimation of the orientation of planar lava flow features on the 75055 parent boulder.

Measurements are summarized in Table S2. (a) Astronaut photograph AS17-145-22183. (b) - (l) Astronaut photographs AS17-145-22141 to AS17-145-22151 taken from a variety of orientations around the block. The trends and plunges of the planar features were measured as shown by the marked reference features. The colour of the trend arrow corresponds to the face on which the linear features were measured. (m) Equal area stereographic projection showing the orientation of the planar features with a strike and dip of 243/36. The plane of best fit was calculated from the measured trends and plunges of linear features identified on three faces of the boulder, coloured green, yellow and pink. (n) Annotated copies of (a) and (g) show the three faces identified on the boulder identified by the green, yellow and pink colours.

Supplementary information

Supplementary Information

Supplementary Text 1–5, Figs. 1–19, Equations 1–3 and Tables 1–11.

Source data

Source Data Fig. 2

Raw data for plots.

Source Data Extended Data Fig. 1

Raw data for plots.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nichols, C.I.O., Weiss, B.P., Getzin, B.L. et al. The palaeoinclination of the ancient lunar magnetic field from an Apollo 17 basalt. Nat Astron 5, 1216–1223 (2021). https://doi.org/10.1038/s41550-021-01469-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01469-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing