Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A hot subdwarf–white dwarf super-Chandrasekhar candidate supernova Ia progenitor


Supernovae Ia are bright explosive events that can be used to estimate cosmological distances, allowing us to study the expansion of the Universe. They are understood to result from a thermonuclear detonation in a white dwarf that formed from the exhausted core of a star more massive than the Sun. However, the possible progenitor channels leading to an explosion are a long-standing debate, limiting the precision and accuracy of supernovae Ia as distance indicators. Here we present HD 265435, a binary system with an orbital period of less than a hundred minutes that consists of a white dwarf and a hot subdwarf, which is a stripped core-helium-burning star. The total mass of the system is 1.65 ± 0.25 solar masses, exceeding the Chandrasekhar limit (the maximum mass of a stable white dwarf). The system will merge owing to gravitational wave emission in 70 million years, likely triggering a supernova Ia event. We use this detection to place constraints on the contribution of hot subdwarf–white dwarf binaries to supernova Ia progenitors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Periodogram of the TESS light curve.
Fig. 2: Phased data for HD 265435.
Fig. 3: Comparison between photometric and spectroscopic solutions.
Fig. 4: Model and prediction of the future evolution of HD 265435.
Fig. 5: Gravitational wave frequency and strain of HD 265435.

Data availability

The TESS data used in this work are publicly available and can be accessed via the Barbara A. Mikulski Archive for Space Telescopes ( Obtained follow-up spectra, evolutionary models and MESA inlists are available on Zenodo (

Code availability

This research made extensive use of Astropy (, a community-developed core Python package for Astronomy105,106. The PyRAF-based pipeline for DBSP spectra reduction is available at, and the MAKEE pipeline for ESI spectra can be found at The radial velocity determination code RVSAO is available from The package galpy can be installed following The SED and spectral fitting routines are publicly documented as described above, but not publicly available. The Period04 software employed for pre-whitening the light curve can be obtained from LCURVE is available at The stellar evolution code MESA can be downloaded from


  1. 1.

    Schmidt, B. P. et al. The high-Z supernova search: measuring cosmic deceleration and global curvature of the universe using Type Ia supernovae. Astrophys. J. 507, 46–63 (1998).

    ADS  Article  Google Scholar 

  2. 2.

    Riess, A. G. et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998).

    ADS  Google Scholar 

  3. 3.

    Perlmutter, S. et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999).

    ADS  MATH  Article  Google Scholar 

  4. 4.

    Riess, A. G., Casertano, S., Yuan, W., Macri, L. M. & Scolnic, D. Large Magellanic Cloud Cepheid standards provide a 1% foundation for the determination of the Hubble constant and stronger evidence for physics beyond ΛCDM. Astrophys. J. 876, 85 (2019).

    ADS  Article  Google Scholar 

  5. 5.

    Aghanim, N. et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article  Google Scholar 

  6. 6.

    Bernal, J. L., Verde, L. & Riess, A. G. The trouble with H0. J. Cosmol. Astropart. Phys. 2016, 019 (2016).

    Article  Google Scholar 

  7. 7.

    Hoyle, F. & Fowler, W. A. Nucleosynthesis in supernovae. Astrophys. J. 132, 565–590 (1960).

    ADS  Article  Google Scholar 

  8. 8.

    Hillebrandt, W., Kromer, M., Röpke, F. K. & Ruiter, A. J. Towards an understanding of Type Ia supernovae from a synthesis of theory and observations. Front. Phys. 8, 116–143 (2013).

    ADS  Article  Google Scholar 

  9. 9.

    Whelan, J. & Iben, I. Jr. Binaries and supernovae of Type I. Astrophys. J. 186, 1007–1014 (1973).

    ADS  Article  Google Scholar 

  10. 10.

    Iben, I. Jr. & Tutukov, A. V. Supernovae of Type I as end products of the evolution of binaries with components of moderate initial mass. Astrophys. J. Suppl. Ser. 54, 335–372 (1984).

    ADS  Article  Google Scholar 

  11. 11.

    Liu, D., Wang, B. & Han, Z. The double-degenerate model for the progenitors of Type Ia supernovae. Mon. Not. R. Astron. Soc. 473, 5352–5361 (2018).

    ADS  Article  Google Scholar 

  12. 12.

    Han, Z. & Podsiadlowski, Ph. The single-degenerate channel for the progenitors of Type Ia supernovae. Mon. Not. R. Astron. Soc. 350, 1301–1309 (2004).

    ADS  Article  Google Scholar 

  13. 13.

    Rebassa-Mansergas, A., Toonen, S., Korol, V. & Torres, S. Where are the double-degenerate progenitors of Type Ia supernovae? Mon. Not. R. Astron. Soc. 482, 3656–3668 (2019).

    ADS  Article  Google Scholar 

  14. 14.

    Maoz, D. & Mannucci, F. Type-Ia supernova rates and the progenitor problem: a review. Publ. Astron. Soc. Austral. 29, 447–465 (2012).

    ADS  Article  Google Scholar 

  15. 15.

    Santander-García, M. et al. The double-degenerate, super-Chandrasekhar nucleus of the planetary nebula Henize 2-428. Nature 519, 63–65 (2015).

    ADS  Article  Google Scholar 

  16. 16.

    Reindl, N. et al. An in-depth reanalysis of the alleged type Ia supernova progenitor Henize 2-428. Astron. Astrophys. 638, A93 (2020).

    Article  Google Scholar 

  17. 17.

    Napiwotzki, R. et al. The ESO supernovae type Ia progenitor survey (SPY). The radial velocities of 643 DA white dwarfs. Astron. Astrophys. 638, A131 (2020).

    Article  Google Scholar 

  18. 18.

    Maxted, P. F. L., Marsh, T. R. & North, R. C. KPD 1930+2752: a candidate Type Ia supernova progenitor. Mon. Not. R. Astron. Soc. 317, L41–L44 (2000).

    ADS  Article  Google Scholar 

  19. 19.

    Vennes, S., Kawka, A., O’Toole, S. J., Németh, P. & Burton, D. The shortest period sdB plus white dwarf binary CD-30 11223 (GALEX J1411-3053). Astrophys. J. Lett. 759, L25 (2012).

    ADS  Article  Google Scholar 

  20. 20.

    Geier, S. et al. A progenitor binary and an ejected mass donor remnant of faint type Ia supernovae. Astron. Astrophys. 554, A54 (2013).

    Article  Google Scholar 

  21. 21.

    Ricker, G. R. et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc. Instrum. Syst. 1, 014003 (2015).

    ADS  Article  Google Scholar 

  22. 22.

    Oke, J. B. & Gunn, J. E. An efficient low- and moderate-resolution spectrograph for the Hale telescope. Publ. Astron. Soc. Pac. 94, 586–594 (1982).

    ADS  Article  Google Scholar 

  23. 23.

    Brown, A. G. A. et al. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 649, A1 (2021).

    Article  Google Scholar 

  24. 24.

    Shakura, N. I. & Postnov, K. A. Doppler-effect modulation of the observed radiation flux from ultracompact binary stars. Astron. Astrophys. 183, L21–L22 (1987).

    ADS  Google Scholar 

  25. 25.

    Charpinet, S., Fontaine, G., Brassard, P. & Dorman, B. The potential of asteroseismology for hot, subdwarf B stars: a new class of pulsating stars? Astrophys. J. 471, L103 (1996).

    ADS  Article  Google Scholar 

  26. 26.

    Kilkenny, D., Koen, C., O’Donoghue, D. & Stobie, R. S. A new class of rapidly pulsating star — I. EC 14026-2647, the class prototype. Mon. Not. R. Astron. Soc. 285, 640–644 (1997).

    ADS  Article  Google Scholar 

  27. 27.

    Kawaler, S. D. & Hostler, S. R. Internal rotation of subdwarf B stars: limiting cases and asteroseismological consequences. Astrophys. J. 621, 432–444 (2005).

    ADS  Article  Google Scholar 

  28. 28.

    Reed, M. D. et al. Analysis of the rich frequency spectrum of KIC 10670103 revealing the most slowly rotating subdwarf B star in the Kepler field. Mon. Not. R. Astron. Soc. 440, 3809–3824 (2014).

    ADS  Article  Google Scholar 

  29. 29.

    Geier, S., Karl, C., Edelmann, H., Heber, U. & Napiwotzki, R. in Hot Subdwarf Stars and Related Objects Vol. 392 (eds Heber, U., Jeffery, C. S. et al.) 207–214 (ASP Conference Series, 2008).

  30. 30.

    Geier, S., Raddi, R., Gentile Fusillo, N. P. & Marsh, T. R. The population of hot subdwarf stars studied with Gaia. II. The Gaia DR2 catalogue of hot subluminous stars. Astron. Astrophys. 621, A38 (2019).

    ADS  Article  Google Scholar 

  31. 31.

    Copperwheat, C. M. et al. Physical properties of IP Pegasi: an eclipsing dwarf nova with an unusually cool white dwarf. Mon. Not. R. Astron. Soc. 402, 1824–1840 (2010).

    ADS  Article  Google Scholar 

  32. 32.

    Lauffer, G. R., Romero, A. D. & Kepler, S. O. New full evolutionary sequences of H- and He-atmosphere massive white dwarf stars using MESA. Mon. Not. R. Astron. Soc. 480, 1547–1562 (2018).

    ADS  Article  Google Scholar 

  33. 33.

    Heber, U. Hot subluminous stars. Publ. Astron. Soc. Pac. 128, 082001 (2016).

    ADS  Article  Google Scholar 

  34. 34.

    Unglaub, K. Mass-loss and diffusion in subdwarf B stars and hot white dwarfs: do weak winds exist? Astron. Astrophys. 486, 923–940 (2008).

    ADS  Article  Google Scholar 

  35. 35.

    Iben, I.Jr, Fujimoto, M. Y. & MacDonald, J. On mass-transfer rates in classical nova precursors. Astrophys. J. 384, 580–586 (1992).

    ADS  Article  Google Scholar 

  36. 36.

    Shara, M. M., Prialnik, D., Hillman, Y. & Kovetz, A. The masses and accretion rates of white dwarfs in classical and recurrent novae. Astrophys. J. 860, 110 (2018).

    ADS  Article  Google Scholar 

  37. 37.

    Woosley, S. E. & Kasen, D. Sub-Chandrasekhar mass models for supernovae. Astrophys. J. 734, 38 (2011).

    ADS  Article  Google Scholar 

  38. 38.

    Neunteufel, P., Yoon, S.-C. & Langer, N. Models for the evolution of close binaries with He-star and white dwarf components towards Type Ia supernova explosions. Astron. Astrophys. 589, A43 (2016).

    Article  Google Scholar 

  39. 39.

    Tutukov, A. V. & Yungelson, L. R. On the influence of emission of gravitational waves on the evolution of low-mass close binary stars. Acta Astron. 29, 665–680 (1979).

    ADS  Google Scholar 

  40. 40.

    Neunteufel, P. Exploring velocity limits in the thermonuclear supernova ejection scenario for hypervelocity stars and the origin of US 708. Astron. Astrophys. 641, A52 (2020).

    ADS  Article  Google Scholar 

  41. 41.

    Kromer, M. et al. Double-detonation sub-Chandrasekhar supernovae: synthetic observables for minimum helium shell mass models. Astrophys. J. 719, 1067–1082 (2010).

    ADS  Article  Google Scholar 

  42. 42.

    Pakmor, R. et al. Sub-luminous type Ia supernovae from the mergers of equal-mass white dwarfs with mass ~0.9M. Nature 463, 61–64 (2010).

    ADS  Article  Google Scholar 

  43. 43.

    Pakmor, R., Zenati, Y., Perets, H. B. & Toonen, S. Thermonuclear explosion of a massive hybrid HeCO white dwarf triggered by a He detonation on a companion. Mon. Not. R. Astron. Soc. 503, 4734–4747 (2021).

    ADS  Article  Google Scholar 

  44. 44.

    Kraft, R. P., Mathews, J. & Greenstein, J. L. Binary stars among cataclysmic variables. II. Nova WZ Sagittae: a possible radiator of gravitational waves. Astrophys. J. 136, 312–315 (1962).

    ADS  Article  Google Scholar 

  45. 45.

    Shah, S., van der Sluys, M. & Nelemans, G. Using electromagnetic observations to aid gravitational-wave parameter estimation of compact binaries observed with LISA. Astron. Astrophys. 544, A153 (2012).

    Article  Google Scholar 

  46. 46.

    Moore, C. J., Cole, R. H. & Berry, C. P. L. Gravitational-wave sensitivity curves. Class. Quantum Gravity 32, 015014 (2015).

    ADS  Article  Google Scholar 

  47. 47.

    Gronow, S. et al. SNe Ia from double detonations: impact of core-shell mixing on the carbon ignition mechanism. Astron. Astrophys. 635, A169 (2020).

    Article  Google Scholar 

  48. 48.

    Kupfer, T. et al. A new class of Roche lobe-filling hot subdwarf binaries. Astrophys. J. Lett. 898, L25 (2020).

    ADS  Article  Google Scholar 

  49. 49.

    Jurić, M. et al. The Milky Way tomography with SDSS. I. Stellar number density distribution. Astrophys. J. 673, 864–914 (2008).

    ADS  Article  Google Scholar 

  50. 50.

    Han, Z., Podsiadlowski, P., Maxted, P. F. L. & Marsh, T. R. The origin of subdwarf B stars – II. Mon. Not. R. Astron. Soc. 341, 669–691 (2003).

    ADS  Article  Google Scholar 

  51. 51.

    Wang, B. et al. Birthrates and delay times of Type Ia supernovae. Sci. China Phys. Mech. Astron. 53, 586–590 (2010).

    ADS  Article  Google Scholar 

  52. 52.

    Li, W. et al. Nearby supernova rates from the Lick Observatory Supernova Search – III. The rate-size relation, and the rates as a function of galaxy Hubble type and colour. Mon. Not. R. Astron. Soc. 412, 1473–1507 (2011).

    ADS  Article  Google Scholar 

  53. 53.

    Maoz, D., Mannucci, F. & Nelemans, G. Observational clues to the progenitors of Type Ia supernovae. Annu. Rev. Astron. Astrophys. 52, 107–170 (2014).

    ADS  Article  Google Scholar 

  54. 54.

    Andrae, R. et al. Gaia Data Release 2. First stellar parameters from Apsis. Astron. Astrophys. 616, A8 (2018).

    Article  Google Scholar 

  55. 55.

    Bellm, E. C. & Sesar, B. pyraf-dbsp: reduction pipeline for the Palomar Double Beam Spectrograph. Record No. 1602.002 (Astrophysics Source Code Library, 2016).

  56. 56.

    Irrgang, A. et al. A new method for an objective, χ2-based spectroscopic analysis of early-type stars. First results from its application to single and binary B- and late O-type stars. Astron. Astrophys. 565, A63 (2014).

    Article  Google Scholar 

  57. 57.

    Kurucz, R. L. in M.A.S.S., Model Atmospheres and Spectrum Synthesis Vol. 108 (eds Adelman, S. J., Kupka, F. et al.) 160 (ASP Conference Series, 1996).

  58. 58.

    Giddings, J. R. Hydrogen and Helium Line Formation in OB Dwarfs and Giants. A Hybrid Non-LTE Approach. PhD thesis, Univ. London (1981).

  59. 59.

    Butler, K. & Giddings, J. R. Newsletter on Analysis of Astronomical Spectra No. 9, 723 (Univ. London, 1985).

  60. 60.

    Irrgang, A., Kreuzer, S., Heber, U. & Brown, W. A quantitative spectral analysis of 14 hypervelocity stars from the MMT survey. Astron. Astrophys. 615, L5 (2018).

    ADS  Article  Google Scholar 

  61. 61.

    Przybilla, N., Nieva, M.-F. & Butler, K. Testing common classical LTE and NLTE model atmosphere and line-formation codes for quantitative spectroscopy of early-type stars. J. Phys. Conf. Ser. 328, 012015 (2011).

    Article  Google Scholar 

  62. 62.

    Silvotti, R. et al. High-degree gravity modes in the single sdB star HD 4539. Mon. Not. R. Astron. Soc. 489, 4791–4801 (2019).

    ADS  Article  Google Scholar 

  63. 63.

    Sahoo, S. K. et al. Mode identification in three pulsating hot subdwarfs observed with TESS satellite. Mon. Not. R. Astron. Soc. 495, 2844–2857 (2020).

    ADS  Article  Google Scholar 

  64. 64.

    Silvotti, R. et al. EPIC 216747137: a new HW Vir eclipsing binary with a massive sdOB primary and a low-mass M-dwarf companion. Mon. Not. R. Astron. Soc. 500, 2461–2474 (2021).

    ADS  Article  Google Scholar 

  65. 65.

    Hubeny, I., Hummer, D. G. & Lanz, T. NLTE model stellar atmospheres with line blanketing near the series limits. Astron. Astrophys. 282, 151–167 (1994).

    ADS  Google Scholar 

  66. 66.

    Tremblay, P.-E. & Bergeron, P. Spectroscopic analysis of DA white dwarfs: stark broadening of hydrogen lines including nonideal effects. Astrophys. J. 696, 1755–1770 (2009).

    ADS  Article  Google Scholar 

  67. 67.

    Beauchamp, A., Wesemael, F. & Bergeron, P. Spectroscopic studies of DB white dwarfs: improved stark profiles for optical transitions of neutral helium. Astrophys. J. Suppl. Ser. 108, 559–573 (1997).

    ADS  Article  Google Scholar 

  68. 68.

    Lei, Z., Zhao, J., Németh, P. & Zhao, G. New hot subdwarf stars identified in Gaia DR2 with LAMOST DR5 spectra. Astrophys. J. 868, 70 (2018).

    ADS  Article  Google Scholar 

  69. 69.

    Heber, U., Irrgang, A. & Schaffenroth, J. Spectral energy distributions and colours of hot subluminous stars. Open Astron. 27, 35–43 (2018).

    ADS  Article  Google Scholar 

  70. 70.

    Lindegren, L. Re-normalising the astrometric chi-square in Gaia DR2. Technical note GAIA-C3-TN-LU-LL-124-01 (European Space Agency, 2018);

  71. 71.

    Fitzpatrick, E. L., Massa, D., Gordon, K. D., Bohlin, R. & Clayton, G. C. An analysis of the shapes of interstellar extinction curves. VII. Milky Way spectrophotometric optical-through-ultraviolet extinction and its R-dependence. Astrophys. J. 886, 108 (2019).

    ADS  Article  Google Scholar 

  72. 72.

    Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998).

    ADS  Article  Google Scholar 

  73. 73.

    Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    ADS  Article  Google Scholar 

  74. 74.

    Lindegren, L. et al. Gaia Early Data Release 3. Parallax bias versus magnitude, colour, and position. Astron. Astrophys. 649, A4 (2021).

    Article  Google Scholar 

  75. 75.

    Kurtz, M. J. & Mink, D. J. RVSAO 2.0: digital redshifts and radial velocities. Publ. Astron. Soc. Pac. 110, 934–977 (1998).

    ADS  Article  Google Scholar 

  76. 76.

    Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    ADS  Article  Google Scholar 

  77. 77.

    Bovy, J. galpy: a python library for galactic dynamics. Astrophys. J. Suppl. Ser. 216, 29 (2015).

    ADS  Article  Google Scholar 

  78. 78.

    Bovy, J. & Rix, H.-W. A direct dynamical measurement of the Milky Way’s disk surface density profile, disk scale length, and dark matter profile at 4 kpc R 9 kpc. Astrophys. J. 779, 115 (2013).

    ADS  Article  Google Scholar 

  79. 79.

    Schönrich, R., Binney, J. & Dehnen, W. Local kinematics and the local standard of rest. Mon. Not. R. Astron. Soc. 403, 1829–1833 (2010).

    ADS  Article  Google Scholar 

  80. 80.

    Schönrich, R. Galactic rotation and solar motion from stellar kinematics. Mon. Not. R. Astron. Soc. 427, 274–287 (2012).

    ADS  Article  Google Scholar 

  81. 81.

    Pauli, E.-M., Napiwotzki, R., Heber, U., Altmann, M. & Odenkirchen, M. 3D kinematics of white dwarfs from the SPY project. II. Astron. Astrophys. 447, 173–184 (2006).

    ADS  Article  Google Scholar 

  82. 82.

    Claret, A. et al. Gravity and limb-darkening coefficients for compact stars: DA, DB, and DBA eclipsing white dwarfs. Astron. Astrophys. 634, A93 (2020).

    Article  Google Scholar 

  83. 83.

    Lenz, P. & Breger, M. Period04: statistical analysis of large astronomical time series. Record No. 1407.009 (Astrophysics Source Code Library, 2014).

  84. 84.

    Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA). Astrophys. J. Suppl. Ser. 192, 3 (2011).

    ADS  Article  Google Scholar 

  85. 85.

    Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): planets, oscillations, rotation, and massive stars. Astrophys. J. Suppl. Ser. 208, 4 (2013).

    ADS  Article  Google Scholar 

  86. 86.

    Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): binaries, pulsations, and explosions. Astrophys. J. Suppl. Ser. 220, 15 (2015).

    ADS  Article  Google Scholar 

  87. 87.

    Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): convective boundaries, element diffusion, and massive star explosions. Astrophys. J. Suppl. Ser. 234, 34 (2018).

    ADS  Article  Google Scholar 

  88. 88.

    Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): pulsating variable stars, rotation, convective boundaries, and energy conservation. Astrophys. J. Suppl. Ser. 243, 10 (2019).

    ADS  Article  Google Scholar 

  89. 89.

    Ostrowski, J., Baran, A. S., Sanjayan, S. & Sahoo, S. K. Evolutionary modelling of subdwarf B stars using MESA with the predictive mixing and convective pre-mixing schemes. Mon. Not. R. Astron. Soc. 503, 4646–4661 (2021).

    ADS  Article  Google Scholar 

  90. 90.

    de Jager, C., Nieuwenhuijzen, H. & van der Hucht, K. A. Mass loss rates in the Hertzsprung-Russell diagram. Astron. Astrophys. Suppl. Ser. 72, 259–289 (1988).

    ADS  Google Scholar 

  91. 91.

    Krtička, J. et al. Hot subdwarf wind models with accurate abundances. I. Hydrogen dominated stars HD 49798 and BD+18° 2647. Astron. Astrophys. 631, A75 (2019).

    Article  Google Scholar 

  92. 92.

    Zenati, Y., Toonen, S. & Perets, H. B. Formation and evolution of hybrid He–CO white dwarfs and their properties. Mon. Not. R. Astron. Soc. 482, 1135–1142 (2019).

    ADS  Article  Google Scholar 

  93. 93.

    Nomoto, K. Supernova explosions in accreting white dwarfs and Type I supernovae. In Proc. Texas Workshop on Type I Supernovae (ed. Wheeler, J. C.) 164–181 (Univ. Texas at Austin, 1980).

  94. 94.

    Livne, E. Successive detonations in accreting white dwarfs as an alternative mechanism for type I supernovae. Astrophys. J. Lett. 354, L53 (1990).

    ADS  Article  Google Scholar 

  95. 95.

    Shen, K. J. & Bildsten, L. The ignition of carbon detonations via converging shock waves in white dwarfs. Astrophys. J. 785, 61 (2014).

    ADS  Article  Google Scholar 

  96. 96.

    Pakmor, R., Hachinger, S., Röpke, F. K. & Hillebrandt, W. Violent mergers of nearly equal-mass white dwarf as progenitors of subluminous Type Ia supernovae. Astron. Astrophys. 528, A117 (2011).

    ADS  Article  Google Scholar 

  97. 97.

    Pakmor, R. et al. Normal Type Ia supernovae from violent mergers of white dwarf binaries. Astrophys. J. Lett. 747, L10 (2012).

    ADS  Article  Google Scholar 

  98. 98.

    Röpke, F. K. et al. Constraining Type Ia supernova models: SN 2011fe as a test case. Astrophys. J. Lett. 750, L19 (2012).

    ADS  Article  Google Scholar 

  99. 99.

    Sato, Y. et al. The critical mass ratio of double white dwarf binaries for violent merger-induced type Ia supernova explosions. Astrophys. J. 821, 67 (2016).

    ADS  Article  Google Scholar 

  100. 100.

    Li, W. et al. SN 2002cx: the most peculiar known Type Ia supernova. Publ. Astron. Soc. Pac. 115, 453–473 (2003).

    ADS  Article  Google Scholar 

  101. 101.

    Foley, R. J. et al. Type Iax supernovae: a new class of stellar explosion. Astrophys. J. 767, 57 (2013).

    ADS  Article  Google Scholar 

  102. 102.

    Wang, B., Justham, S. & Han, Z. Producing Type Iax supernovae from a specific class of helium-ignited WD explosions. Astron. Astrophys. 559, A94 (2013).

    ADS  Article  Google Scholar 

  103. 103.

    Han, Z., Podsiadlowski, P., Maxted, P. F. L., Marsh, T. R. & Ivanova, N. The origin of subdwarf B stars – I. The formation channels. Mon. Not. R. Astron. Soc. 336, 449–466 (2002).

    ADS  Article  Google Scholar 

  104. 104.

    Weidemann, V. Revision of the initial-to-final mass relation. Astron. Astrophys. 363, 647–656 (2000).

    ADS  Google Scholar 

  105. 105.

    Robitaille, T. P. et al. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

    Article  Google Scholar 

  106. 106.

    Price-Whelan, A. M. et al. The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).

    ADS  Article  Google Scholar 

  107. 107.

    Robson, T., Cornish, N. J. & Liu, C. The construction and use of LISA sensitivity curves. Class. Quantum Gravity 36, 105011 (2019).

    ADS  Article  Google Scholar 

  108. 108.

    Kupfer, T. et al. LISA verification binaries with updated distances from Gaia Data Release 2. Mon. Not. R. Astron. Soc. 480, 302–309 (2018).

    ADS  Article  Google Scholar 

Download references


I.P. and V.S. were partially funded by the Deutsche Forschungsgemeinschaft (DFG) under grant no. GE2506/12-1. I.P. also acknowledges funding by the United Kingdom’s Science and Technology Facilities Council, grant no. ST/T000406/1. P.N. gratefully acknowledges funding provided by the Max Planck Society. A.I. acknowledges funding by the DFG through grant no. HE1356/71-1. D.S. was supported by the DFG under grant nos. HE1356/70-1 and IR190/1-1. B.B. acknowledges support from the National Aeronautics and Space Administration (NASA) under the TESS Guest Investigator program, grant no. 80NSSC19K1720. T.K. acknowledges support by the United States National Science Foundation through grant no. NSF PHY-1748958. We thank T. R. Marsh for enlightening discussions and for providing an MCMC wrapper to be used with LCURVE. We are grateful to A. S. Baran and D. Jones for providing helpful comments to an earlier version of this manuscript. This article includes data collected by the TESS mission; funding for this mission is provided by the NASA Explorer Program. This work has also made use of data from the European Space Agency mission Gaia (, processed by the Gaia Data Processing and Analysis Consortium (; funding for this consortium has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. Finally, some of the data presented here were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and NASA. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. We wish to recognize and acknowledge the very important cultural role that the summit of Mauna Kea has always had within the indigenous Hawaiian community and the reverence that the community has for it. We are most fortunate to have the opportunity to conduct observations from this mountain.

Author information




I.P. carried out the radial velocity estimates and fitting and the light curve fitting, and led the writing of the manuscript. P.N. calculated the evolution of the system. S.G. and U.H. performed the spectral fitting. T.K. did the spectroscopic reduction and cross-checked the light curve fitting. D.S. and U.H. performed the SED fitting. A.I. wrote the SED fitting tool and calculated the spectral models used for SED and spectral fitting. A.B. calculated the Galactic orbit of the system. J.v.R. performed the spectroscopic observations and contributed to the light curve fit. V.S. and B.N.B. contributed to the analysis of the light curve. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ingrid Pelisoli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Zhanwen Han and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Tables 1–3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pelisoli, I., Neunteufel, P., Geier, S. et al. A hot subdwarf–white dwarf super-Chandrasekhar candidate supernova Ia progenitor. Nat Astron (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing