Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

No evidence of phosphine in the atmosphere of Venus from independent analyses

Matters Arising to this article was published on 16 July 2021

The Original Article was published on 14 September 2020

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison between the results obtained by the authors of the original paper and its reanalysis and our independent analysis of the same data retrieved from the ALMA science archive.
Fig. 2: Residual JCMT data and models of SO2 and PH3.

Data availability

This paper makes use of the 2018.A.00023.S ALMA data, available at The JCMT data are available at


  1. Greaves, J. S. et al. Phosphine gas in the cloud decks of Venus. Nat. Astron. (2020).

  2. Greaves, J. S. et al. Reply to: No evidence of phosphine in the atmosphere of Venus from independent analyses. Nat. Astron. (2021).

  3. Greaves, J. S. et al. Addendum: Phosphine gas in the cloud decks of Venus. Nat. Astron. (2021).

  4. de Pater, I. et al. First ALMA millimeter-wavelength maps of Jupiter, with a multiwavelength study of convection. Astron. J. 158, 139 (2019).

    Article  ADS  Google Scholar 

  5. Thelen, A. E. et al. Detection of CH3C3N in Titan’s atmosphere. Astrophys. J. Lett. 903, L22 (2020).

    Article  ADS  Google Scholar 

  6. Yamaki, H., Kameno, S., Beppu, H., Mizuno, I. & Imai, H. Optimization by smoothed bandpass calibration in radio spectroscopy. Publ. Astron. Soc. Jpn 64, 118 (2012).

    Article  ADS  Google Scholar 

  7. Snellen, I. A. G., Guzman-Ramirez, L., Hogerheijde, M. R., Hygate, A. P. S. & van der Tak, F. F. S. Re-analysis of the 267-GHz ALMA observations of Venus: no statistically significant detection of phosphine. Astron. Astrophys. 644, L2 (2020).

    Article  ADS  Google Scholar 

  8. Thompson, M. A. The statistical reliability of 267-GHz JCMT observations of Venus: no significant evidence for phosphine absorption. Mon. Not. R. Astron. Soc. Lett. 501, L18–L22 (2020).

    Article  ADS  Google Scholar 

  9. Encrenaz, T. et al. A stringent upper limit of the PH3 abundance at the cloud top of Venus. Astron. Astrophys. 643, L5 (2020).

    Article  ADS  Google Scholar 

  10. Trompet, L. et al. Phosphine in Venus’ atmosphere: detection attempts and upper limits above the cloud top assessed from the SOIR/VEx spectra. Astron. Astrophys. 645, L4 (2021).

    Article  ADS  Google Scholar 

  11. Belyaev, D. A. et al. Vertical profiling of SO2 and SO above Venus’ clouds by SPICAV/SOIR solar occultations. Icarus 217, 740–751 (2012).

    Article  ADS  Google Scholar 

  12. Lincowski, A. P. et al. Claimed detection of PH3 in the clouds of Venus is consistent with mesospheric SO2. Preprint at (2021).

  13. Krasnopolsky, V. A. Spatially-resolved high-resolution spectroscopy of Venus 2. Variations of HDO, OCS, and SO2 at the cloud tops. Icarus 209, 314–322 (2010).

    Article  ADS  Google Scholar 

  14. Sandor, B. J., Todd Clancy, R., Moriarty-Schieven, G. & Mills, F. P. Sulfur chemistry in the Venus mesosphere from SO2 and SO microwave spectra. Icarus 208, 49–60 (2010).

    Article  ADS  Google Scholar 

  15. Piccialli, A. et al. Mapping the thermal structure and minor species of Venus mesosphere with ALMA submillimeter observations. Astron. Astrophys. 606, A53 (2017).

    Google Scholar 

  16. Vandaele, A. C. et al. Sulfur dioxide in the Venus atmosphere: I. Vertical distribution and variability. Icarus 295, 16–33 (2017).

    Article  ADS  Google Scholar 

  17. Vandaele, A. C. et al. Sulfur dioxide in the Venus atmosphere: II. Spatial and temporal variability. Icarus 295, 1–15 (2017).

    Article  ADS  Google Scholar 

  18. Vandaele, A. C. Composition and chemistry of the neutral atmosphere of Venus. Oxford Research Encyclopedia of Planetary Science (2020).

  19. Encrenaz, T., Moreno, R., Moullet, A., Lellouch, E. & Fouchet, T. Submillimeter mapping of mesospheric minor species on Venus with ALMA. Planet. Space Sci. 113–114, 275–291 (2015).

    Article  ADS  Google Scholar 

  20. Encrenaz, T. et al. HDO and SO2 thermal mapping on Venus—IV. Statistical analysis of the SO2 plumes. Astron. Astrophys. 623, A70 (2019).

    Article  Google Scholar 

  21. Marcq, E. et al. Climatology of SO2 and UV absorber at Venus’ cloud top from SPICAV-UV nadir dataset. Icarus 335, 113368 (2020).

    Article  Google Scholar 

  22. Encrenaz, T. et al. HDO and SO2 thermal mapping on Venus—V. Evidence for a long-term anti-correlation. Astron. Astrophys. 639, A69 (2020).

    Article  Google Scholar 

  23. Mogul, R., Limaye, S. S. & Way, M. Venus’ mass spectra show signs of disequilibria in the middle clouds. Preprint at (2020).

  24. Mogul, R., Limaye, S. S., Way, M. J. & Cordova, J. Is phosphine in the mass spectra from Venus’ clouds? Preprint at (2020).

  25. Seiff, A. et al. Models of the structure of the atmosphere of Venus from the surface to 100 kilometers altitude. Adv. Space Res. 5, 3–58 (1985).

    Article  ADS  Google Scholar 

  26. Limaye, S. S. et al. Venus atmospheric thermal structure and radiative balance. Space Sci. Rev. 214, 102 (2018).

    Article  ADS  Google Scholar 

  27. Akins, A. B., Lincowski, A. P., Meadows, V. S. & Steffes, P. G. Complications in the ALMA detection of phosphine at Venus. Astrophys. J. 907, L27 (2021).

    Article  ADS  Google Scholar 

  28. Villanueva, G. L., Smith, M. D., Protopapa, S., Faggi, S. & Mandell, A. M. Planetary Spectrum Generator: an accurate online radiative transfer suite for atmospheres, comets, small bodies and exoplanets. J. Quant. Spectrosc. Radiat. Transf. 217, 86–104 (2018).

    Article  ADS  Google Scholar 

  29. Irwin, P. G. J. et al. The NEMESIS planetary atmosphere radiative transfer and retrieval tool. J. Quant. Spectrosc. Radiat. Transf. 109, 1136–1150 (2008).

    Article  ADS  Google Scholar 

  30. Gurwell, M. A., Bergin, E. A., Melnick, G. J. & Tolls, V. Mars surface and atmospheric temperature during the 2001 global dust storm. Icarus 175, 23–31 (2005).

    Article  ADS  Google Scholar 

  31. Gordon, I. E. et al. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 203, 3–69 (2017).

    Article  ADS  Google Scholar 

  32. Wilzewski, J. S., Gordon, I. E., Kochanov, R. V., Hill, C. & Rothman, L. S. H2, He, and CO2 line-broadening coefficients, pressure shifts and temperature-dependence exponents for the HITRAN database. Part 1: SO2, NH3, HF, HCl, OCS and C2H2. J. Quant. Spectrosc. Radiat. Transf. 168, 193–206 (2016).

    Article  ADS  Google Scholar 

Download references


We would like to commend the team of Greaves et al.1 for making their data and scripts available. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan) and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. The JCMT data were collected under project S16BP007. JCMT is operated by the EAO on behalf of NAOJ, ASIAA, KASI and CAMS as well as the National Key R&D Programme of China (2017YFA0402700). Additional funding support is provided by the STFC and participating universities in the United Kingdom and Canada. We recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.

Author information

Authors and Affiliations



G.L.V., P.G.J.I., M.G., V.K. and G.L. performed the retrievals and the radiative-transfer modelling. M.C., I.d.P. and B.B. calibrated and analysed the ALMA data. S.N.M., C.A.N., S.H.L.-C., R.C., A.E.T., A.M., E.M.M., S.C., N.B. and K.R.d.K. assisted with the interpretation of the interferometric spectra. C.F.W., S.F., T.J.F., M.L., P.H., G.N.A., A.M.M., A.C.V. and R.K. assisted with the interpretation of the results in the context of the Venusian atmosphere and its photochemistry. All authors contributed to writing and revising the manuscript.

Corresponding author

Correspondence to G. L. Villanueva.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, details of vertical profiles (Section 1), details of the analysis of the ALMA data (Section 2), validation of the ALMA analysis by interpreting other nearby lines (Section 3) and study of the altitude of the probed narrow molecular absorptions (Section 4).

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villanueva, G.L., Cordiner, M., Irwin, P.G.J. et al. No evidence of phosphine in the atmosphere of Venus from independent analyses. Nat Astron 5, 631–635 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing