Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quiescent ultra-diffuse galaxies in the field originating from backsplash orbits

Abstract

Ultra-diffuse galaxies (UDGs) are the lowest-surface-brightness galaxies known, with typical stellar masses of dwarf galaxies but sizes similar to those of larger galaxies such as the Milky Way1. The reason for their extended sizes is debated, with suggested internal processes such as angular momentum2, feedback3,4 or mergers5 versus external mechanisms6,7,8,9 or a combination of both10. Observationally, we know that UDGs are red and quiescent in groups and clusters11,12 whereas their counterparts in the field are blue and star-forming13,14,15,16. This dichotomy suggests environmental effects as the main culprits. However, this scenario is challenged by recent observations of isolated quiescent UDGs in the field17,18,19. Here we use the ΛCDM (or Λ cold dark matter, where Λ is the cosmological constant) cosmological hydrodynamical simulation to show that isolated quenched UDGs are formed as backsplash galaxies that were once satellites of another galactic, group or cluster halo but are today a few Mpc away from them. These interactions, albeit brief, remove the gas and tidally strip the outskirts of the dark matter haloes of the now quenched and seemingly isolated UDGs, which are born as star-forming field UDGs occupying dwarf-mass dark matter haloes. Quiescent UDGs may therefore be found in non-negligible numbers in filaments and voids, bearing the mark of past interactions as stripped outer haloes devoid of dark matter and gas compared to dwarfs with similar stellar content.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Definition of the UDG sample.
Fig. 2: Dichotomy in colour and star formation rate of field UDGs.
Fig. 3: Formation of red UDGs in backsplash orbits and their location in the Universe.
Fig. 4: Predicted properties of field red versus blue UDGs.

Data availability

This letter is based on snapshots, subhalo catalogues and merger trees from the cosmological hydrodynamical TNG50 simulation25,26 of the IllustrisTNG project37,38,39,40,41,42,43. These data are publicly available at https://www.tng-project.org/. ASCII tables with the simulation data for our sample of UDGs in Figs. 1, 2 and 4 are available in the public repository https://github.com/josegit88/public_data_files/tree/main/ascii_files_isolated_UDGs_TNG50. Source data are provided with this paper.

Code Availability

Scripts used for reading of and access to the snapshot, merger trees and subhalo data are publically available at the TNG database. Visualizations were made using the publicly available Py-SPHViewer code61. Any correspondence and/or request for materials pertaining to this manuscript should be directed to J.A.B.

References

  1. 1.

    van Dokkum, P. G. et al. Forty-seven Milky Way-sized, extremely diffuse galaxies in the Coma cluster. Astrophys. J. Lett. 798, L45 (2015).

    ADS  Article  Google Scholar 

  2. 2.

    Amorisco, N. C. & Loeb, A. Ultradiffuse galaxies: the high-spin tail of the abundant dwarf galaxy population. Mon. Not. R. Astron. Soc. 459, L51–L55 (2016).

    ADS  Article  Google Scholar 

  3. 3.

    Di Cintio, A. et al. NIHAO – XI. Formation of ultra-diffuse galaxies by outflows. Mon. Not. R. Astron. Soc. 466, L1–L6 (2017).

    ADS  Article  Google Scholar 

  4. 4.

    Chan, T. K. et al. The origin of ultra diffuse galaxies: stellar feedback and quenching. Mon. Not. R. Astron. Soc. 478, 906–925 (2018).

    ADS  Article  Google Scholar 

  5. 5.

    Wright, A. C. et al. The formation of isolated ultradiffuse galaxies in ROMULUS25. Mon. Not. R. Astron. Soc. 502, 5370–5389 (2021).

    ADS  Article  Google Scholar 

  6. 6.

    Safarzadeh, M. & Scannapieco, E. The fate of gas-rich satellites in clusters. Astrophys. J. 850, 99 (2017).

    ADS  Article  Google Scholar 

  7. 7.

    Carleton, T. et al. The formation of ultra-diffuse galaxies in cored dark matter haloes through tidal stripping and heating. Mon. Not. R. Astron. Soc. 485, 382–395 (2019).

    ADS  Article  Google Scholar 

  8. 8.

    Jiang, F. et al. Formation of ultra-diffuse galaxies in the field and in galaxy groups. Mon. Not. R. Astron. Soc. 487, 5272–5290 (2019).

    ADS  Article  Google Scholar 

  9. 9.

    Tremmel, M. et al. The formation of ultradiffuse galaxies in the RomulusC galaxy cluster simulation. Mon. Not. R. Astron. Soc. 497, 2786–2810 (2020).

    ADS  Article  Google Scholar 

  10. 10.

    Sales, L. V. et al. The formation of ultradiffuse galaxies in clusters. Mon. Not. R. Astron. Soc. 494, 1848–1858 (2020).

    ADS  Article  Google Scholar 

  11. 11.

    Koda, J., Yagi, M., Yamanoi, H. & Komiyama, Y. Approximately a thousand ultra-diffuse galaxies in the Coma cluster. Astrophys. J. Lett. 807, L2 (2015).

    ADS  Article  Google Scholar 

  12. 12.

    Yagi, M., Koda, J., Komiyama, Y. & Yamanoi, H. Catalog of ultra-diffuse galaxies in the Coma clusters from Subaru imaging data. Astrophys. J. Suppl. Ser. 225, 11 (2016).

    ADS  Article  Google Scholar 

  13. 13.

    Greco, J. P. et al. A study of two diffuse dwarf galaxies in the field. Astrophys. J. 866, 112 (2018).

    ADS  Article  Google Scholar 

  14. 14.

    Rong, Y. et al. Lessons on star-forming ultra-diffuse galaxies from the stacked spectra of the Sloan Digital Sky Survey. Astrophys. J. Lett. 899, L12 (2020).

    ADS  Article  Google Scholar 

  15. 15.

    Barbosa, C. E. et al. One Hundred SMUDGes in S-PLUS: ultra-diffuse galaxies glourish in the field. Astrophys. J. Suppl. Ser. 247, 46 (2020).

    ADS  Article  Google Scholar 

  16. 16.

    Tanoglidis, D. et al. Shadows in the dark: low-surface-brightness galaxies discovered in the Dark Energy Survey. Astrophys. J. Suppl. Ser. 252, 18 (2021).

    ADS  Article  Google Scholar 

  17. 17.

    Martínez-Delgado, D. et al. Discovery of an ultra-diffuse galaxy in the Pisces-Perseus supercluster. Astron. J. 151, 96 (2016).

    ADS  Article  Google Scholar 

  18. 18.

    Román, J., Beasley, M. A., Ruiz-Lara, T. & Valls-Gabaud, D. Discovery of a red ultra-diffuse galaxy in a nearby void based on its globular cluster luminosity function. Mon. Not. R. Astron. Soc. 486, 823–835 (2019).

    ADS  Article  Google Scholar 

  19. 19.

    Prole, D. J., van der Burg, R. F. J., Hilker, M. & Spitler, L. R. The quiescent fraction of isolated low surface brightness galaxies: observational constraints. Mon. Not. R. Astron. Soc. 500, 2049–2062 (2021).

    ADS  Article  Google Scholar 

  20. 20.

    van Dokkum, P. et al. A galaxy lacking dark matter. Nature 555, 629–632 (2018).

    ADS  Article  Google Scholar 

  21. 21.

    Lim, S. et al. The globular cluster systems of ultra-diffuse galaxies in the Coma cluster. Astrophys. J. 862, 82 (2018).

    ADS  Article  Google Scholar 

  22. 22.

    Doppel, J. E. et al. Globular clusters as tracers of the dark matter content of dwarfs in galaxy clusters. Mon. Not. R. Astron. Soc. 502, 1661–1677 (2021).

    ADS  Article  Google Scholar 

  23. 23.

    Mancera Piña, P. E. et al. The evolution of ultra-diffuse galaxies in nearby galaxy clusters from the Kapteyn IAC WEAVE INT Clusters Survey. Mon. Not. R. Astron. Soc. 485, 1036–1052 (2019).

    ADS  Article  Google Scholar 

  24. 24.

    Ferré-Mateu, A. et al. Origins of ultradiffuse galaxies in the Coma cluster – II. Constraints from their stellar populations. Mon. Not. R. Astron. Soc. 479, 4891–4906 (2018).

    ADS  Article  Google Scholar 

  25. 25.

    Pillepich, A. et al. First results from the TNG50 simulation: the evolution of stellar and gaseous discs across cosmic time. Mon. Not. R. Astron. Soc. 490, 3196–3233 (2019).

    ADS  Article  Google Scholar 

  26. 26.

    Nelson, D. et al. First results from the TNG50 simulation: galactic outflows driven by supernovae and black hole feedback. Mon. Not. R. Astron. Soc. 490, 3234–3261 (2019).

    ADS  Article  Google Scholar 

  27. 27.

    Martín-Navarro, I. et al. Extreme chemical abundance ratio suggesting an exotic origin for an ultradiffuse galaxy. Mon. Not. R. Astron. Soc. 484, 3425–3433 (2019).

    ADS  Article  Google Scholar 

  28. 28.

    Lim, S. et al. The Next Generation Virgo Cluster Survey (NGVS). XXX. Ultra-diffuse galaxies and their globular cluster systems. Astrophys. J. 899, 69 (2020).

    ADS  Article  Google Scholar 

  29. 29.

    Balogh, M. L., Navarro, J. F. & Morris, S. L. The origin of star formation gradients in rich galaxy clusters. Astrophys. J. 540, 113–121 (2000).

    ADS  Article  Google Scholar 

  30. 30.

    Sales, L. V., Navarro, J. F., Abadi, M. G. & Steinmetz, M. Cosmic ménage à trois: the origin of satellite galaxies on extreme orbits. Mon. Not. R. Astron. Soc. 379, 1475–1483 (2007).

    ADS  Article  Google Scholar 

  31. 31.

    Cardona-Barrero, S. et al. NIHAO XXIV: rotation- or pressure-supported systems? Simulated ultra diffuse galaxies show a broad distribution in their stellar kinematics. Mon. Not. R. Astron. Soc. 497, 4282–4292 (2020).

    ADS  Article  Google Scholar 

  32. 32.

    Joshi, G. D. et al. The fate of disc galaxies in IllustrisTNG clusters. Mon. Not. R. Astron. Soc. 496, 2673–2703 (2020).

    ADS  Article  Google Scholar 

  33. 33.

    Moster, B. P., Naab, T. & White, S. D. M. Galactic star formation and accretion histories from matching galaxies to dark matter haloes. Mon. Not. R. Astron. Soc. 428, 3121–3138 (2013).

    ADS  Article  Google Scholar 

  34. 34.

    Gunn, J. E. & Gott, J. R.III On the infall of matter into clusters of galaxies and some effects on their evolution. Astrophys. J. 176, 1–19 (1972).

    ADS  Article  Google Scholar 

  35. 35.

    Abadi, M. G., Moore, B. & Bower, R. G. Ram pressure stripping of spiral galaxies in clusters. Mon. Not. R. Astron. Soc. 308, 947–954 (1999).

    ADS  Article  Google Scholar 

  36. 36.

    Tumlinson, J., Peeples, M. S. & Werk, J. K. The circumgalactic medium. Annu. Rev. Astron. Astrophys. 55, 389–432 (2017).

    ADS  Article  Google Scholar 

  37. 37.

    Pillepich, A. et al. Simulating galaxy formation with the IllustrisTNG model. Mon. Not. R. Astron. Soc. 473, 4077–4106 (2018).

    ADS  Article  Google Scholar 

  38. 38.

    Pillepich, A. et al. First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies. Mon. Not. R. Astron. Soc. 475, 648–675 (2018).

    ADS  Article  Google Scholar 

  39. 39.

    Springel, V. et al. First results from the IllustrisTNG simulations: matter and galaxy clustering. Mon. Not. R. Astron. Soc. 475, 676–698 (2018).

    ADS  Article  Google Scholar 

  40. 40.

    Nelson, D. et al. First results from the IllustrisTNG simulations: the galaxy colour bimodality. Mon. Not. R. Astron. Soc. 475, 624–647 (2018).

    ADS  Article  Google Scholar 

  41. 41.

    Naiman, J. P. et al. First results from the IllustrisTNG simulations: a tale of two elements – chemical evolution of magnesium and europium. Mon. Not. R. Astron. Soc. 477, 1206–1224 (2018).

    ADS  Article  Google Scholar 

  42. 42.

    Marinacci, F. et al. First results from the IllustrisTNG simulations: radio haloes and magnetic fields. Mon. Not. R. Astron. Soc. 480, 5113–5139 (2018).

    ADS  Google Scholar 

  43. 43.

    Nelson, D. et al. The IllustrisTNG simulations: public data release. Comput. Astrophys. Cosmol. 6, 2 (2019).

    ADS  Article  Google Scholar 

  44. 44.

    Weinberger, R. et al. Simulating galaxy formation with black hole driven thermal and kinetic feedback. Mon. Not. R. Astron. Soc. 465, 3291–3308 (2017).

    ADS  Article  Google Scholar 

  45. 45.

    Vogelsberger, M. et al. Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe. Mon. Not. R. Astron. Soc. 444, 1518–1547 (2014).

    ADS  Article  Google Scholar 

  46. 46.

    Vogelsberger, M. et al. Properties of galaxies reproduced by a hydrodynamic simulation. Nature 509, 177–182 (2014).

    ADS  Article  Google Scholar 

  47. 47.

    Genel, S. et al. Introducing the Illustris project: the evolution of galaxy populations across cosmic time. Mon. Not. R. Astron. Soc. 445, 175–200 (2014).

    ADS  Article  Google Scholar 

  48. 48.

    Springel, V. E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. Mon. Not. R. Astron. Soc. 401, 791–851 (2010).

    ADS  Article  Google Scholar 

  49. 49.

    Weinberger, R., Springel, V. & Pakmor, R. The AREPO public code release. Astrophys. J. Suppl. Ser. 248, 32 (2020).

    ADS  Article  Google Scholar 

  50. 50.

    Springel, V. N-GenIC: cosmological structure initial conditions Astrophysics Source Code Library ascl: 1502.003 (2015).

  51. 51.

    Alves, J., Combes, F., Ferrara, A., Forveille, T. & Shore, S. Planck 2015 results. Astron. Astrophys. 594, E1 (2016).

    ADS  Article  Google Scholar 

  52. 52.

    Davis, M., Efstathiou, G., Frenk, C. S. & White, S. D. M. The evolution of large-scale structure in a universe dominated by cold dark matter. Astrophys. J. 292, 371–394 (1985).

    ADS  Article  Google Scholar 

  53. 53.

    Springel, V., White, S. D. M., Tormen, G. & Kauffmann, G. Populating a cluster of galaxies – I. Results at z = 0. Mon. Not. R. Astron. Soc. 328, 726–750 (2001).

    ADS  Article  Google Scholar 

  54. 54.

    Nelson, D. et al. The Illustris simulation: public data release. Astron. Comput. 13, 12–37 (2015).

    ADS  Article  Google Scholar 

  55. 55.

    Sales, L. V. et al. The origin of discs and spheroids in simulated galaxies. Mon. Not. R. Astron. Soc. 423, 1544–1555 (2012).

    ADS  Article  Google Scholar 

  56. 56.

    Snyder, G. F. et al. Galaxy morphology and star formation in the Illustris Simulation at z = 0. Mon. Not. R. Astron. Soc. 454, 1886–1908 (2015).

    ADS  Article  Google Scholar 

  57. 57.

    Rodriguez-Gomez, V. et al. The merger rate of galaxies in the Illustris simulation: a comparison with observations and semi-empirical models. Mon. Not. R. Astron. Soc. 449, 49–64 (2015).

    ADS  Article  Google Scholar 

  58. 58.

    DeFelippis, D.et al. A Comparison of circumgalactic MgII absorption between the TNG50 simulation and the MEGAFLOW survey. Preprint at https://arxiv.org/abs/2102.08383 (2021).

  59. 59.

    Fuse, C., Marcum, P. & Fanelli, M. Extremely isolated early-type galaxies in the Sloan Digital Sky Survey. I. The sample. Astron. J. 144, 57 (2012).

    ADS  Article  Google Scholar 

  60. 60.

    Genel, S. et al. The size evolution of star-forming and quenched galaxies in the IllustrisTNG simulation. Mon. Not. R. Astron. Soc. 474, 3976–3996 (2018).

    ADS  Article  Google Scholar 

  61. 61.

    Benitez-Llambay, A. py-sphviewer: Py-SPHViewer v1.0.0 https://zenodo.org/record/21703#.YQK-zehKhaQ (2015).

Download references

Acknowledgements

J.A.B. and M.G.A. acknowledge financial support from CONICET through PIP grant 11220170100527CO. L.V.S. is grateful for support from NSF grant CAREER-1945310 and NASA grant ATP-80NSSC20K0566. A.P. acknowledges support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through project 138713538 - SFB 881 (‘The Milky Way System’, subproject C09). D.N. acknowledges funding from the DFG through an Emmy Noether Research Group grant (NE 2441/1-1). F.M. acknowledges support through the programme ‘Rita Levi Montalcini’ of the Italian MUR. M.C. is partially supported by NSF grants AST-1518257 and AST-1815475. P.T. acknowledges support from NSF grants AST-1909933 and AST-200849 and from NASA ATP grant 80NSSC20K0502. M.V. acknowledges support from NASA ATP grants 16-ATP16-0167, 19-ATP19-0019, 19-ATP19-0020 and 19-ATP19-0167 and from NSF grants AST-1814053, AST-1814259, AST-1909831 and AST-2007355.

Author information

Affiliations

Authors

Contributions

The listed authors made substantial contributions to this manuscript; all co-authors read and commented on the document. J.A.B. led the analysis of the simulation, compiled observational data from the literature and made all figures. L.V.S. and M.G.A. are responsible for the original idea and mentorship of J.A.B. throughout the project. L.V.S. led the writing of the manuscript and the response to the referee report with substantial contributions from J.A.B., M.G.A., A.P., D.N., F.M. and L.H. Co-author M.C. provided the expertise on the observational consequences of the results and on the study of quenching of dwarf galaxies. A.P., D.N., F.M., R.P., P.T., M.V. and L.H. are core members of the TNG50 simulation who set up, developed and ran the simulation that this manuscript is based on.

Corresponding author

Correspondence to José A. Benavides.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Arianna Di Cintio and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and discussion.

Source data

Source Data Fig. 1

ASCII files with data per column: stellar masses (M) and three-dimensional half-mass radius (kpc).

Source Data Fig. 2

ASCII files with data per column: stellar masses (M), colour (gr) and star formation rate (M yr−1).

Source Data Fig. 4

ASCII files with data per column: stellar masses (M), stellar ages (Gyr), κrot and virial masses (M).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benavides, J.A., Sales, L.V., Abadi, M.G. et al. Quiescent ultra-diffuse galaxies in the field originating from backsplash orbits. Nat Astron (2021). https://doi.org/10.1038/s41550-021-01458-1

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing