Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hierarchical mergers of stellar-mass black holes and their gravitational-wave signatures

Abstract

While most of the compact-binary mergers detected by LIGO and Virgo are expected to consist of first-generation black holes formed from the collapse of stars, others might instead be of second (or higher) generation, containing the remnants of previous black-hole mergers. We review theoretical findings, astrophysical modelling and current gravitational-wave evidence of hierarchical stellar-mass black-hole mergers. Such a subpopulation of hierarchically assembled black holes presents distinctive gravitational-wave signatures, namely higher masses, possibly within the pair-instability mass gap, and dimensionless spins clustered at the characteristic value of ~0.7. To produce hierarchical mergers, astrophysical environments need to overcome the relativistic recoils imparted to black-hole merger remnants, a condition that prefers hosts with escape speeds of 100 km s−1. Promising locations for efficient production of hierarchical mergers include nuclear star clusters and accretion disks surrounding active galactic nuclei, though environments that are less efficient at retaining merger products such as globular clusters may still contribute significantly to the detectable population of repeated mergers. While GW190521 is the single most promising hierarchical-merger candidate to date, constraints from large population analyses are becoming increasingly more powerful.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Masses, spins and recoil velocities of 1g and 2g BHs.
Fig. 2: Interplay between the occurrence of hierarchical mergers and (some of) the proposed formation channels of merging compact binaries.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its supplementary information files). Source data are provided with this paper.

References

  1. Abbott, B. P. et al. Binary black hole mergers in the first advanced LIGO observing run. Phys. Rev. X 6, 041015 (2016).

    Google Scholar 

  2. Abbott, B. P. et al. GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Phys. Rev. X 9, 031040 (2019).

    Google Scholar 

  3. Abbott, R. et al. GWTC-2: compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run. Phys. Rev. X 11, 021053 (2021).

    Google Scholar 

  4. Venumadhav, T., Zackay, B., Roulet, J., Dai, L. & Zaldarriaga, M. New search pipeline for compact binary mergers: results for binary black holes in the first observing run of Advanced LIGO. Phys. Rev. D 100, 023011 (2019).

    Article  ADS  Google Scholar 

  5. Venumadhav, T., Zackay, B., Roulet, J., Dai, L. & Zaldarriaga, M. New binary black hole mergers in the second observing run of Advanced LIGO and Advanced Virgo. Phys. Rev. D 101, 083030 (2020).

    Article  ADS  Google Scholar 

  6. Nitz, A. H. et al. 1-OGC: the first open gravitational-wave catalog of binary mergers from analysis of public advanced LIGO data. Astrophys. J. 872, 195 (2019).

    Article  ADS  Google Scholar 

  7. Nitz, A. H. et al. 2-OGC: open gravitational-wave catalog of binary mergers from analysis of public advanced LIGO and Virgo data. Astrophys. J. 891, 123 (2020).

    Article  ADS  Google Scholar 

  8. Aasi, J. et al. Advanced LIGO. Class. Quantum Gravity 32, 074001 (2015).

    Article  ADS  Google Scholar 

  9. Acernese, F. et al. Advanced Virgo: a second-generation interferometric gravitational wave detector. Class. Quantum Gravity 32, 024001 (2015).

    Article  ADS  Google Scholar 

  10. Shapiro, S. L. & Teukolsky, S. A. Black Holes, White Dwarfs and Neutron Stars: the Physics of Compact Objects (Wiley, 1986).

  11. Mandel, I. & Farmer, A. Merging stellar-mass binary black holes. Preprint at https://arxiv.org/abs/1806.05820 (2018).

  12. Mapelli, M. Astrophysics of stellar black holes. Proc. Int. Sch. Phys. Fermi 200, 87–121 (2020).

    Google Scholar 

  13. Postnov, K. A. & Yungelson, L. R. The evolution of compact binary star systems. Living Rev. Relativ. 17, 3 (2014).

    Article  ADS  MATH  Google Scholar 

  14. Paczynski, B. in Structure and Evolution of Close Binary Systems Vol. 73 (eds Eggleton, P. et al.) 75 (Springer, 1976).

  15. van den Heuvel, E. P. J., Portegies Zwart, S. F. & de Mink, S. E. Forming short-period Wolf–Rayet X-ray binaries and double black holes through stable mass transfer. Mon. Not. R. Astron. Soc. 471, 4256–4264 (2017).

    Article  ADS  Google Scholar 

  16. Mandel, I. & de Mink, S. E. Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries. Mon. Not. R. Astron. Soc. 458, 2634–2647 (2016).

    Article  ADS  Google Scholar 

  17. Marchant, P., Langer, N., Podsiadlowski, P., Tauris, T. M. & Moriya, T. J. A new route towards merging massive black holes. Astron. Astrophys. 588, A50 (2016).

    Article  ADS  Google Scholar 

  18. Wen, L. On the eccentricity distribution of coalescing black hole binaries driven by the Kozai mechanism in globular clusters. Astrophys. J. 598, 419–430 (2003).

    Article  ADS  Google Scholar 

  19. Antonini, F. & Perets, H. B. Secular evolution of compact binaries near massive black holes: gravitational wave sources and other exotica. Astrophys. J. 757, 27 (2012).

    Article  ADS  Google Scholar 

  20. Benacquista, M. J. & Downing, J. M. B. Relativistic binaries in globular clusters. Living Rev. Relativ. 16, 4 (2013).

    Article  ADS  MATH  Google Scholar 

  21. Bartos, I., Kocsis, B., Haiman, Z. & Márka, S. Rapid and bright stellar-mass binary black hole mergers in active galactic nuclei. Astrophys. J. 835, 165 (2017).

    Article  ADS  Google Scholar 

  22. Ferrarese, L. & Merritt, D. A fundamental relation between supermassive black holes and their host galaxies. Astrophys. J. Lett. 539, L9–L12 (2000).

    Article  ADS  Google Scholar 

  23. Begelman, M. C., Blandford, R. D. & Rees, M. J. Massive black hole binaries in active galactic nuclei. Nature 287, 307–309 (1980).

    Article  ADS  Google Scholar 

  24. Volonteri, M. Formation of supermassive black holes. Astron. Astrophys. Rev. 18, 279–315 (2010).

    Article  ADS  Google Scholar 

  25. Kormendy, J. & Ho, L. C. Coevolution (or not) of supermassive black holes and host galaxies. Annu. Rev. Astron. Astrophys. 51, 511–653 (2013).

    Article  ADS  Google Scholar 

  26. Heckman, T. M. & Best, P. N. The coevolution of galaxies and supermassive black holes: insights from surveys of the contemporary universe. Annu. Rev. Astron. Astrophys. 52, 589–660 (2014).

    Article  ADS  Google Scholar 

  27. Colpi, M. & Sesana, A. in An Overview of Gravitational Waves (ed. Auger, G.) 43–140 (World Scientific, 2017).

  28. Inayoshi, K., Visbal, E. & Haiman, Z. The assembly of the first massive black holes. Annu. Rev. Astron. Astrophys. 58, 27–97 (2020).

    Article  ADS  Google Scholar 

  29. Barausse, E. & Lapi, A. Massive black hole mergers. Preprint at https://arxiv.org/abs/2011.01994 (2020).

  30. Pretorius, F. Evolution of binary black-hole spacetimes. Phys. Rev. Lett. 95, 121101 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  31. Ossokine, S., Dietrich, T., Foley, E., Katebi, R. & Lovelace, G. Assessing the energetics of spinning binary black hole systems. Phys. Rev. D 98, 104057 (2018).

    Article  ADS  Google Scholar 

  32. Heger, A., Fryer, C. L., Woosley, S. E., Langer, N. & Hartmann, D. H. How massive single stars end their life. Astrophys. J. 591, 288–300 (2003).

    Article  ADS  Google Scholar 

  33. Woosley, S. E., Blinnikov, S. & Heger, A. Pulsational pair instability as an explanation for the most luminous supernovae. Nature 450, 390–392 (2007).

    Article  ADS  Google Scholar 

  34. Woosley, S. E. The progenitor of GW150914. Astrophys. J. Lett. 824, L10 (2016).

    Article  ADS  Google Scholar 

  35. Belczynski, K. et al. The effect of pair-instability mass loss on black-hole mergers. Astron. Astrophys. 594, A97 (2016).

    Article  Google Scholar 

  36. Stevenson, S. et al. The impact of pair-instability mass loss on the binary black hole mass distribution. Astrophys. J. 882, 121 (2019).

    Article  ADS  Google Scholar 

  37. Di Carlo, U. N. et al. Binary black holes in the pair instability mass gap. Mon. Not. R. Astron. Soc. 497, 1043–1049 (2020).

    Article  ADS  Google Scholar 

  38. Mangiagli, A., Bonetti, M., Sesana, A. & Colpi, M. Merger rate of stellar black hole binaries above the pair-instability mass gap. Astrophys. J. Lett. 883, L27 (2019).

    Article  ADS  Google Scholar 

  39. María Ezquiaga, J. & Holz, D. E. Jumping the gap: searching for LIGO’s biggest black holes. Astrophys. J. Lett. 909, L23 (2021).

    Article  ADS  Google Scholar 

  40. Farmer, R., Renzo, M., de Mink, S. E., Marchant, P. & Justham, S. Mind the gap: the location of the lower edge of the pair-instability supernova black hole mass gap. Astrophys. J. 887, 53 (2019).

    Article  ADS  Google Scholar 

  41. Farmer, R., Renzo, M., de Mink, S. E., Fishbach, M. & Justham, S. Constraints from gravitational-wave detections of binary black hole mergers on the 12C(α, γ)16O rate. Astrophys. J. Lett. 902, L36 (2020).

    Article  ADS  Google Scholar 

  42. Renzo, M. et al. Sensitivity of the lower edge of the pair-instability black hole mass gap to the treatment of time-dependent convection. Mon. Not. R. Astron. Soc. 493, 4333–4341 (2020).

    Article  ADS  Google Scholar 

  43. Marchant, P. & Moriya, T. J. The impact of stellar rotation on the black hole mass-gap from pair-instability supernovae. Astron. Astrophys. 640, L18 (2020).

    Article  ADS  Google Scholar 

  44. Woosley, S. E. & Heger, A. The pair-instability mass gap for black holes. Astrophys. J. Lett. 912, L31 (2021).

    Article  ADS  Google Scholar 

  45. Belczynski, K. et al. The formation of a 70 M black hole at high metallicity. Astrophys. J. 890, 113 (2020).

    Article  ADS  Google Scholar 

  46. Vink, J. S., Higgins, E. R., Sander, A. A. C. & Sabhahit, G. N. Maximum black hole mass across cosmic time. Mon. Not. R. Astron. Soc. 504, 146–154 (2021).

    Article  ADS  Google Scholar 

  47. Costa, G. et al. Formation of GW190521 from stellar evolution: the impact of the hydrogen-rich envelope, dredge-up, and 12C(α, γ)16O rate on the pair-instability black hole mass gap. Mon. Not. R. Astron. Soc. 501, 4514–4533 (2021).

    Article  ADS  Google Scholar 

  48. Fishbach, M. & Holz, D. E. Where are LIGO’s big black holes? Astrophys. J. Lett. 851, L25 (2017).

    Article  ADS  Google Scholar 

  49. Abbott, B. P. et al. Binary black hole population properties inferred from the first and second observing runs of advanced LIGO and advanced Virgo. Astrophys. J. Lett. 882, L24 (2019).

    Article  ADS  Google Scholar 

  50. LIGO Scientific Collaboration et al. Population properties of compact objects from the second LIGO–Virgo gravitational-wave transient catalog. Astrophys. J. Lett. 913, L7 (2021).

  51. Roulet, J., Venumadhav, T., Zackay, B., Dai, L. & Zaldarriaga, M. Binary black hole mergers from LIGO/Virgo O1 and O2: population inference combining confident and marginal events. Phys. Rev. D 102, 123022 (2020).

    Article  ADS  Google Scholar 

  52. Tanikawa, A., Susa, H., Yoshida, T., Trani, A. A. & Kinugawa, T. Merger rate density of Population III binary black holes below, above, and in the pair-instability mass gap. Astrophys. J. 910, 30 (2021).

    Article  ADS  Google Scholar 

  53. Farrell, E. et al. Is GW190521 the merger of black holes from the first stellar generations? Mon. Not. R. Astron. Soc. 502, L40–L44 (2021).

    Article  ADS  Google Scholar 

  54. Kinugawa, T., Nakamura, T. & Nakano, H. Formation of binary black holes similar to GW190521 with a total mass of ~150 M from Population III binary star evolution. Mon. Not. R. Astron. Soc. 501, L49–L53 (2021).

    Article  ADS  Google Scholar 

  55. Renzo, M., Cantiello, M., Metzger, B. D. & Jiang, Y. F. The stellar merger scenario for black holes in the pair-instability gap. Astrophys. J. Lett. 904, L13 (2020).

    Article  ADS  Google Scholar 

  56. Kremer, K. et al. Populating the upper black hole mass gap through stellar collisions in young star clusters. Astrophys. J. 903, 45 (2020).

    Article  ADS  Google Scholar 

  57. González, E. et al. Intermediate-mass black holes from high massive-star binary fractions in young star clusters. Astrophys. J. Lett. 908, L29 (2021).

    Article  ADS  Google Scholar 

  58. Rice, J. R. & Zhang, B. Growth of stellar-mass black holes in dense molecular clouds and GW190521. Astrophys. J. 908, 59 (2021).

    Article  ADS  Google Scholar 

  59. Safarzadeh, M. & Haiman, Z. Formation of GW190521 via gas accretion onto Population III stellar black hole remnants born in high-redshift minihalos. Astrophys. J. Lett. 903, L21 (2020).

    Article  ADS  Google Scholar 

  60. Roupas, Z. & Kazanas, D. Generation of massive stellar black holes by rapid gas accretion in primordial dense clusters. Astron. Astrophys. 632, L8 (2019).

    Article  ADS  Google Scholar 

  61. Natarajan, P. A new channel to form IMBHs throughout cosmic time. Mon. Not. R. Astron. Soc. 501, 1413–1425 (2021).

    Article  ADS  Google Scholar 

  62. van Son, L. A. C. et al. Polluting the pair-instability mass gap for binary black holes through super-Eddington accretion in isolated binaries. Astrophys. J. 897, 100 (2020).

    Article  ADS  Google Scholar 

  63. Scheel, M. A. et al. High-accuracy waveforms for binary black hole inspiral, merger, and ringdown. Phys. Rev. D 79, 024003 (2009).

    Article  ADS  Google Scholar 

  64. Berti, E. & Volonteri, M. Cosmological black hole spin evolution by mergers and accretion. Astrophys. J. 684, 822–828 (2008).

    Article  ADS  Google Scholar 

  65. Gerosa, D. & Berti, E. Are merging black holes born from stellar collapse or previous mergers? Phys. Rev. D 95, 124046 (2017).

    Article  ADS  Google Scholar 

  66. Fishbach, M., Holz, D. E. & Farr, B. Are LIGO’s black holes made from smaller black holes? Astrophys. J. Lett. 840, L24 (2017).

    Article  ADS  Google Scholar 

  67. Gálvez Ghersi, J. T. & Stein, L. C. A fixed point for black hole distributions. Class. Quantum Gravity 38, 045012 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  68. Campanelli, M., Lousto, C. O. & Zlochower, Y. Spinning-black-hole binaries: the orbital hang-up. Phys. Rev. D 74, 041501 (2006).

    Article  ADS  Google Scholar 

  69. Fuller, J. & Ma, L. Most black holes are born very slowly rotating. Astrophys. J. Lett. 881, L1 (2019).

    Article  ADS  Google Scholar 

  70. Miller, S., Callister, T. A. & Farr, W. M. The low effective spin of binary black holes and implications for individual gravitational-wave events. Astrophys. J. 895, 128 (2020).

    Article  ADS  Google Scholar 

  71. Vitale, S., Gerosa, D., Haster, C.-J., Chatziioannou, K. & Zimmerman, A. Impact of Bayesian priors on the characterization of binary black hole coalescences. Phys. Rev. Lett. 119, 251103 (2017).

    Article  ADS  Google Scholar 

  72. Biscoveanu, S., Isi, M., Vitale, S. & Varma, V. A new spin on LIGO–Virgo binary black holes. Phys. Rev. Lett. 126, 171103 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  73. Hut, P. Tidal evolution in close binary systems. Astron. Astrophys. 99, 126–140 (1981).

    ADS  MATH  Google Scholar 

  74. Qin, Y. et al. The spin of the second-born black hole in coalescing binary black holes. Astron. Astrophys. 616, A28 (2018).

    Article  Google Scholar 

  75. Gerosa, D. et al. Spin orientations of merging black holes formed from the evolution of stellar binaries. Phys. Rev. D 98, 084036 (2018).

    Article  ADS  Google Scholar 

  76. Zaldarriaga, M., Kushnir, D. & Kollmeier, J. A. The expected spins of gravitational wave sources with isolated field binary progenitors. Mon. Not. R. Astron. Soc. 473, 4174–4178 (2018).

    Article  ADS  Google Scholar 

  77. Bavera, S. S. et al. The origin of spin in binary black holes. Predicting the distributions of the main observables of Advanced LIGO. Astron. Astrophys. 635, A97 (2020).

    Article  Google Scholar 

  78. Steinle, N. & Kesden, M. Pathways for producing binary black holes with large misaligned spins in the isolated formation channel. Phys. Rev. D 103, 063032 (2021).

    Article  ADS  Google Scholar 

  79. Safarzadeh, M., Farr, W. M. & Ramirez-Ruiz, E. A trend in the effective spin distribution of LIGO binary black holes with mass. Astrophys. J. 894, 129 (2020).

    Article  ADS  Google Scholar 

  80. Baibhav, V. et al. The mass gap, the spin gap, and the origin of merging binary black holes. Phys. Rev. D 102, 043002 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  81. Varma, V. et al. Surrogate models for precessing binary black hole simulations with unequal masses. Phys. Rev. Res. 1, 033015 (2019).

    Article  Google Scholar 

  82. Varma, V., Gerosa, D., Stein, L. C., Hébert, F. & Zhang, H. High-accuracy mass, spin, and recoil predictions of generic black-hole merger remnants. Phys. Rev. Lett. 122, 011101 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  83. Barausse, E., Morozova, V. & Rezzolla, L. On the mass radiated by coalescing black hole binaries. Astrophys. J. 758, 63 (2012).

    Article  ADS  Google Scholar 

  84. Hofmann, F., Barausse, E. & Rezzolla, L. The final spin from binary black holes in quasi-circular orbits. Astrophys. J. Lett. 825, L19 (2016).

    Article  ADS  Google Scholar 

  85. Gerosa, D. & Kesden, M. precession: dynamics of spinning black-hole binaries with Python. Phys. Rev. D 93, 124066 (2016).

    Article  ADS  Google Scholar 

  86. Doctor, Z., Farr, B. & Holz, D. E. Black hole leftovers: the remnant population from binary black hole mergers. Astrophys. J. Lett. 914, L18 (2021).

    Article  ADS  Google Scholar 

  87. Gerosa, D. & Berti, E. Escape speed of stellar clusters from multiple-generation black-hole mergers in the upper mass gap. Phys. Rev. D 100, 041301 (2019).

    Article  ADS  Google Scholar 

  88. Boyle, L., Kesden, M. & Nissanke, S. Binary black-hole merger: symmetry and the spin expansion. Phys. Rev. Lett. 100, 151101 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  89. Campanelli, M., Lousto, C. O., Zlochower, Y. & Merritt, D. Maximum gravitational recoil. Phys. Rev. Lett. 98, 231102 (2007).

    Article  ADS  Google Scholar 

  90. González, J. A., Hannam, M., Sperhake, U., Brügmann, B. & Husa, S. Supermassive recoil velocities for binary black-hole mergers with antialigned spins. Phys. Rev. Lett. 98, 231101 (2007).

    Article  ADS  Google Scholar 

  91. Lousto, C. O. & Zlochower, Y. Hangup kicks: still larger recoils by partial spin–orbit alignment of black-hole binaries. Phys. Rev. Lett. 107, 231102 (2011).

    Article  ADS  Google Scholar 

  92. Schnittman, J. D. & Buonanno, A. The distribution of recoil velocities from merging black holes. Astrophys. J. Lett. 662, L63–L66 (2007).

    Article  ADS  Google Scholar 

  93. Lousto, C. O., Zlochower, Y., Dotti, M. & Volonteri, M. Gravitational recoil from accretion-aligned black-hole binaries. Phys. Rev. D 85, 084015 (2012).

    Article  ADS  Google Scholar 

  94. Gerosa, D., Hébert, F. & Stein, L. C. Black-hole kicks from numerical-relativity surrogate models. Phys. Rev. D 97, 104049 (2018).

    Article  ADS  Google Scholar 

  95. Gnedin, O. Y. et al. The unique history of the globular cluster ω Centauri. Astrophys. J. Lett. 568, L23–L26 (2002).

    Article  ADS  Google Scholar 

  96. Merritt, D., Milosavljević, M., Favata, M., Hughes, S. A. & Holz, D. E. Consequences of gravitational radiation recoil. Astrophys. J. Lett. 607, L9–L12 (2004).

    Article  ADS  Google Scholar 

  97. Rodriguez, C. L. & Loeb, A. Redshift evolution of the black hole merger rate from globular clusters. Astrophys. J. Lett. 866, L5 (2018).

    Article  ADS  Google Scholar 

  98. Fragione, G. & Kocsis, B. Black hole mergers from an evolving population of globular clusters. Phys. Rev. Lett. 121, 161103 (2018).

    Article  ADS  Google Scholar 

  99. Miller, M. C. & Lauburg, V. M. Mergers of stellar-mass black holes in nuclear star clusters. Astrophys. J. 692, 917–923 (2009).

    Article  ADS  Google Scholar 

  100. Antonini, F. & Rasio, F. A. Merging black hole binaries in galactic nuclei: implications for Advanced-LIGO detections. Astrophys. J. 831, 187 (2016).

    Article  ADS  Google Scholar 

  101. Gröbner, M., Ishibashi, W., Tiwari, S., Haney, M. & Jetzer, P. Binary black hole mergers in AGN accretion discs: gravitational wave rate density estimates. Astron. Astrophys. 638, A119 (2020).

    Article  ADS  Google Scholar 

  102. Tagawa, H., Haiman, Z. & Kocsis, B. Formation and evolution of compact-object binaries in AGN disks. Astrophys. J. 898, 25 (2020).

    Article  ADS  Google Scholar 

  103. Sopuerta, C. F., Yunes, N. & Laguna, P. Gravitational recoil velocities from eccentric binary black hole mergers. Astrophys. J. Lett. 656, L9–L12 (2007).

    Article  ADS  Google Scholar 

  104. Sperhake, U., Rosca-Mead, R., Gerosa, D. & Berti, E. Amplification of superkicks in black-hole binaries through orbital eccentricity. Phys. Rev. D 101, 024044 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  105. Radia, M., Sperhake, U., Berti, E. & Croft, R. Anomalies in the gravitational recoil of eccentric black-hole mergers with unequal mass ratios. Phys. Rev. D 103, 104006 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  106. Gondán, L., Kocsis, B., Raffai, P. & Frei, Z. Eccentric black hole gravitational-wave capture sources in galactic nuclei: distribution of binary parameters. Astrophys. J. 860, 5 (2018).

    Article  ADS  Google Scholar 

  107. Samsing, J. Eccentric black hole mergers forming in globular clusters. Phys. Rev. D 97, 103014 (2018).

    Article  ADS  Google Scholar 

  108. Zevin, M., Samsing, J., Rodriguez, C., Haster, C.-J. & Ramirez-Ruiz, E. Eccentric black hole mergers in dense star clusters: the role of binary–binary encounters. Astrophys. J. 871, 91 (2019).

    Article  ADS  Google Scholar 

  109. Gondán, L. & Kocsis, B. High eccentricities and high masses characterize gravitational-wave captures in galactic nuclei as seen by Earth-based detectors. Preprint at https://arxiv.org/abs/2011.02507 (2020).

  110. Quinlan, G. D. & Shapiro, S. L. Dynamical evolution of dense clusters of compact stars. Astrophys. J. 343, 725 (1989).

    Article  ADS  Google Scholar 

  111. Lee, M. H. N-body evolution of dense clusters of compact stars. Astrophys. J. 418, 147 (1993).

    Article  ADS  Google Scholar 

  112. Portegies Zwart, S. F., Makino, J., McMillan, S. L. W. & Hut, P. Star cluster ecology. III. Runaway collisions in young compact star clusters. Astron. Astrophys. 348, 117–126 (1999).

    ADS  Google Scholar 

  113. Ebisuzaki, T. et al. Missing link found? The ‘runaway’ path to supermassive black holes. Astrophys. J. Lett. 562, L19–L22 (2001).

    Article  ADS  Google Scholar 

  114. Mouri, H. & Taniguchi, Y. Runaway merging of black holes: analytical constraint on the timescale. Astrophys. J. Lett. 566, L17–L20 (2002).

    Article  ADS  Google Scholar 

  115. Miller, M. C. & Hamilton, D. P. Production of intermediate-mass black holes in globular clusters. Mon. Not. R. Astron. Soc. 330, 232–240 (2002).

    Article  ADS  Google Scholar 

  116. Portegies Zwart, S. F. & McMillan, S. L. W. The runaway growth of intermediate-mass black holes in dense star clusters. Astrophys. J. 576, 899–907 (2002).

    Article  ADS  Google Scholar 

  117. Gültekin, K., Miller, M. C. & Hamilton, D. P. Growth of intermediate-mass black holes in globular clusters. Astrophys. J. 616, 221–230 (2004).

    Article  ADS  Google Scholar 

  118. Gültekin, K., Miller, M. C. & Hamilton, D. P. Three-body dynamics with gravitational wave emission. Astrophys. J. 640, 156–166 (2006).

    Article  ADS  Google Scholar 

  119. Holley-Bockelmann, K., Gültekin, K., Shoemaker, D. & Yunes, N. Gravitational wave recoil and the retention of intermediate-mass black holes. Astrophys. J. 686, 829–837 (2008).

    Article  ADS  Google Scholar 

  120. Giersz, M., Leigh, N., Hypki, A., Lützgendorf, N. & Askar, A. MOCCA code for star cluster simulations—IV. A new scenario for intermediate mass black hole formation in globular clusters. Mon. Not. R. Astron. Soc. 454, 3150–3165 (2015).

    Article  ADS  Google Scholar 

  121. Mapelli, M. Massive black hole binaries from runaway collisions: the impact of metallicity. Mon. Not. R. Astron. Soc. 459, 3432–3446 (2016).

    Article  ADS  Google Scholar 

  122. Fragione, G., Ginsburg, I. & Kocsis, B. Gravitational waves and intermediate-mass black hole retention in globular clusters. Astrophys. J. 856, 92 (2018).

    Article  ADS  Google Scholar 

  123. Kovetz, E. D., Cholis, I., Kamionkowski, M. & Silk, J. Limits on runaway growth of intermediate mass black holes from Advanced LIGO. Phys. Rev. D 97, 123003 (2018).

    Article  ADS  Google Scholar 

  124. Quinlan, G. D. & Shapiro, S. L. The collapse of dense star clusters to supermassive black holes: binaries and gravitational radiation. Astrophys. J. 321, 199 (1987).

    Article  ADS  Google Scholar 

  125. Davies, M. B., Miller, M. C. & Bellovary, J. M. Supermassive black hole formation via gas accretion in nuclear stellar clusters. Astrophys. J. Lett. 740, L42 (2011).

    Article  ADS  Google Scholar 

  126. Menou, K., Haiman, Z. & Narayanan, V. K. The merger history of supermassive black holes in galaxies. Astrophys. J. 558, 535–542 (2001).

    Article  ADS  Google Scholar 

  127. Volonteri, M., Madau, P. & Haardt, F. The formation of galaxy stellar cores by the hierarchical merging of supermassive black holes. Astrophys. J. 593, 661–666 (2003).

    Article  ADS  Google Scholar 

  128. Lupi, A., Colpi, M., Devecchi, B., Galanti, G. & Volonteri, M. Constraining the high-redshift formation of black hole seeds in nuclear star clusters with gas inflows. Mon. Not. R. Astron. Soc. 442, 3616–3626 (2014).

    Article  ADS  Google Scholar 

  129. O’Leary, R. M., Meiron, Y. & Kocsis, B. Dynamical formation signatures of black hole binaries in the first detected mergers by LIGO. Astrophys. J. Lett. 824, L12 (2016).

    Article  ADS  Google Scholar 

  130. Rodriguez, C. L., Amaro-Seoane, P., Chatterjee, S. & Rasio, F. A. Post-Newtonian dynamics in dense star clusters: highly eccentric, highly spinning, and repeated binary black hole mergers. Phys. Rev. Lett. 120, 151101 (2018).

    Article  ADS  Google Scholar 

  131. Rodriguez, C. L. et al. Black holes: the next generation-repeated mergers in dense star clusters and their gravitational-wave properties. Phys. Rev. D 100, 043027 (2019).

    Article  ADS  Google Scholar 

  132. Arca Sedda, M., Mapelli, M., Spera, M., Benacquista, M. & Giacobbo, N. Fingerprints of binary black hole formation channels encoded in the mass and spin of merger remnants. Astrophys. J. 894, 133 (2020).

    Article  ADS  Google Scholar 

  133. Mapelli, M. et al. Hierarchical mergers in young, globular and nuclear star clusters: black hole masses and merger rates. Preprint at https://arxiv.org/abs/2007.15022 (2020).

  134. Mapelli, M. et al. Hierarchical black hole mergers in young, globular and nuclear star clusters: the effect of metallicity, spin and cluster properties. Mon. Not. R. Astron. Soc. 505, 339–358 (2021).

    Article  ADS  Google Scholar 

  135. Antonini, F., Gieles, M. & Gualandris, A. Black hole growth through hierarchical black hole mergers in dense star clusters: implications for gravitational wave detections. Mon. Not. R. Astron. Soc. 486, 5008–5021 (2019).

    Article  ADS  Google Scholar 

  136. Morawski, J., Giersz, M., Askar, A. & Belczynski, K. MOCCA-SURVEY database I: assessing GW kick retention fractions for BH–BH mergers in globular clusters. Mon. Not. R. Astron. Soc. 481, 2168–2179 (2018).

    Article  ADS  Google Scholar 

  137. Samsing, J. & Hotokezaka, K. Populating the black hole mass gaps in stellar clusters: general relations and upper limits. Preprint at https://arxiv.org/abs/2006.09744 (2020).

  138. Liu, B. & Lai, D. Hierarchical black hole mergers in multiple systems: constrain the formation of GW190412-, GW190814-, and GW190521-like events. Mon. Not. R. Astron. Soc. 502, 2049–2064 (2021).

    Article  ADS  Google Scholar 

  139. Fragione, G. & Silk, J. Repeated mergers and ejection of black holes within nuclear star clusters. Mon. Not. R. Astron. Soc. 498, 4591–4604 (2020).

    Article  ADS  Google Scholar 

  140. O’Leary, R. M., Kocsis, B. & Loeb, A. Gravitational waves from scattering of stellar-mass black holes in galactic nuclei. Mon. Not. R. Astron. Soc. 395, 2127–2146 (2009).

    Article  ADS  Google Scholar 

  141. Hong, J. & Lee, H. M. Black hole binaries in galactic nuclei and gravitational wave sources. Mon. Not. R. Astron. Soc. 448, 754–770 (2015).

    Article  ADS  Google Scholar 

  142. Böker, T. in Star Clusters: Basic Galactic Building Blocks Throughout Time and Space Vol. 266 (eds de Grijs, R. & Lépine, J. R. D.) 58–63 (Cambridge Univ. Press, 2010).

  143. Webb, J. J. & Leigh, N. W. C. Back to the future: estimating initial globular cluster masses from their present-day stellar mass functions. Mon. Not. R. Astron. Soc. 453, 3278–3287 (2015).

    Article  ADS  Google Scholar 

  144. Banerjee, S., Baumgardt, H. & Kroupa, P. Stellar-mass black holes in star clusters: implications for gravitational wave radiation. Mon. Not. R. Astron. Soc. 402, 371–380 (2010).

    Article  ADS  Google Scholar 

  145. Tanikawa, A. Dynamical evolution of stellar mass black holes in dense stellar clusters: estimate for merger rate of binary black holes originating from globular clusters. Mon. Not. R. Astron. Soc. 435, 1358–1375 (2013).

    Article  ADS  Google Scholar 

  146. Rodriguez, C. L. et al. Binary black hole mergers from globular clusters: implications for Advanced LIGO. Phys. Rev. Lett. 115, 051101 (2015).

    Article  ADS  Google Scholar 

  147. Rodriguez, C. L., Chatterjee, S. & Rasio, F. A. Binary black hole mergers from globular clusters: masses, merger rates, and the impact of stellar evolution. Phys. Rev. D 93, 084029 (2016).

    Article  ADS  Google Scholar 

  148. Rodriguez, C. L., Haster, C.-J., Chatterjee, S., Kalogera, V. & Rasio, F. A. Dynamical formation of the GW150914 binary black hole. Astrophys. J. Lett. 824, L8 (2016).

    Article  ADS  Google Scholar 

  149. Askar, A., Szkudlarek, M., Gondek-Rosińska, D., Giersz, M. & Bulik, T. MOCCA-SURVEY database—I. Coalescing binary black holes originating from globular clusters. Mon. Not. R. Astron. Soc. 464, L36–L40 (2017).

    Article  ADS  Google Scholar 

  150. Park, D., Kim, C., Lee, H. M., Bae, Y.-B. & Belczynski, K. Black hole binaries dynamically formed in globular clusters. Mon. Not. R. Astron. Soc. 469, 4665–4674 (2017).

    Article  ADS  Google Scholar 

  151. Antonini, F. & Gieles, M. Merger rate of black hole binaries from globular clusters: theoretical error bars and comparison to gravitational wave data from GWTC-2. Phys. Rev. D 102, 123016 (2020).

    Article  ADS  Google Scholar 

  152. Fragione, G., Loeb, A. & Rasio, F. A. On the origin of GW190521-like events from repeated black hole mergers in star clusters. Astrophys. J. Lett. 902, L26 (2020).

    Article  ADS  Google Scholar 

  153. Gupta, A. et al. Black holes in the low-mass gap: implications for gravitational-wave observations. Phys. Rev. D 101, 103036 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  154. Safarzadeh, M., Hamers, A. S., Loeb, A. & Berger, E. Formation and merging of mass gap black holes in gravitational-wave merger events from wide hierarchical quadruple systems. Astrophys. J. Lett. 888, L3 (2020).

    Article  ADS  Google Scholar 

  155. Lu, W., Beniamini, P. & Bonnerot, C. On the formation of GW190814. Mon. Not. R. Astron. Soc. 500, 1817–1832 (2021).

    Article  ADS  Google Scholar 

  156. Vigna-Gómez, A. et al. Massive stellar triples leading to sequential binary black hole mergers in the field. Astrophys. J. Lett. 907, L19 (2021).

    Article  ADS  Google Scholar 

  157. Hamers, A. S., Fragione, G., Neunteufel, P. & Kocsis, B. First and second-generation black hole and neutron star mergers in 2+2 quadruples: population statistics. Preprint at https://arxiv.org/abs/2103.03782 (2021).

  158. Stone, N. C., Metzger, B. D. & Haiman, Z. Assisted inspirals of stellar mass black holes embedded in AGN discs: solving the ‘final au problem’. Mon. Not. R. Astron. Soc. 464, 946–954 (2017).

    Article  ADS  Google Scholar 

  159. Leigh, N. W. C. et al. On the rate of black hole binary mergers in galactic nuclei due to dynamical hardening. Mon. Not. R. Astron. Soc. 474, 5672–5683 (2018).

    Article  ADS  Google Scholar 

  160. McKernan, B. et al. Constraining stellar-mass black hole mergers in AGN disks detectable with LIGO. Astrophys. J. 866, 66 (2018).

    Article  ADS  Google Scholar 

  161. Secunda, A. et al. Orbital migration of interacting stellar mass black holes in disks around supermassive black holes. Astrophys. J. 878, 85 (2019).

    Article  ADS  Google Scholar 

  162. Armitage, P. J. Astrophysics of Planet Formation (Cambridge Univ. Press, 2013).

  163. Bellovary, J. M., Mac Low, M.-M., McKernan, B. & Ford, K. E. S. Migration traps in disks around supermassive black holes. Astrophys. J. Lett. 819, L17 (2016).

    Article  ADS  Google Scholar 

  164. Sirko, E. & Goodman, J. Spectral energy distributions of marginally self-gravitating quasi-stellar object discs. Mon. Not. R. Astron. Soc. 341, 501–508 (2003).

    Article  ADS  Google Scholar 

  165. Thompson, T. A., Quataert, E. & Murray, N. Radiation pressure-supported starburst disks and active galactic nucleus fueling. Astrophys. J. 630, 167–185 (2005).

    Article  ADS  Google Scholar 

  166. McKernan, B., Ford, K. E. S., Lyra, W. & Perets, H. B. Intermediate mass black holes in AGN discs—I. Production and growth. Mon. Not. R. Astron. Soc. 425, 460–469 (2012).

    Article  ADS  Google Scholar 

  167. McKernan, B., Ford, K. E. S., Kocsis, B., Lyra, W. & Winter, L. M. Intermediate-mass black holes in AGN discs—II. Model predictions and observational constraints. Mon. Not. R. Astron. Soc. 441, 900–909 (2014).

    Article  ADS  Google Scholar 

  168. McKernan, B., Ford, K. E. S., O’Shaugnessy, R. & Wysocki, D. Monte Carlo simulations of black hole mergers in AGN discs: low χeff mergers and predictions for LIGO. Mon. Not. R. Astron. Soc. 494, 1203–1216 (2020).

    Article  ADS  Google Scholar 

  169. Yang, Y. et al. Hierarchical black hole mergers in active galactic nuclei. Phys. Rev. Lett. 123, 181101 (2019).

    Article  ADS  Google Scholar 

  170. Bardeen, J. M. & Petterson, J. A. The Lense–Thirring effect and accretion disks around Kerr black holes. Astrophys. J. Lett. 195, L65 (1975).

    Article  ADS  Google Scholar 

  171. Bogdanović, T., Reynolds, C. S. & Miller, M. C. Alignment of the spins of supermassive black holes prior to coalescence. Astrophys. J. Lett. 661, L147–L150 (2007).

    Article  ADS  Google Scholar 

  172. Miller, M. C. & Krolik, J. H. Alignment of supermassive black hole binary orbits and spins. Astrophys. J. 774, 43 (2013).

    Article  ADS  Google Scholar 

  173. Ragusa, E., Lodato, G. & Price, D. J. Suppression of the accretion rate in thin discs around binary black holes. Mon. Not. R. Astron. Soc. 460, 1243–1253 (2016).

    Article  ADS  Google Scholar 

  174. Gerosa, D., Rosotti, G. & Barbieri, R. The Bardeen–Petterson effect in accreting supermassive black hole binaries: a systematic approach. Mon. Not. R. Astron. Soc. 496, 3060–3075 (2020).

    Article  ADS  Google Scholar 

  175. Ryan, G. & MacFadyen, A. Minidisks in binary black hole accretion. Astrophys. J. 835, 199 (2017).

    Article  ADS  Google Scholar 

  176. King, A. R., Lubow, S. H., Ogilvie, G. I. & Pringle, J. E. Aligning spinning black holes and accretion discs. Mon. Not. R. Astron. Soc. 363, 49–56 (2005).

    Article  ADS  Google Scholar 

  177. Gerosa, D. et al. Precessional instability in binary black holes with aligned spins. Phys. Rev. Lett. 115, 141102 (2015).

    Article  ADS  Google Scholar 

  178. Lousto, C. O. & Healy, J. Unstable flip–flopping spinning binary black holes. Phys. Rev. D 93, 124074 (2016).

    Article  ADS  Google Scholar 

  179. Mould, M. & Gerosa, D. Endpoint of the up–down instability in precessing binary black holes. Phys. Rev. D 101, 124037 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  180. Varma, V. et al. Up–down instability of binary black holes in numerical relativity. Phys. Rev. D 103, 064003 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  181. McKernan, B. et al. Ram-pressure stripping of a kicked Hill sphere: prompt electromagnetic emission from the merger of stellar mass black holes in an AGN accretion disk. Astrophys. J. Lett. 884, L50 (2019).

    Article  ADS  Google Scholar 

  182. Graham, M. J. et al. Candidate electromagnetic counterpart to the binary black hole merger gravitational-wave event S190521g*. Phys. Rev. Lett. 124, 251102 (2020).

    Article  ADS  Google Scholar 

  183. Yi, S.-X. & Cheng, K. S. Where are the electromagnetic-wave counterparts of stellar-mass binary black hole mergers? Astrophys. J. Lett. 884, L12 (2019).

    Article  ADS  Google Scholar 

  184. Bird, S. et al. Did LIGO detect dark matter? Phys. Rev. Lett. 116, 201301 (2016).

    Article  ADS  Google Scholar 

  185. Korol, V., Mandel, I., Miller, M. C., Church, R. P. & Davies, M. B. Merger rates in primordial black hole clusters without initial binaries. Mon. Not. R. Astron. Soc. 496, 994–1000 (2020).

    Article  ADS  Google Scholar 

  186. Hall, A., Gow, A. D. & Byrnes, C. T. Bayesian analysis of LIGO–Virgo mergers: primordial versus astrophysical black hole populations. Phys. Rev. D 102, 123524 (2020).

    Article  ADS  Google Scholar 

  187. De Luca, V., Franciolini, G., Pani, P. & Riotto, A. Bayesian evidence for both astrophysical and primordial black holes: mapping the GWTC-2 catalog to third-generation detectors. J. Cosmol. Astropart. Phys. 5, 003 (2021).

    Article  ADS  Google Scholar 

  188. Liu, L., Guo, Z.-K. & Cai, R.-G. Effects of the merger history on the merger rate density of primordial black hole binaries. Eur. Phys. J. C 79, 717 (2019).

    Article  ADS  Google Scholar 

  189. Wu, Y. Merger history of primordial black-hole binaries. Phys. Rev. D 101, 083008 (2020).

    Article  ADS  Google Scholar 

  190. De Luca, V., Franciolini, G., Pani, P. & Riotto, A. The evolution of primordial black holes and their final observable spins. J. Cosmol. Astropart. Phys. 2020, 052 (2020).

    Article  MathSciNet  Google Scholar 

  191. Clesse, S. & García-Bellido, J. Massive primordial black holes from hybrid inflation as dark matter and the seeds of galaxies. Phys. Rev. D 92, 023524 (2015).

    Article  ADS  Google Scholar 

  192. Bianchi, E., Gupta, A., Haggard, H. M. & Sathyaprakash, B. S. Small spins of primordial black holes from random geometries: Bekenstein–Hawking entropy and gravitational wave observations. Preprint at https://arxiv.org/abs/1812.05127 (2018).

  193. Chatziioannou, K. et al. On the properties of the massive binary black hole merger GW170729. Phys. Rev. D 100, 104015 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  194. Doctor, Z., Wysocki, D., O’Shaughnessy, R., Holz, D. E. & Farr, B. Black hole coagulation: modeling hierarchical mergers in black hole populations. Astrophys. J. 893, 35 (2020).

    Article  ADS  Google Scholar 

  195. Kimball, C., Berry, C. & Kalogera, V. What GW170729’s exceptional mass and spin tells us about its family tree. Res. Notes AAS 4, 2 (2020).

    Article  ADS  Google Scholar 

  196. Kimball, C. et al. Black hole genealogy: identifying hierarchical mergers with gravitational waves. Astrophys. J. 900, 177 (2020).

    Article  ADS  Google Scholar 

  197. Fishbach, M., Farr, W. M. & Holz, D. E. The most massive binary black hole detections and the identification of population outliers. Astrophys. J. Lett. 891, L31 (2020).

    Article  ADS  Google Scholar 

  198. Zackay, B., Dai, L., Venumadhav, T., Roulet, J. & Zaldarriaga, M. Detecting gravitational waves with disparate detector responses: two new binary black hole mergers. Preprint at https://arxiv.org/abs/1910.09528 (2019).

  199. Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. Lett. 848, L12 (2017).

    Article  ADS  Google Scholar 

  200. Pratten, G. & Vecchio, A. Assessing gravitational-wave binary black hole candidates with Bayesian odds. Preprint at https://arxiv.org/abs/2008.00509 (2020).

  201. Gayathri, V. et al. GW170817A as a hierarchical black hole merger. Astrophys. J. Lett. 890, L20 (2020).

    Article  ADS  Google Scholar 

  202. LIGO Scientific Collaboration et al. GW190412: observation of a binary-black-hole coalescence with asymmetric masses. Phys. Rev. D 102, 043015 (2020).

  203. Fishbach, M. & Holz, D. E. Picky partners: the pairing of component masses in binary black hole mergers. Astrophys. J. Lett. 891, L27 (2020).

    Article  ADS  Google Scholar 

  204. Damour, T. Coalescence of two spinning black holes: an effective one-body approach. Phys. Rev. D 64, 124013 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  205. Racine, É. Analysis of spin precession in binary black hole systems including quadrupole–monopole interaction. Phys. Rev. D 78, 044021 (2008).

    Article  ADS  Google Scholar 

  206. Schmidt, P., Ohme, F. & Hannam, M. Towards models of gravitational waveforms from generic binaries: II. Modelling precession effects with a single effective precession parameter. Phys. Rev. D 91, 024043 (2015).

    Article  ADS  Google Scholar 

  207. Gerosa, D. et al. A generalized precession parameter χp to interpret gravitational-wave data. Phys. Rev. D 103, 064067 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  208. Mandel, I. & Fragos, T. An alternative interpretation of GW190412 as a binary black hole merger with a rapidly spinning secondary. Astrophys. J. Lett. 895, L28 (2020).

    Article  ADS  Google Scholar 

  209. Zevin, M., Berry, C. P. L., Coughlin, S., Chatziioannou, K. & Vitale, S. You can’t always get what you want: the impact of prior assumptions on interpreting GW190412. Astrophys. J. Lett. 899, L17 (2020).

    Article  ADS  Google Scholar 

  210. Gerosa, D., Vitale, S. & Berti, E. Astrophysical implications of GW190412 as a remnant of a previous black-hole merger. Phys. Rev. Lett. 125, 101103 (2020).

    Article  ADS  Google Scholar 

  211. Rodriguez, C. L. et al. GW190412 as a third-generation black hole merger from a super star cluster. Astrophys. J. Lett. 896, L10 (2020).

    Article  ADS  Google Scholar 

  212. Tagawa, H., Haiman, Z., Bartos, I. & Kocsis, B. Spin evolution of stellar-mass black hole binaries in active galactic nuclei. Astrophys. J. 899, 26 (2020).

    Article  ADS  Google Scholar 

  213. Tagawa, H. et al. Mass-gap mergers in active galactic nuclei. Astrophys. J. 908, 194 (2021).

    Article  ADS  Google Scholar 

  214. Hamers, A. S. & Safarzadeh, M. Was GW190412 born from a hierarchical 3 + 1 quadruple configuration? Astrophys. J. 898, 99 (2020).

    Article  ADS  Google Scholar 

  215. Kimball, C. et al. Evidence for hierarchical black hole mergers in the second LIGO–Virgo gravitational-wave catalog. Preprint at https://arxiv.org/abs/2011.05332 (2020).

  216. Olejak, A. et al. The origin of inequality: isolated formation of a 30 + 10 M binary black hole merger. Astrophys. J. Lett. 901, L39 (2020).

    Article  ADS  Google Scholar 

  217. Kalogera, V. Spin–orbit misalignment in close binaries with two compact objects. Astrophys. J. 541, 319–328 (2000).

    Article  ADS  Google Scholar 

  218. Abbott, R. et al. GW190521: a binary black hole merger with a total mass of 150 M. Phys. Rev. Lett. 125, 101102 (2020).

    Article  ADS  Google Scholar 

  219. Abbott, R. et al. Properties and astrophysical implications of the 150 M binary black hole merger GW190521. Astrophys. J. Lett. 900, L13 (2020).

    Article  ADS  Google Scholar 

  220. Romero-Shaw, I., Lasky, P. D., Thrane, E. & Calderón Bustillo, J. GW190521: orbital eccentricity and signatures of dynamical formation in a binary black hole merger signal. Astrophys. J. Lett. 903, L5 (2020).

    Article  ADS  Google Scholar 

  221. Gayathri, V. et al. GW190521 as a highly eccentric black hole merger. Preprint at https://arxiv.org/abs/2009.05461 (2020).

  222. Calderón Bustillo, J., Sanchis-Gual, N., Torres-Forné, A. & Font, J. A. Confusing head-on and precessing intermediate-mass binary black hole mergers. Phys. Rev. Lett. 126, 201101 (2020).

    Article  Google Scholar 

  223. Anagnostou, O., Trenti, M. & Melatos, A. Hierarchical formation of an intermediate mass black hole via seven mergers: implications for GW190521. Preprint at https://arxiv.org/abs/2010.06161 (2020).

  224. Bellm, E. C. et al. The Zwicky Transient Facility: system overview, performance, and first results. Publ. Astron. Soc. Pac. 131, 018002 (2019).

    Article  ADS  Google Scholar 

  225. Chen, H.-Y., Haster, C.-J., Vitale, S., Farr, W. M. & Isi, M. A standard siren cosmological measurement from the potential GW190521 electromagnetic counterpart ZTF19abanrhr. Preprint at https://arxiv.org/abs/2009.14057 (2020).

  226. Ashton, G., Ackley, K., Magaña Hernandez, I. & Piotrzkowski, B. Current observations are insufficient to confidently associate the binary black hole merger GW190521 with AGN J124942.3+344929. Preprint at https://arxiv.org/abs/2009.12346 (2020).

  227. Palmese, A., Fishbach, M., Burke, C. J., Annis, J. T. & Liu, X. Do LIGO/Virgo black hole mergers produce AGN flares? The case of GW190521 and prospects for reaching a confident association. Astrophys. J. Lett. 914, L34 (2021).

    Article  ADS  Google Scholar 

  228. Belczynski, K. The most ordinary formation of the most unusual double black hole merger. Astrophys. J. Lett. 905, L15 (2020).

    Article  ADS  Google Scholar 

  229. Umeda, H., Yoshida, T., Nagele, C. & Takahashi, K. Pulsational pair-instability and the mass gap of Population III black holes: effects of overshooting. Astrophys. J. Lett. 905, L21 (2020).

    Article  ADS  Google Scholar 

  230. Liu, B. & Bromm, V. The Population III origin of GW190521. Astrophys. J. Lett. 903, L40 (2020).

    Article  ADS  Google Scholar 

  231. De Luca, V., Desjacques, V., Franciolini, G., Pani, P. & Riotto, A. GW190521 mass gap event and the primordial black hole scenario. Phys. Rev. Lett. 126, 051101 (2021).

    Article  ADS  Google Scholar 

  232. Cruz-Osorio, A., Lora-Clavijo, F. D. & Herdeiro, C. GW190521 formation scenarios via relativistic accretion. Preprint at https://arxiv.org/abs/2101.01705 (2021).

  233. Croon, D., McDermott, S. D. & Sakstein, J. Missing in action: new physics and the black hole mass gap. Phys. Rev. D 102, 115024 (2020).

    Article  ADS  Google Scholar 

  234. Sakstein, J., Croon, D., McDermott, S. D., Straight, M. C. & Baxter, E. J. Beyond the standard model explanations of GW190521. Phys. Rev. Lett. 125, 261105 (2020).

    Article  ADS  Google Scholar 

  235. Antoniou, I. Black hole or gravastar? The GW190521 case. Preprint at https://arxiv.org/abs/2010.05354 (2020).

  236. Bustillo, J. C. et al. GW190521 as a merger of Proca stars: a potential new vector boson of 8.7 × 10−13 eV. Phys. Rev. Lett. 126, 081101 (2021).

    Article  ADS  Google Scholar 

  237. Ziegler, J. & Freese, K. Filling the black hole mass gap: avoiding pair instability in massive stars through addition of non-nuclear energy. Preprint at https://arxiv.org/abs/2010.00254 (2020).

  238. Fishbach, M. & Holz, D. E. Minding the gap: GW190521 as a straddling binary. Astrophys. J. Lett. 904, L26 (2020).

    Article  ADS  Google Scholar 

  239. Nitz, A. H. & Capano, C. D. GW190521 may be an intermediate-mass ratio inspiral. Astrophys. J. Lett. 907, L9 (2021).

    Article  ADS  Google Scholar 

  240. Abbott, R. et al. GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object. Astrophys. J. Lett. 896, L44 (2020).

    Article  ADS  Google Scholar 

  241. Bailyn, C. D., Jain, R. K., Coppi, P. & Orosz, J. A. The mass distribution of stellar black holes. Astrophys. J. 499, 367–374 (1998).

    Article  ADS  Google Scholar 

  242. Özel, F., Psaltis, D., Narayan, R. & McClintock, J. E. The black hole mass distribution in the galaxy. Astrophys. J. 725, 1918–1927 (2010).

    Article  ADS  Google Scholar 

  243. Tews, I. et al. On the nature of GW190814 and its impact on the understanding of supranuclear matter. Astrophys. J. Lett. 908, L1 (2021).

    Article  ADS  Google Scholar 

  244. Dexheimer, V., Gomes, R. O., Klähn, T., Han, S. & Salinas, M. GW190814 as a massive rapidly rotating neutron star with exotic degrees of freedom. Phys. Rev. C 103, 025808 (2021).

    Article  ADS  Google Scholar 

  245. Tsokaros, A., Ruiz, M. & Shapiro, S. L. GW190814: spin and equation of state of a neutron star companion. Astrophys. J. 905, 48 (2020).

    Article  ADS  Google Scholar 

  246. Most, E. R., Papenfort, L. J., Weih, L. R. & Rezzolla, L. A lower bound on the maximum mass if the secondary in GW190814 was once a rapidly spinning neutron star. Mon. Not. R. Astron. Soc. 499, L82–L86 (2020).

    Article  ADS  Google Scholar 

  247. Biswas, B., Nandi, R., Char, P., Bose, S. & Stergioulas, N. GW190814: on the properties of the secondary component of the binary. Mon. Not. R. Astron. Soc. 505, 1600–1606 (2021).

    Article  ADS  Google Scholar 

  248. Fryer, C. L. et al. Compact remnant mass function: dependence on the explosion mechanism and metallicity. Astrophys. J. 749, 91 (2012).

    Article  ADS  Google Scholar 

  249. Belczynski, K., Wiktorowicz, G., Fryer, C. L., Holz, D. E. & Kalogera, V. Missing black holes unveil the supernova explosion mechanism. Astrophys. J. 757, 91 (2012).

    Article  ADS  Google Scholar 

  250. Farr, W. M. et al. The mass distribution of stellar-mass black holes. Astrophys. J. 741, 103 (2011).

    Article  ADS  Google Scholar 

  251. Kreidberg, L., Bailyn, C. D., Farr, W. M. & Kalogera, V. Mass measurements of black holes in x-ray transients: is there a mass gap? Astrophys. J. 757, 36 (2012).

    Article  ADS  Google Scholar 

  252. Ye, C. S. et al. On the rate of neutron star binary mergers from globular clusters. Astrophys. J. Lett. 888, L10 (2020).

    Article  ADS  Google Scholar 

  253. Yang, Y. et al. Black hole formation in the lower mass gap through mergers and accretion in AGN disks. Astrophys. J. Lett. 901, L34 (2020).

    Article  ADS  Google Scholar 

  254. Thrane, E. & Talbot, C. An introduction to Bayesian inference in gravitational-wave astronomy: parameter estimation, model selection, and hierarchical models. Publ. Astron. Soc. Aust. 36, e010 (2019).

    Article  ADS  Google Scholar 

  255. Vitale, S., Gerosa, D., Farr, W. M. & Taylor, S. R. Inferring the properties of a population of compact binaries in presence of selection effects. Preprint at https://arxiv.org/abs/2007.05579 (2020).

  256. Belczynski, K. et al. Evolutionary roads leading to low effective spins, high black hole masses, and O1/O2 rates for LIGO/Virgo binary black holes. Astron. Astrophys. 636, A104 (2020).

    Article  Google Scholar 

  257. Tiwari, V. & Fairhurst, S. The emergence of structure in the binary black hole mass distribution. Astrophys. J. Lett. 913, L19 (2021).

    Article  ADS  Google Scholar 

  258. Gerosa, D., Giacobbo, N. & Vecchio, A. High mass but low spin: an exclusion region to rule out hierarchical black-hole mergers as a mechanism to populate the pair-instability mass gap. Preprint at https://arxiv.org/abs/2104.11247 (2021).

  259. Belczynski, K. & Banerjee, S. Formation of low-spinning 100 M black holes. Astron. Astrophys. 640, L20 (2020).

    Article  ADS  Google Scholar 

  260. Tagawa, H., Haiman, Z., Bartos, I., Kocsis, B. & Omukai, K. Signatures of hierarchical mergers in black hole spin and mass distribution. Preprint at https://arxiv.org/abs/2104.09510 (2021).

  261. Fishbach, M. et al. When are LIGO/Virgo’s big black-hole mergers? Astrophys. J. 912, 98 (2021).

    Article  ADS  Google Scholar 

  262. Christian, P., Mocz, P. & Loeb, A. Evolution of the black hole mass function in star clusters from multiple mergers. Astrophys. J. Lett. 858, L8 (2018).

    Article  ADS  Google Scholar 

  263. Flitter, J., Muñoz, J. B. & Kovetz, E. D. Outliers in the LIGO black hole mass function from coagulation in dense clusters. Preprint at https://arxiv.org/abs/2008.10389 (2020).

  264. Baxter, E. J., Croon, D., McDermott, S. D. & Sakstein, J. Find the gap: black hole population analysis with an astrophysically motivated mass function. Preprint at https://arxiv.org/abs/2104.02685 (2021).

  265. Veske, D. et al. Search for black hole merger families. Astrophys. J. Lett. 907, L48 (2021).

    Article  ADS  Google Scholar 

  266. Taylor, S. R. & Gerosa, D. Mining gravitational-wave catalogs to understand binary stellar evolution: a new hierarchical Bayesian framework. Phys. Rev. D 98, 083017 (2018).

    Article  ADS  Google Scholar 

  267. Wong, K. W. K., Breivik, K., Kremer, K. & Callister, T. Joint constraints on the field-cluster mixing fraction, common envelope efficiency, and globular cluster radii from a population of binary hole mergers via deep learning. Phys. Rev. D 103, 083021 (2021).

    Article  ADS  Google Scholar 

  268. Zevin, M. et al. One channel to rule them all? Constraining the origins of binary black holes using multiple formation pathways. Astrophys. J. 910, 152 (2021).

    Article  ADS  Google Scholar 

  269. Broekgaarden, F. S. et al. STROOPWAFEL: simulating rare outcomes from astrophysical populations, with application to gravitational-wave sources. Mon. Not. R. Astron. Soc. 490, 5228–5248 (2019).

    Article  ADS  Google Scholar 

  270. Wong, K. W. K., Contardo, G. & Ho, S. Gravitational-wave population inference with deep flow-based generative network. Phys. Rev. D 101, 123005 (2020).

    Article  ADS  Google Scholar 

  271. Abbott, B. P. et al. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Relativ. 23, 3 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

D.G. is supported by the European Union’s H2020 ERC Starting Grant 945155–GWmining, Leverhulme Trust Grant RPG-2019-350 and Royal Society Grant RGS-R2-202004. M.F. is supported by NASA through the NASA Hubble Fellowship Grant HST-HF2-51455.001-A awarded by the Space Telescope Science Institute. Computational work was performed on the University of Birmingham BlueBEAR cluster, the Athena cluster at HPC Midlands+ funded by EPSRC Grant EP/P020232/1, and the Maryland Advanced Research Computing Center (MARCC).

Author information

Authors and Affiliations

Authors

Contributions

This paper was written jointly by the two authors. D.G. prepared the figures. M.F. extracted distributions from LIGO/Virgo public data.

Corresponding author

Correspondence to Davide Gerosa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Eric Thrane, Michael Zevin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Source data

Source Data Fig. 1

Data behind Fig. 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerosa, D., Fishbach, M. Hierarchical mergers of stellar-mass black holes and their gravitational-wave signatures. Nat Astron 5, 749–760 (2021). https://doi.org/10.1038/s41550-021-01398-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01398-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing