Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chronologically dating the early assembly of the Milky Way

Abstract

The standard cosmological model predicts that galaxies are built through hierarchical assembly on cosmological timescales1,2. The Milky Way, like other disk galaxies, underwent violent mergers and accretion of small satellite galaxies in its early history. Owing to Gaia Data Release 23 and spectroscopic surveys4, the stellar remnants of such mergers have been identified5,6,7. The chronological dating of such events is crucial to uncover the formation and evolution of the Galaxy at high redshift, but it has so far been challenging due to difficulties in obtaining precise ages for these oldest stars. Here we combine asteroseismology—the study of stellar oscillations—with kinematics and chemical abundances to estimate precise stellar ages (~11%) for a sample of stars observed by the Kepler space mission8. Crucially, this sample includes not only some of the oldest stars that were formed inside the Galaxy but also stars formed externally and subsequently accreted onto the Milky Way. Leveraging this resolution in age, we provide compelling evidence in favour of models in which the Galaxy had already formed a substantial population of its stars (which now reside mainly in its thick disk) before the infall of the satellite galaxy Gaia-Enceladus/Sausage5,6 around 10 billion years ago.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Observed and modelled stellar power spectra.
Fig. 2: Chronological, chemical and kinematic properties of the seismic RGB sample.
Fig. 3: Gaia DR2 CMD for our sample and kinematically defined halo.
Fig. 4: Age and eccentricity distributions.

Similar content being viewed by others

Data availability

All raw observational data are publicly available: Kepler light curves at https://archive.stsci.edu/kepler/publiclightcurves.html; Gaia DR2 at https://gea.esac.esa.int/archive and APOGEE DR14 may be accessed via https://www.sdss.org/dr14/. APOGEE DR14 raw data have been used in the top panels of Fig. 2. Processed data such as individual frequencies, orbital and stellar parameters are available in Supplementary Table 1 or on request. Evolutionary tracks are publicly available at https://doi.org/10.5281/zenodo.4032320 and theoretical stellar models and oscillation frequencies are available on request.

Code availability

The asteroseismic modelling results were provided by the code AIMS, available at https://lesia.obspm.fr/perso/daniel-reese/spaceinn/aims/version1.3, and cross-checked using the code PARAM (http://stev.oapd.inaf.it/cgi-bin/param). The peak bagging was performed using the pipeline PBJam (https://github.com/grd349/PBjam) and the orbital parameter determination with galpy (https://www.galpy.org). The codes CLES and LOSC used for stellar evolution and adiabatic oscillation computations are not publicly available, but evolutionary tracks, structure models and oscillation files are available on reasonable request.

References

  1. Peebles, P. J. E. Principles of Physical Cosmology (Princeton Univ. Press, 1993).

  2. Kauffmann, G., White, S. D. M. & Guiderdoni, B. The formation and evolution of galaxies within merging dark matter haloes. Mon. Not. R. Astron. Soc. 264, 201–218 (1993).

    Article  ADS  Google Scholar 

  3. Gaia Collaboration Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

  4. Majewski, S. R. et al. The Apache Point Observatory Galactic Evolution Experiment (APOGEE). Astron. J. 154, 94 (2017).

    Article  ADS  Google Scholar 

  5. Helmi, A. et al. The merger that led to the formation of the Milky Way’s inner stellar halo and thick disk. Nature 563, 85–88 (2018).

    Article  ADS  Google Scholar 

  6. Belokurov, V., Erkal, D., Evans, N. W., Koposov, S. E. & Deason, A. J. Co-formation of the disc and the stellar halo. Mon. Not. R. Astron. Soc. 478, 611–619 (2018).

    Article  ADS  Google Scholar 

  7. Myeong, G. C., Vasiliev, E., Iorio, G., Evans, N. W. & Belokurov, V. Evidence for two early accretion events that built the Milky Way stellar halo. Mon. Not. R. Astron. Soc. 488, 1235–1247 (2019).

    Article  ADS  Google Scholar 

  8. Borucki, W. J. KEPLER mission: development and overview. Rep. Prog. Phys. 79, 036901 (2016).

    Article  ADS  Google Scholar 

  9. Belokurov, V. et al. The biggest splash. Mon. Not. R. Astron. Soc. 494, 3880–3898 (2020).

    Article  ADS  Google Scholar 

  10. Di Matteo, P. et al. The Milky Way has no in-situ halo other than the heated thick disc. Composition of the stellar halo and age-dating the last significant merger with Gaia DR2 and APOGEE. Astron. Astrophys. 632, A4 (2019).

    Article  Google Scholar 

  11. Vincenzo, F. et al. The fall of a giant. Chemical evolution of Enceladus, alias the Gaia Sausage. Mon. Not. R. Astron. Soc. 487, L47–L52 (2019).

    Article  ADS  Google Scholar 

  12. Miglio, A. et al. PLATO as it is: a legacy mission for galactic archaeology. Astron. Nachr. 338, 644–661 (2017).

    Article  ADS  Google Scholar 

  13. Haywood, M. et al. In disguise or out of reach: first clues about in situ and accreted stars in the stellar halo of the Milky Way from Gaia DR2. Astrophys. J. 863, 113 (2018).

    Article  ADS  Google Scholar 

  14. Mackereth, J. T. et al. The origin of accreted stellar halo populations in the Milky Way using APOGEE, Gaia, and the EAGLE simulations. Mon. Not. R. Astron. Soc. 482, 3426–3442 (2019).

    Article  ADS  Google Scholar 

  15. Grand, R. J. J. et al. The dual origin of the Galactic thick disc and halo from the gas-rich Gaia-Enceladus-Sausage merger. Mon. Not. R. Astron. Soc. 497, 1603–1618 (2020).

    Article  ADS  Google Scholar 

  16. Schuster, W. J., Moreno, E., Nissen, P. E. & Pichardo, B. Two distinct halo populations in the solar neighborhood. III. Evidence from stellar ages and orbital parameters. Astron. Astrophys. 538, A21 (2012).

    Article  ADS  Google Scholar 

  17. Hawkins, K., Jofré, P., Gilmore, G. & Masseron, T. On the relative ages of the α-rich and α-poor stellar populations in the Galactic halo. Mon. Not. R. Astron. Soc. 445, 2575–2588 (2014).

    Article  ADS  Google Scholar 

  18. Das, P., Hawkins, K. & Jofré, P. Ages and kinematics of chemically selected, accreted Milky Way halo stars. Mon. Not. R. Astron. Soc. 493, 5195–5207 (2020).

    Article  ADS  Google Scholar 

  19. Gallart, C. et al. Uncovering the birth of the Milky Way through accurate stellar ages with Gaia. Nat. Astron. 3, 932–939 (2019).

    Article  ADS  Google Scholar 

  20. Helmi, A. Streams, substructures, and the early history of the Milky Way. Annu. Rev. Astron. Astrophys. 58, 205–256 (2020).

    Article  ADS  Google Scholar 

  21. Miglio, A. et al. Galactic archaeology: mapping and dating stellar populations with asteroseismology of red-giant stars. Mon. Not. R. Astron. Soc. 429, 423–428 (2013).

    Article  ADS  Google Scholar 

  22. Chaplin, W. J. & Miglio, A. Asteroseismology of solar-type and red-giant stars. Annu. Rev. Astron. Astrophys. 51, 353–392 (2013).

    Article  ADS  Google Scholar 

  23. Miglio, A. et al. Age dissection of the Milky Way discs: red giants in the Kepler field. Astron. Astrophys. 645, A85 (2021).

    Article  Google Scholar 

  24. Reese, D. R. AIMS: Asteroseismic Inference on a Massive Scale (2016); https://ascl.net/1611.014

  25. Hayden, M. R. et al. Chemical cartography with APOGEE: metallicity distribution functions and the chemical structure of the Milky Way disk. Astrophys. J. 808, 132 (2015).

    Article  ADS  Google Scholar 

  26. Hayes, C. R. et al. Disentangling the galactic halo with APOGEE. I. Chemical and kinematical investigation of distinct metal-poor populations. Astrophys. J. 852, 49 (2018).

    Article  ADS  Google Scholar 

  27. Chaplin, W. J. et al. Age dating of an early Milky Way merger via asteroseismology of the naked-eye star ν Indi. Nat. Astron. 4, 382–389 (2020).

    Article  ADS  Google Scholar 

  28. Tolstoy, E., Hill, V. & Tosi, M. Star-formation histories, abundances, and kinematics of dwarf galaxies in the local group. Annu. Rev. Astron. Astrophys. 47, 371–425 (2009).

    Article  ADS  Google Scholar 

  29. Nissen, P. E. & Schuster, W. J. Two distinct halo populations in the solar neighborhood. Evidence from stellar abundance ratios and kinematics. Astron. Astrophys. 511, L10 (2010).

    Article  ADS  Google Scholar 

  30. Hawkins, K., Jofré, P., Masseron, T. & Gilmore, G. Using chemical tagging to redefine the interface of the Galactic disc and halo. Mon. Not. R. Astron. Soc. 453, 758–774 (2015).

    Article  ADS  Google Scholar 

  31. Fernández-Alvar, E. et al. Disentangling the Galactic halo with APOGEE. II. Chemical and star formation histories for the two distinct populations. Astrophys. J. 852, 50 (2018).

    Article  ADS  Google Scholar 

  32. Salvadori, S. & Ferrara, A. Ultra faint dwarfs: probing early cosmic star formation. Mon. Not. R. Astron. Soc. 395, L6–L10 (2009).

    Article  ADS  Google Scholar 

  33. Vincenzo, F., Matteucci, F., Vattakunnel, S. & Lanfranchi, G. A. Chemical evolution of classical and ultra-faint dwarf spheroidal galaxies. Mon. Not. R. Astron. Soc. 441, 2815–2830 (2014).

    Article  ADS  Google Scholar 

  34. McWilliam, A., Piro, A. L., Badenes, C. & Bravo, E. Evidence for a sub-Chandrasekhar-mass type Ia supernova in the Ursa Minor dwarf galaxy. Astrophys. J. 857, 97 (2018).

    Article  ADS  Google Scholar 

  35. Kirby, E. N. et al. Evidence for sub-Chandrasekhar type Ia supernovae from stellar abundances in dwarf galaxies. Astrophys. J. 881, 45 (2019).

    Article  ADS  Google Scholar 

  36. Koppelman, H. H., Helmi, A., Massari, D., Price-Whelan, A. M. & Starkenburg, T. K. Multiple retrograde substructures in the Galactic halo: a shattered view of Galactic history. Astron. Astrophys. 631, L9 (2019).

    Article  ADS  Google Scholar 

  37. Gaia Collaboration Gaia Data Release 2. Observational Hertzsprung–Russell diagrams. Astron. Astrophys. 616, A10 (2018).

  38. Chiappini, C. et al. Young [α/Fe]-enhanced stars discovered by CoRoT and APOGEE: what is their origin? Astron. Astrophys. 576, L12 (2015).

    Article  ADS  Google Scholar 

  39. Martig, M. et al. Young α-enriched giant stars in the solar neighbourhood. Mon. Not. R. Astron. Soc. 451, 2230–2243 (2015).

    Article  ADS  Google Scholar 

  40. Jofré, P. et al. Cannibals in the thick disk: the young α-rich stars as evolved blue stragglers. Astron. Astrophys. 595, A60 (2016).

    Article  Google Scholar 

  41. Mackereth, J. T. et al. The origin of diverse α-element abundances in galaxy discs. Mon. Not. R. Astron. Soc. 477, 5072–5089 (2018).

    Article  ADS  Google Scholar 

  42. Kruijssen, J. M. D. et al. Kraken reveals itself—the merger history of the Milky Way reconstructed with the E-MOSAICS simulations. Mon. Not. R. Astron. Soc. 498, 2472–2491 (2020).

    Article  ADS  Google Scholar 

  43. Bignone, L. A., Helmi, A. & Tissera, P. B. A Gaia-Enceladus analog in the eagle simulation: insights into the early evolution of the Milky Way. Astrophys. J. 883, L5 (2019).

    Article  ADS  Google Scholar 

  44. Chiappini, C., Matteucci, F. & Gratton, R. The chemical evolution of the galaxy: the two-infall model. Astrophys. J. 477, 765–780 (1997).

    Article  ADS  Google Scholar 

  45. Holtzman, J. A. et al. APOGEE Data Releases 13 and 14: data and analysis. Astron. J. 156, 125 (2018).

    Article  ADS  Google Scholar 

  46. Brown, T. M., Latham, D. W., Everett, M. E. & Esquerdo, G. A. Kepler input catalog: photometric calibration and stellar classification. Astron. J. 142, 112 (2011).

    Article  ADS  Google Scholar 

  47. Leung, H. W. & Bovy, J. Simultaneous calibration of spectro-photometric distances and the Gaia DR2 parallax zero-point offset with deep learning. Mon. Not. R. Astron. Soc. 489, 2079–2096 (2019).

    Article  ADS  Google Scholar 

  48. Mackereth, J. T. & Bovy, J. Fast estimation of orbital parameters in Milky Way-like potentials. Publ. Astron. Soc. Pac. 130, 114501 (2018).

    Article  ADS  Google Scholar 

  49. Bovy, J. galpy: a python library for Galactic dynamics. Astrophys. J. Suppl. Ser. 216, 29 (2015).

    Article  ADS  Google Scholar 

  50. Gravity Collaboration Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole. Astron. Astrophys. 615, L15 (2018).

  51. Bennett, M. & Bovy, J. Vertical waves in the solar neighbourhood in Gaia DR2. Mon. Not. R. Astron. Soc. 482, 1417–1425 (2019).

    Article  ADS  Google Scholar 

  52. Gravity Collaboration Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA*. Astron. Astrophys. 618, L10 (2018).

  53. Schönrich, R., Binney, J. & Dehnen, W. Local kinematics and the local standard of rest. Mon. Not. R. Astron. Soc. 403, 1829–1833 (2010).

    Article  ADS  Google Scholar 

  54. Davies, G. R. & Miglio, A. Asteroseismology of red giants: from analysing light curves to estimating ages. Astron. Nachr. 337, 774 (2016).

    Article  ADS  Google Scholar 

  55. Kallinger, T. Release note: massive peak bagging of red giants in the Kepler field. Preprint athttp://arxiv.org/abs/1906.09428 (2019).

  56. Mosser, B. & Appourchaux, T. On detecting the large separation in the autocorrelation of stellar oscillation times series. Astron. Astrophys. 508, 877–887 (2009).

    Article  ADS  Google Scholar 

  57. Mosser, B. et al. The universal red-giant oscillation pattern. An automated determination with CoRoT data. Astron. Astrophys. 525, L9 (2011).

    Article  ADS  Google Scholar 

  58. Vrard, M., Mosser, B. & Samadi, R. Period spacings in red giants. II. Automated measurement. Astron. Astrophys. 588, A87 (2016).

    Article  ADS  Google Scholar 

  59. Bedding, T. R. et al. Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars. Nature 471, 608–611 (2011).

    Article  ADS  Google Scholar 

  60. Mosser, B. et al. Mixed modes in red giants: a window on stellar evolution. Astron. Astrophys. 572, L5 (2014).

    Article  ADS  Google Scholar 

  61. Montalbán, J., Miglio, A., Noels, A., Scuflaire, R. & Ventura, P. Seismic diagnostics of red giants: first comparison with stellar models. Astrophys. J. 721, L182–L188 (2010).

    Article  ADS  Google Scholar 

  62. Yu, J. et al. Asteroseismology of 16,000 Kepler red giants: global oscillation parameters, masses, and radii. Astrophys. J. Suppl. Ser. 236, 42 (2018).

    Article  ADS  Google Scholar 

  63. Jönsson, H. et al. APOGEE Data Releases 13 and 14: stellar parameter and abundance comparisons with independent analyses. Astron. J. 156, 126 (2018).

    Article  ADS  Google Scholar 

  64. Lund, M. N. & Reese, D. R. Tutorial: Asteroseismic Stellar Modelling with AIMS. Astrophys. Space Sci. Proc. 49, 149–161 (2018).

    Article  ADS  Google Scholar 

  65. Rendle, B. M. et al. AIMS—a new tool for stellar parameter determinations using asteroseismic constraints. Mon. Not. R. Astron. Soc. 484, 771–786 (2019).

    Article  ADS  Google Scholar 

  66. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article  ADS  Google Scholar 

  67. Lebreton, Y. & Goupil, M. J. Asteroseismology for ‘à la carte’ stellar age-dating and weighing. Age and mass of the CoRoT exoplanet host HD 52265. Astron. Astrophys. 569, A21 (2014).

    Article  ADS  Google Scholar 

  68. Gough, D. O. in Progress of Seismology of the Sun and Stars (eds Osaki, Y. & Shibahashi, H.) 283–318 (Springer, 1990).

  69. Ball, W. H. & Gizon, L. A new correction of stellar oscillation frequencies for near-surface effects. Astron. Astrophys. 568, A123 (2014).

    Article  ADS  Google Scholar 

  70. Brown, T. M., Gilliland, R. L., Noyes, R. W. & Ramsey, L. W. Detection of possible p-mode oscillations on procyon. Astrophys. J. 368, 599 (1991).

    Article  ADS  Google Scholar 

  71. Huber, D. et al. Testing scaling relations for solar-like oscillations from the main sequence to red giants using Kepler data. Astrophys. J. 743, 143 (2011).

    Article  ADS  Google Scholar 

  72. Scuflaire, R. et al. CLÉS, code liégeois d’évolution stellaire. Astrophys. Space Sci. 316, 83–91 (2008).

    Article  ADS  Google Scholar 

  73. Scuflaire, R. et al. The Liège Oscillation code. Astrophys. Space Sci. 316, 149–154 (2008).

    Article  ADS  Google Scholar 

  74. Montalbán, J. et al. Adiabatic solar-like oscillations in red giant stars. Astrophys. Space Sci. Proc. 26, 23–32 (2012).

    Article  ADS  Google Scholar 

  75. Handberg, R., Miglio, A., Brogaard, K., Bossini, D. & Elsworth, Y. P. Peakbagging in the open cluster NGC 6819: opening a treasure chest or Pandora’s box? Astron. Nachr. 337, 799–804 (2016).

    Article  ADS  Google Scholar 

  76. Casagrande, L. & VandenBerg, D. A. Synthetic stellar photometry—II. Testing the bolometric flux scale and tables of bolometric corrections for the Hipparcos/Tycho, Pan-STARRS1, SkyMapper, and JWST systems. Mon. Not. R. Astron. Soc. 475, 5023–5040 (2018).

    Article  ADS  Google Scholar 

  77. Lindegren, L. et al. Gaia Data Release 2. The astrometric solution. Astron. Astrophys. 616, A2 (2018).

    Article  Google Scholar 

  78. Khan, S. et al. New light on the Gaia DR2 parallax zero-point: influence of the asteroseismic approach, in and beyond the Kepler field. Astron. Astrophys. 628, A35 (2019).

    Article  Google Scholar 

  79. Hall, O. J. et al. Testing asteroseismology with Gaia DR2: hierarchical models of the red clump. Mon. Not. R. Astron. Soc. 486, 3569–3585 (2019).

    Article  ADS  Google Scholar 

  80. Zinn, J. C., Pinsonneault, M. H., Huber, D. & Stello, D. Confirmation of the Gaia DR2 parallax zero-point offset using asteroseismology and spectroscopy in the Kepler field. Astrophys. J. 878, 136 (2019).

    Article  ADS  Google Scholar 

  81. Green, G. M. et al. A three-dimensional map of Milky Way dust. Astrophys. J. 810, 25 (2015).

    Article  ADS  Google Scholar 

  82. Green, G. M. Mapping Milky Way Dust in 3D with Stellar Photometry. PhD thesis, Harvard Univ. (2016).

  83. Green, G. M., Schlafly, E., Zucker, C., Speagle, J. S. & Finkbeiner, D. A 3D dust map based on Gaia, Pan-STARRS 1, and 2MASS. Astrophys. J. 887, 93 (2019).

    Article  ADS  Google Scholar 

  84. Rodrigues, T. S. et al. Bayesian distances and extinctions for giants observed by Kepler and APOGEE. Mon. Not. R. Astron. Soc. 445, 2758–2776 (2014).

    Article  ADS  Google Scholar 

  85. Rodrigues, T. S. et al. Determining stellar parameters of asteroseismic targets: going beyond the use of scaling relations. Mon. Not. R. Astron. Soc. 467, 1433–1448 (2017).

    ADS  Google Scholar 

  86. Paxton, B. et al. Modules for experiments in stellar astrophysics (mesa): planets, oscillations, rotation, and massive stars. Astrophys. J. Suppl. Ser. 208, 4 (2013).

    Article  ADS  Google Scholar 

  87. Bressan, A. et al. PARSEC: stellar tracks and isochrones with the Padova and Trieste Stellar Evolution Code. Mon. Not. R. Astron. Soc. 427, 127–145 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J.M., J.T.M., A.M., F.V. and E.W. acknowledge support from the ERC Consolidator Grant funding scheme (project ASTEROCHRONOMETRY, G.A. no. 772293). F.V. acknowledges the support of a Fellowship from the Center for Cosmology and AstroParticle Physics at The Ohio State University. M.V. is supported by FEDER - Fundo Europeu de Desenvolvimento Regional through COMPETE2020 - Programa Operacional Competitividade e Internacionalização by grants PTDC/FIS-AST/30389/2017 and POCI-01-0145-FEDER-030389. C.C. acknowledges partial support from DFG Grant CH1188/2-1 and from the ChETEC COST Action (CA16117), supported by COST (European Cooperation in Science and Technology). G.B. acknowledges fundings from the SNF AMBIZIONE grant no. 185805 (Seismic inversions and modelling of transport processes in stars) and from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 833925, project STAREX). G.R.D. acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (CartographY GA 804752). M.B.N. acknowledges support from the UK Space Agency. O.J.H. acknowledges the support of the UK Science and Technology Facilities Council (STFC). This article made use of AIMS, a software for fitting stellar pulsation data, developed in the context of the SPACEINN network, funded by the European Commission’s Seventh Framework Programme. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular, the institutions participating in the Gaia Multilateral Agreement. The computations described in this paper were performed using the University of Birmingham’s BlueBEAR HPC service, which provides a high-performance computing service to the university’s research community. See http://www.birmingham.ac.uk/bear for more details. We thank S. McGee for reading and commenting on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.M. led the project, with help from J.T.M., A.M., F.V., C.C. and W.J.C. G.R.D. designed the pipeline for the light-curve analysis. J.M., J.T.M., A.M., F.V., G.R.D., O.J.H., M.B.N., S.K. and W.E.v.R. worked on extracting mode parameters from the Kepler light curves. J.M., A.N. and R.S. performed the stellar modelling and theoretical oscillation frequency computations. J.M., G.B. and B.M.R. worked on the stellar parameter determination from individual frequencies using Bayesian inference code AIMS. A.M. estimated stellar parameters from global observational constraints using the code PARAM. B.M. and M.V. provided global seismic parameters. J.T.M. and F.V. performed the kinematics and chemical composition analysis from Gaia DR2 and APOGEE DR14 datasets. E.W. derived absolute stellar luminosity from Gaia DR2. J.W.F. provided radiative opacity data at low temperature for the alpha-enhanced chemical mixture used in the stellar evolution code. All authors have contributed to the interpretation of the data and the results, and discussion and giving comments on the paper.

Corresponding author

Correspondence to Josefina Montalbán.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks David Soderblom and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Data samples.

a, Diagram [α/Fe] versus [Fe/H] for all the Kepler-APOGEE-DR14 sample (grey dots). Orange symbols are the targets in our sub-sample: red giant stars with [Fe/H] < − 0.5, and blue ones are the first ascending red giant branch targets selected for characterization in this paper. b, Teff versus \({\nu }_{\max }\) diagram (equivalent to Kiel diagram) of our target sample (color-coded by metallicity), overlying the complete Kepler-APOGEE-DR14 one (grey empty and full symbols). The dashed lines corresponds to two [α/Fe]=0.2 evolutionary tracks: blue M=0.9 M, [Fe/H]=-1.0; orange, same mass but [Fe/H]=-0.5.

Extended Data Fig. 2 Posterior probability distributions for KIC 4143467 stellar properties as inferred by AIMS.

a-f: age, mass, radius, mean density, luminosity and frequency at maximun power, respectively. The oscillation spectra of this target is shown in first panel of Fig. 1. The vertical dash-dotted lines indicate the value of the corresponding parameter in the best-fitting model from the MCMC sampling.

Extended Data Fig. 3 Posterior probability distributions for KIC 12111110 stellar properties as inferred by AIMS.

a-f: age, mass, radius, mean density, luminosity and frequency at maximun power, respectively. The vertical dash-dotted lines indicate the value of the corresponding parameter in the best-fitting model from the MCMC sampling.

Extended Data Fig. 4 Age distribution using PARAM for the APOGEE-Kepler sample with stellar radius limited to 14 R.

a-b, [α/Fe] vs. [Fe/H] distribution of the sample coloured by age (a) and eccentricity (b). The symbol size scales with \({\nu }_{\max }\). c, Age distributions of accreted and in-situ stars, so classified from their [α/Fe] and eccentricity values; d, Kiel diagram of the sample coloured by metallicity. Notice that the ‘very old’ (yellow dots Teff > 5400 K) suggest that we have underestimated the mass loss for those stars.

Extended Data Fig. 5 Age distribution using PARAM for the APOGEE-Kepler sample with stellar radius limited to 8 R.

a-b, [α/Fe] vs. [Fe/H] distribution of the sample coloured by age (a) and eccentricity (b). The symbol size scales with \({\nu }_{\max }\). c, Age distributions of accreted and in-situ stars, so classified from their [α/Fe] and eccentricity values; d, Kiel diagram of the sample coloured by metallicity. Notice that the ‘very old’ (yellow dots Teff > 5400 K) suggest that we have underestimated the mass loss for those stars.

Extended Data Fig. 6 Age and eccentricity distributions for different selection criteria for in-situ and accreted populations.

Age against eccentricity (e) for the stars in the sample coloured by [Fe/H]}. Circles represent age values of the best fitting models, and horizontal lines their uncertainties ([16%-84%] C.I. from full posterior distributions). Uncertainties on e are smaller than the symbol size. The diamond represents ν Indi25 (not included in the distributions). The histogram above reflects the combined posterior distributions for the stars in each selection. a,c, division line [Mg/Fe] = -0.5 [Fe/H]-0.3 (ref. 14). b,d, division line [Mg/Fe] = -0.2 [Fe/H] (ref. 26). Top and bottom panels correspond to eccentricity threshold 0.7 and 0.6 respectively.

Extended Data Fig. 7 Probabilistic graphical model of that used to fit the mean age and intrinsic age spread of the in- and ex-situ populations defined on the basis of element abundances and orbital parameters.

We assume the measured ages are drawn from an underlying true age θ distribution that is Gaussian with a mean μ with a standard deviation τ. We assume that the true age distribution is contaminated by stars whose mass is higher than expected (and therefore appear younger), likely due to some poorly understood process such as binary interactions. We model these contaminants as also being drawn from another normal distribution with a mean μc and spread τc which has a fractional contribution ε to the total age distribution (hence the main population contributes 1 − ε).

Supplementary information

Supplementary Information

Supplementary Table 1 with the stellar parameters for the final sample of 95 targets.

Supplementary Data

Machine-readable version of Supplementary Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montalbán, J., Mackereth, J.T., Miglio, A. et al. Chronologically dating the early assembly of the Milky Way. Nat Astron 5, 640–647 (2021). https://doi.org/10.1038/s41550-021-01347-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01347-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing