Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A supra-massive population of stellar-mass black holes in the globular cluster Palomar 5

Abstract

Palomar 5 is one of the sparsest star clusters in the Galactic halo and is best known for its spectacular tidal tails, spanning over 20° across the sky. With N-body simulations, we show that both distinguishing features can result from a stellar-mass black hole population, comprising ~20% of the present-day cluster mass. In this scenario, Palomar 5 formed with a ‘normal’ black hole mass fraction of a few per cent, but stars were lost at a higher rate than black holes, such that the black hole fraction gradually increased. This inflated the cluster, enhancing tidal stripping and tail formation. A billion years from now, the cluster will dissolve as a 100% black hole cluster. Initially denser clusters end up with lower black hole fractions, smaller sizes and no observable tails. Black hole-dominated, extended star clusters are therefore the likely progenitors of the recently discovered thin stellar streams in the Galactic halo.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Comparison between the N-body model wBH-1 and observations of Pal 5 and its stream.
Fig. 2: Results for different initial conditions for clusters with BHs.
Fig. 3: Dependence of cluster and stream properties on the BH content.
Fig. 4: Dependence of stream visibility on BH content.
Fig. 5: Mass function of bound stars and remnants of wBH-1 at 11.5 Gyr.
Fig. 6: Surface density and velocity dispersion profiles of models with and without BHs.

Data availability

A snapshot of the wBH-1 model is published on Zenodo (https://doi.org/10.5281/zenodo.4739181). All N-body data are available upon request from the corresponding author.

Code availability

NBODY6++GPU is available from https://github.com/nbodyx/Nbody6ppGPU. LIMEPY is available from https://github.com/mgieles/limepy.

References

  1. 1.

    Bernard, E. J. et al. A synoptic map of halo substructures from the Pan-STARRS1 3π survey. Mon. Not. R. Astron. Soc. 463, 1759–1768 (2016).

    Article  ADS  Google Scholar 

  2. 2.

    Shipp, N. et al. Stellar streams discovered in the dark energy survey. Astrophys. J. 862, 114 (2018).

    Article  ADS  Google Scholar 

  3. 3.

    Malhan, K., Ibata, R. A. & Martin, N. F. Ghostly tributaries to the Milky Way: charting the halo’s stellar streams with the Gaia DR2 catalogue. Mon. Not. R. Astron. Soc. 481, 3442–3455 (2018).

    Article  ADS  Google Scholar 

  4. 4.

    Ibata, R. A., Malhan, K. & Martin, N. F. The streams of the gaping abyss: a population of entangled stellar streams surrounding the inner galaxy. Astrophys. J. 872, 152 (2019).

    Article  ADS  Google Scholar 

  5. 5.

    Koposov, S. E., Rix, H.-W. & Hogg, D. W. Constraining the Milky Way potential with a six-dimensional phase-space map of the GD-1 stellar stream. Astrophys. J. 712, 260–273 (2010).

    Article  ADS  Google Scholar 

  6. 6.

    de Boer, T. J. L., Erkal, D. & Gieles, M. A closer look at the spur, blob, wiggle, and gaps in GD-1. Mon. Not. R. Astron. Soc. 494, 5315–5332 (2020).

    Article  ADS  Google Scholar 

  7. 7.

    Baumgardt, H. & Makino, J. Dynamical evolution of star clusters in tidal fields. Mon. Not. R. Astron. Soc. 340, 227–246 (2003).

    Article  ADS  Google Scholar 

  8. 8.

    Kuzma, P. B., Da Costa, G. S. & Mackey, A. D. The outer envelopes of globular clusters. II. NGC 1851, NGC 5824 and NGC 1261*. Mon. Not. R. Astron. Soc. 473, 2881–2898 (2018).

    Article  ADS  Google Scholar 

  9. 9.

    Myeong, G. C., Evans, N. W., Belokurov, V., Sanders, J. L. & Koposov, S. E. The sausage globular clusters. Astrophys. J. Lett. 863, L28 (2018).

    Article  ADS  Google Scholar 

  10. 10.

    Odenkirchen, M. et al. Detection of massive tidal tails around the globular cluster Palomar 5 with Sloan Digital Sky Survey commissioning data. Astrophys. J. Lett. 548, L165–L169 (2001).

    Article  ADS  Google Scholar 

  11. 11.

    Ibata, R. A., Lewis, G. F., Thomas, G., Martin, N. F. & Chapman, S. Feeling the pull: a study of natural galactic accelerometers. II. Kinematics and mass of the delicate stellar stream of the Palomar 5 globular cluster. Astrophys. J. 842, 120 (2017).

    Article  ADS  Google Scholar 

  12. 12.

    Dehnen, W., Odenkirchen, M., Grebel, E. K. & Rix, H.-W. Modeling the disruption of the globular cluster Palomar 5 by galactic tides. Astron. J. 127, 2753–2770 (2004).

    Article  ADS  Google Scholar 

  13. 13.

    Smith, G. H., Sneden, C. & Kraft, R. P. A study of abundances of four giants in the low-mass globular cluster Palomar 5. Astron. J. 123, 1502–1508 (2002).

    Article  ADS  Google Scholar 

  14. 14.

    Elmegreen, B. G. Globular cluster formation at high density: a model for elemental enrichment with fast recycling of massive-star debris. Astrophys. J. 836, 80 (2017).

    Article  ADS  Google Scholar 

  15. 15.

    Gieles, M. et al. Concurrent formation of supermassive stars and globular clusters: implications for early self-enrichment. Mon. Not. R. Astron. Soc. 478, 2461–2479 (2018).

    Article  ADS  Google Scholar 

  16. 16.

    Gieles, M., Heggie, D. C. & Zhao, H. The life cycle of star clusters in a tidal field. Mon. Not. R. Astron. Soc. 413, 2509–2524 (2011).

    Article  ADS  Google Scholar 

  17. 17.

    Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

    MathSciNet  Article  ADS  Google Scholar 

  18. 18.

    Rodriguez, C. L., Chatterjee, S. & Rasio, F. A. Binary black hole mergers from globular clusters: masses, merger rates, and the impact of stellar evolution. Phys. Rev. D 93, 084029 (2016).

    Article  ADS  Google Scholar 

  19. 19.

    Antonini, F. & Gieles, M. Merger rate of black hole binaries from globular clusters: theoretical error bars and comparison to gravitational wave data from GWTC-2. Phys. Rev. D 102, 123016 (2020).

    Article  ADS  Google Scholar 

  20. 20.

    Fryer, C. L. & Kalogera, V. Theoretical black hole mass distributions. Astrophys. J. 554, 548–560 (2001).

    Article  ADS  Google Scholar 

  21. 21.

    Fryer, C. L. et al. Compact remnant mass function: dependence on the explosion mechanism and metallicity. Astrophys. J. 749, 91 (2012).

    Article  ADS  Google Scholar 

  22. 22.

    Merritt, D., Piatek, S., Portegies Zwart, S. & Hemsendorf, M. Core formation by a population of massive remnants. Astrophys. J. Lett. 608, L25–L28 (2004).

    Article  ADS  Google Scholar 

  23. 23.

    Mackey, A. D., Wilkinson, M. I., Davies, M. B. & Gilmore, G. F. Black holes and core expansion in massive star clusters. Mon. Not. R. Astron. Soc. 386, 65–95 (2008).

    Article  ADS  Google Scholar 

  24. 24.

    Giersz, M. et al. MOCCA survey data base- I. Dissolution of tidally filling star clusters harbouring black hole subsystems. Mon. Not. R. Astron. Soc. 487, 2412–2423 (2019).

    Article  ADS  Google Scholar 

  25. 25.

    Wang, L. The survival of star clusters with black hole subsystems. Mon. Not. R. Astron. Soc. 491, 2413–2423 (2020).

    ADS  Google Scholar 

  26. 26.

    Strader, J., Chomiuk, L., Maccarone, T. J., Miller-Jones, J. C. A. & Seth, A. C. Two stellar-mass black holes in the globular cluster M22. Nature 490, 71–73 (2012).

    Article  ADS  Google Scholar 

  27. 27.

    Chomiuk, L. et al. A radio-selected black hole X-ray binary candidate in the milky way globular cluster M62. Astrophys. J. 777, 69 (2013).

    Article  ADS  Google Scholar 

  28. 28.

    Giesers, B. et al. A detached stellar-mass black hole candidate in the globular cluster NGC 3201. Mon. Not. R. Astron. Soc. 475, L15–L19 (2018).

    Article  ADS  Google Scholar 

  29. 29.

    Wang, L. et al. NBODY6++GPU: ready for the gravitational million-body problem. Mon. Not. R. Astron. Soc. 450, 4070–4080 (2015).

    Article  ADS  Google Scholar 

  30. 30.

    Banerjee, S. et al. BSE versus StarTrack: Implementations of new wind, remnant-formation, and natal-kick schemes in NBODY7 and their astrophysical consequences. Astron. Astrophys. 639, A41 (2020).

    Article  Google Scholar 

  31. 31.

    Hurley, J. R. Ratios of star cluster core and half-mass radii: a cautionary note on intermediate-mass black holes in star clusters. Mon. Not. R. Astron. Soc. 379, 93–99 (2007).

    Article  ADS  Google Scholar 

  32. 32.

    Peuten, M., Zocchi, A., Gieles, M., Gualandris, A. & Hénault-Brunet, V. A stellar-mass black hole population in the globular cluster NGC 6101? Mon. Not. R. Astron. Soc. 462, 2333–2342 (2016).

    Article  ADS  Google Scholar 

  33. 33.

    Breen, P. G. & Heggie, D. C. Dynamical evolution of black hole subsystems in idealized star clusters. Mon. Not. R. Astron. Soc. 432, 2779–2797 (2013).

    Article  ADS  Google Scholar 

  34. 34.

    Erkal, D., Koposov, S. E. & Belokurov, V. A sharper view of Pal 5’s tails: discovery of stream perturbations with a novel non-parametric technique. Mon. Not. R. Astron. Soc. 470, 60–84 (2017).

    Article  ADS  Google Scholar 

  35. 35.

    Banik, N. & Bovy, J. Effects of baryonic and dark matter substructure on the Pal 5 stream. Mon. Not. R. Astron. Soc. 484, 2009–2020 (2019).

    Article  ADS  Google Scholar 

  36. 36.

    Kuzma, P. B., Da Costa, G. S., Keller, S. C. & Maunder, E. Palomar 5 and its tidal tails: a search for new members in the tidal stream. Mon. Not. R. Astron. Soc. 446, 3297–3309 (2015).

    Article  ADS  Google Scholar 

  37. 37.

    Banerjee, S. & Kroupa, P. A new type of compact stellar population: dark star clusters. Astrophys. J. Lett. 741, L12 (2011).

    Article  ADS  Google Scholar 

  38. 38.

    Baumgardt, H., Parmentier, G., Gieles, M. & Vesperini, E. Evidence for two populations of Galactic globular clusters from the ratio of their half-mass to Jacobi radii. Mon. Not. R. Astron. Soc. 401, 1832–1838 (2010).

    Article  ADS  Google Scholar 

  39. 39.

    Baumgardt, H. & Hilker, M. A catalogue of masses, structural parameters, and velocity dispersion profiles of 112 Milky Way globular clusters. Mon. Not. R. Astron. Soc. 478, 1520–1557 (2018).

    Article  ADS  Google Scholar 

  40. 40.

    Elmegreen, B. G. The globular cluster mass function as a remnant of violent birth. Astrophys. J. Lett. 712, L184–L188 (2010).

    Article  ADS  Google Scholar 

  41. 41.

    Kruijssen, J. M. D. Globular clusters as the relics of regular star formation in ‘normal’ high-redshift galaxies. Mon. Not. R. Astron. Soc. 454, 1658–1686 (2015).

    Article  ADS  Google Scholar 

  42. 42.

    Spitzer, L.Jr Disruption of galactic clusters. Astrophys. J. 127, 17 (1958).

    Article  ADS  Google Scholar 

  43. 43.

    Gieles, M. et al. Star cluster disruption by giant molecular clouds. Mon. Not. R. Astron. Soc. 371, 793–804 (2006).

    Article  ADS  Google Scholar 

  44. 44.

    Gieles, M. & Renaud, F. If it does not kill them, it makes them stronger: collisional evolution of star clusters with tidal shocks. Mon. Not. R. Astron. Soc. 463, L103–L107 (2016).

    Article  ADS  Google Scholar 

  45. 45.

    Massari, D., Koppelman, H. H. & Helmi, A. Origin of the system of globular clusters in the Milky Way. Astron. Astrophys. 630, L4 (2019).

    Article  ADS  Google Scholar 

  46. 46.

    Bianchini, P., Renaud, F., Gieles, M. & Varri, A. L. The inefficiency of satellite accretion in forming extended star clusters. Mon. Not. R. Astron. Soc. 447, L40–L44 (2015).

    Article  ADS  Google Scholar 

  47. 47.

    Chatterjee, S., Rodriguez, C. L. & Rasio, F. A. Binary black holes in dense star clusters: exploring the theoretical uncertainties. Astrophys. J. 834, 68 (2017).

    Article  ADS  Google Scholar 

  48. 48.

    Kim, J.-h. et al. Formation of globular cluster candidates in merging proto-galaxies at high redshift: a view from the FIRE cosmological simulations. Mon. Not. R. Astron. Soc. 474, 4232–4244 (2018).

    Article  ADS  Google Scholar 

  49. 49.

    Kremer, K. et al. Modeling dense star clusters in the Milky Way and beyond with the CMC cluster catalog. Astrophys. J. Suppl. Ser. 247, 48 (2020).

    Article  ADS  Google Scholar 

  50. 50.

    Vesperini, E. Evolution of globular cluster systems in elliptical galaxies - II. Power-law initial mass function. Mon. Not. R. Astron. Soc. 322, 247–256 (2001).

    Article  ADS  Google Scholar 

  51. 51.

    Fall, S. M. & Zhang, Q. Dynamical evolution of the mass function of globular star clusters. Astrophys. J. 561, 751–765 (2001).

    Article  ADS  Google Scholar 

  52. 52.

    Sollima, A., Martínez-Delgado, D., Valls-Gabaud, D. & Peñarrubia, J. Discovery of tidal tails around the distant globular cluster Palomar 14. Astrophys. J. 726, 47 (2011).

    Article  ADS  Google Scholar 

  53. 53.

    Bovy, J. galpy: a Python library for galactic dynamics. Astrophys. J. Suppl. Ser. 216, 29 (2015).

    Article  ADS  Google Scholar 

  54. 54.

    Price-Whelan, A. M. et al. Kinematics of the Palomar 5 stellar stream from RR lyrae stars. Astron. J. 158, 223 (2019).

    Article  ADS  Google Scholar 

  55. 55.

    Vasiliev, E. Proper motions and dynamics of the Milky Way globular cluster system from Gaia DR2. Mon. Not. R. Astron. Soc. 484, 2832–2850 (2019).

    Article  ADS  Google Scholar 

  56. 56.

    Gravity Collaboration et al. A geometric distance measurement to the Galactic center black hole with 0.3% uncertainty. Astron. Astrophys. 625, L10 (2019).

  57. 57.

    Navarro, J. F., Frenk, C. S. & White, S. D. M. The structure of cold dark matter halos. Astrophys. J. 462, 563 (1996).

    Article  ADS  Google Scholar 

  58. 58.

    Miyamoto, M. & Nagai, R. Three-dimensional models for the distribution of mass in galaxies. Publ. Astron. Soc. Jpn 27, 533–543 (1975).

    ADS  Google Scholar 

  59. 59.

    Hernquist, L. An analytical model for spherical galaxies and bulges. Astrophys. J. 356, 359–364 (1990).

    Article  ADS  Google Scholar 

  60. 60.

    Martell, S. L., Smith, G. H. & Grillmair, C. J. A new age measurement for Palomar 5. In American Astronomical Society Meeting Abstracts Vol. 201, 07.11 (American Astronomical Society, 2002).

  61. 61.

    Dotter, A., Sarajedini, A. & Anderson, J. Globular clusters in the outer galactic halo: new Hubble Space Telescope/Advanced Camera for Surveys imaging of six globular clusters and the galactic globular cluster age-metallicity relation. Astrophys. J. 738, 74 (2011).

    Article  ADS  Google Scholar 

  62. 62.

    Xu, X. et al. New determination of fundamental properties of Palomar 5 using deep DESI imaging data. Astron. J. 161, 12 (2021).

    Article  ADS  Google Scholar 

  63. 63.

    Plummer, H. C. On the problem of distribution in globular star clusters. Mon. Not. R. Astron. Soc. 71, 460–470 (1911).

    Article  ADS  Google Scholar 

  64. 64.

    Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).

    Article  ADS  Google Scholar 

  65. 65.

    Aarseth, S. J. From NBODY1 to NBODY6: the growth of an industry. Publ. Astron. Soc. Pac. 111, 1333–1346 (1999).

    Article  ADS  Google Scholar 

  66. 66.

    Aarseth, S. J. Gravitational N-Body Simulations (Cambridge Univ. Press, 2003).

  67. 67.

    Ahmad, A. & Cohen, L. A numerical integration scheme for the N-body gravitational problem. J. Comput. Phys. 12, 389–402 (1973).

    MATH  Article  ADS  Google Scholar 

  68. 68.

    Makino, J. & Aarseth, S. J. On a Hermite integrator with Ahmad-Cohen scheme for gravitational many-body problems. Publ. Astron. Soc. Jpn 44, 141–151 (1992).

    ADS  Google Scholar 

  69. 69.

    Hurley, J. R., Pols, O. R. & Tout, C. A. Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity. Mon. Not. R. Astron. Soc. 315, 543–569 (2000).

    Article  ADS  Google Scholar 

  70. 70.

    Hurley, J. R., Tout, C. A. & Pols, O. R. Evolution of binary stars and the effect of tides on binary populations. Mon. Not. R. Astron. Soc. 329, 897–928 (2002).

    Article  ADS  Google Scholar 

  71. 71.

    Nitadori, K. & Aarseth, S. J. Accelerating NBODY6 with graphics processing units. Mon. Not. R. Astron. Soc. 424, 545–552 (2012).

    Article  ADS  Google Scholar 

  72. 72.

    Hobbs, G., Lorimer, D. R., Lyne, A. G. & Kramer, M. A statistical study of 233 pulsar proper motions. Mon. Not. R. Astron. Soc. 360, 974–992 (2005).

    Article  ADS  Google Scholar 

  73. 73.

    Belczynski, K. et al. Compact object modeling with the startrack population synthesis code. Astrophys. J. Suppl. Ser. 174, 223–260 (2008).

    Article  ADS  Google Scholar 

  74. 74.

    King, I. R. The structure of star clusters. III. Some simple dynamical models. Astron. J. 71, 64 (1966).

    Article  ADS  Google Scholar 

  75. 75.

    Ibata, R. et al. Do globular clusters possess dark matter haloes? A case study in NGC 2419. Mon. Not. R. Astron. Soc. 428, 3648–3659 (2013).

    Article  ADS  Google Scholar 

  76. 76.

    Gieles, M. & Zocchi, A. A family of lowered isothermal models. Mon. Not. R. Astron. Soc. 454, 576–592 (2015).

    Article  ADS  Google Scholar 

  77. 77.

    Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306–312 (2013).

    Article  ADS  Google Scholar 

  78. 78.

    Choi, J. et al. Mesa Isochrones and Stellar Tracks (MIST). I. Solar-scaled models. Astrophys. J. 823, 102 (2016).

    Article  ADS  Google Scholar 

  79. 79.

    Dotter, A. MESA Isochrones and Stellar Tracks (MIST) 0: methods for the construction of stellar isochrones. Astrophys. J. Suppl. Ser. 222, 8 (2016).

    Article  ADS  Google Scholar 

  80. 80.

    Ibata, R. A., Lewis, G. F. & Martin, N. F. Feeling the pull: a study of natural galactic accelerometers. I. Photometry of the delicate stellar stream of the Palomar 5 globular cluster. Astrophys. J. 819, 1 (2016).

    Article  ADS  Google Scholar 

  81. 81.

    Cottaar, M., Meyer, M. R. & Parker, R. J. Characterizing a cluster’s dynamic state using a single epoch of radial velocities. Astron. Astrophys. 547, A35 (2012).

    Article  ADS  Google Scholar 

  82. 82.

    Heggie, D. C. Binary evolution in stellar dynamics. Mon. Not. R. Astron. Soc. 173, 729–787 (1975).

    Article  ADS  Google Scholar 

  83. 83.

    Giesers, B. et al. A stellar census in globular clusters with MUSE: binaries in NGC 3201. Astron. Astrophys. 632, A3 (2019).

    Article  Google Scholar 

  84. 84.

    Kremer, K., Ye, C. S., Chatterjee, S., Rodriguez, C. L. & Rasio, F. A. How black holes shape globular clusters: modeling NGC 3201. Astrophys. J. Lett. 855, L15 (2018).

    Article  ADS  Google Scholar 

  85. 85.

    Alessandrini, E., Lanzoni, B., Ferraro, F. R., Miocchi, P. & Vesperini, E. Investigating the mass segregation process in globular clusters with blue straggler stars: the impact of dark remnants. Astrophys. J. 833, 252 (2016).

    Article  ADS  Google Scholar 

  86. 86.

    Weatherford, N. C., Chatterjee, S., Rodriguez, C. L. & Rasio, F. A. Predicting stellar-mass black hole populations in globular clusters. Astrophys. J. 864, 13 (2018).

    Article  ADS  Google Scholar 

  87. 87.

    Weatherford, N. C., Chatterjee, S., Kremer, K. & Rasio, F. A. A dynamical survey of stellar-mass black holes in 50 Milky Way globular clusters. Astrophys. J. 898, 162 (2020).

    Article  ADS  Google Scholar 

  88. 88.

    Askar, A., Arca Sedda, M. & Giersz, M. MOCCA-SURVEY Database I: galactic globular clusters harbouring a black hole subsystem. Mon. Not. R. Astron. Soc. 478, 1844–1854 (2018).

    Article  ADS  Google Scholar 

  89. 89.

    Rodriguez, C. L. et al. Million-body star cluster simulations: comparisons between Monte Carlo and direct N-body. Mon. Not. R. Astron. Soc. 463, 2109–2118 (2016).

    Article  ADS  Google Scholar 

  90. 90.

    Rodriguez, C. L. et al. A new hybrid technique for modeling dense star clusters. Comput. Astrophys. Cosmol. 5, 5 (2018).

    Article  ADS  Google Scholar 

  91. 91.

    Shu, Y. et al. Catalogues of active galactic nuclei from Gaia and unWISE data. Mon. Not. R. Astron. Soc. 489, 4741–4759 (2019).

    Article  ADS  Google Scholar 

  92. 92.

    Astropy Collaboration et al. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

  93. 93.

    Astropy Collaboration et al. The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).

  94. 94.

    Hénon, M. Sur l’évolution dynamique des amas globulaires. Ann. Astrophys. 24, 369 (1961).

    MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

M.G. and E.B. acknowledge financial support from the European Research Council (grant number ERC StG-335936, CLUSTERS) and M.G. acknowledges support from the Spanish Ministry of Science and Innovation through a Europa Excelencia grant (EUR2020-112157). F.A. acknowledges support from a Rutherford fellowship (grant number ST/P00492X/2) from the Science and Technology Facilities Council. E.B. acknowledges financial support from a Vici grant from the Netherlands Organisation for Scientific Research (NWO). M.G. thanks G. Pérez Forcadell for installing the GPU server at the ICCUB on which all the simulations were run. We thank R. Ibata for sharing the data of Pal 5’s surface density profile, Ł. Wyrzykowski for discussions on microlensing and S. Aarseth, K. Nitadori and L. Wang for maintaining NBODY6 and NBODY6++GPU and making the codes publicly available. M.G. and F.A. thank L. Wang and S. Banerjee for discussions on the recent SSE and BSE updates and the implementation in NBODY6++GPU. This research made use of ASTROPY, a community-developed core Python package for astronomy92,93 (http://www.astropy.org).

Author information

Affiliations

Authors

Contributions

M.G. ran all N-body simulations, analysed them and was in charge of the writing. D.E. was in charge of stream modelling and deriving the orbit of Pal 5 and the parameters of the MW model. F.A. contributed to the BH physics of the N-body models. E.B. converted stream models to observed quantities and J.P. contributed to the binary properties. All authors assisted in the development, analysis and writing of the paper.

Corresponding author

Correspondence to Mark Gieles.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1, Table 1 and Methods.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gieles, M., Erkal, D., Antonini, F. et al. A supra-massive population of stellar-mass black holes in the globular cluster Palomar 5. Nat Astron 5, 957–966 (2021). https://doi.org/10.1038/s41550-021-01392-2

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing